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General theory of electronic transport in molecular crystals. 
I. Local linear electron-phonon coupling 
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An improved general theory of electronic transport in molecular crystals with local linear 
electron-phonon coupling is presented. It is valid for arbitrary electronic and phonon bandwidths and 
for arbitrary electron-phonon coupling strength, yielding small-polaron theory for narrow electronic 
bands and strong coupling, and semiconductor theory for wide electronic bands and weak coupling. 
Detailed results are derived for electronic excitations fully clothed with phonons and having a bandwidth 
no larger than the phonon frequency; the electronic and phonon densities of states are taken as Gaussian 
for simplicity. The dependence of the diffusion coefficient on temperature and on the other parameters is 
analyzed thoroughly. The calculated behavior provides a rational interpretation of observed trends in the 
magnitude and temperature dependence of charge-carrier drift mobilities in molecular crystals. 

I. INTRODUCTION 

Electronic transport in molecular crystals is a com­
plicated phenomenon for two reasons. The first is the 
complexity of the vibrations. In all molecular crystals 
the phonons include molecular modes and translational 
and vibrational lattice modes, each with its characteris­
tic frequency and bandwidth. The various modes also 
have different mechanisms of electron-phonon coupling, 
again with different strengths. The second reason why 
transport is complicated is the absence of any clear 
ordering of the different parameters. The electronic 
bandwidths may range from being larger than most pho­
non frequencies and bandwidths (for charge carriers) to 
being smaller than either (for triplet excitons). The 
electron-phonon coupling energy may be large or small 
compared with electronic and vibrational energies, and 
if large may cause the electronic bandwidth to narrow 
rapidly with increasing temperature, so changing the 
parameter ordering. 

Early transport theories were restricted in scope and 
did not reflect these complications. As well as treating 
only a single phonon band, for simplicity, the theories 
would assume a particular parameter ordering and a 
transport mechanism. More recent work has adopted 
less restricted approaches. 1-11 Transport has been 
described by the mean-square particle displacement as 
a function of time, so permitting study of the clothing 
of the particle by phonons and the development of dif­
fusive motion. These approaches also reveal the change 
from hopping to band motion as the temperature is low­
ered in systems with strong electron-phonon coupling. 

However, the available theories have still been re­
stricted to selected parameter orderings. In particular, 
it has been assumed in theories of exciton transport 
that the exciton bandwidth is narrower than the phonon 
bandwidth, and this assumption has been carried over 
to theories of carrier transport. In fact, carrier band­
widths may well be much larger than phonon bandwidths 
at low temperatures, becoming smaller than phonon 
bandwidths as the temperature is raised, owing to po-

laron band narrowing effects. There is therefore a 
need for a theory which can treat both wide and narrow 
electronic bands in molecular crystalS with either 
strong or weak electron-phonon coupling. We have al­
ready discussed how such a theory may be developed, 12 

and here we describe the theory in detail. 

In Sec. II we describe the model Hamiltonian used 
here and summarize our method. In Sec. III we show 
how the method gives the diffusion coefficient in the 
Simple case of weak electron-phonon coupling. Then in 
Sec. IV we apply the method for strong local linear 
electron-phonon coupling treated by the usual canonical 
transformation. We derive a general expression for the 
diffusion coefficient and show the form it takes in var­
ious limiting cases of temperature and bandwidths. We 
also show in Sec. V that the simple weak-coupling re­
sults are included in our general result. Finally, in 
Sec. VI we discuss our results and future work. 

II. PRINCIPLES 

We start from the following model Hamiltonian, in 
which we take n = 1: 

N -1/2 '" • (b+ b) + + L...Jgqwq ..,+ q a.a •. (2.1) 
.q 

Here the operators a; and a. create and destroy an elec­
tronic excitation (exciton or charge carrier) of energy 
t: at site n, while the operators b; and bq create and 
destroy a phonon of frequency Wq and wave vector q. 
The quantity J.", = J",. is the transfer integral between 
sites nand m. The last term is the electron-phonon 
coupling term, of magnitude determined by the dimen­
sionless parameters g= = gq eiCl

'''', where R" is the posi­
tion vector of site n. The coupling is local (diagonal) in 
excitation site. Such a coupling can arise from molec­
ular distortion in the excited or ionized state, in which 
case gq and Wq are expected to be almost independent of 
q, or from vibrational fluctuations in the exciton site 
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2764 R. Silbey and R. W. Munn: Electronic transport in molecular crystals. I 

shift or charge carrier polarization energy, in which 
case g. and w. may vary more markedly with q. 

If the electron phonon coupling is weak (I g)« 1 for 
all q), the Hamiltonian may be used directly to study 
transport, as in Sec. III. If the coupling is strong, the 
Hamiltonian is transformed to yield a weaker coupling, 
as in Sec. IV. In either case, the Hamiltonian is writ·· 
ten 

H =H ... +Hph+N-1/2 L Vtqa;aq , 
t,,, 

(2.2) 

where H oX and Hph are operators diagonal in excitation 
wave vector k and phonon wave vector q, and Vt<l is a 
function of phonon operators. 

Transport is studied in terms of the mean-square dis­
placement of an excitation created at the origin at time 
zero. At long times, the rate of change of this quantity 
gives the diffusion coefficient; we shall not consider 
the transport before it becomes diffusive. The mean­
square displacement is obtained from the excitation den­
sity matrix, which is the full density matrix of the cou­
pled system integrated over all phonon states. Exact 
formal expressions for this quantity can be obtained, 
but more tractable expressions follow if only terms up 
to second order in the V". are retained. After further 
neglect of small quantities, the diffusion coefficient can 
be expressed as l

2. 

(2.3) 

where the double angle brackets denote a thermal aver­
age over excitation states of energy E", and v" is the 
velocity V"E". The roo are the rates of scattering out 
of state k, so that the first term in Eq. (2.3) has the 
usual form for band transport, and the Y"" have the form 
of hopping rates. 

Both r k~ and Y"" are obtained from quantities12 

W"", ; •• = fo~ dr{(V.". V •• (r» exp(i(E. - E". )rj 

+ (v,''' (r)v".) exp[ - i(E" - E.)rJ) ; (2.4) 

the Single angle brackets denote an average over phonon 
states, V".(r) = eiHphTV". e- IHph T, and s = k' - k +q. The 
scattering rates are given by 

(2.5) 

and the hopping rates are given by 

(
1 a2 a2

) -1 I 
Y"" = "2"""dil - dKa Re N L::: ~ .• -1/(;"." +. • ".0 (2.6) 

(or various equivalent forms6•
12

). Derivation of the 
diffusion coefficient thus requires evaluation of the cor­
relation functions (Va'" V".(r», of the integrals in Eq. 
(2.4), of the sums in Eqs. (2.5) and (2.6), and of the 
thermal average in Eq. (2.3). 

III. UNTRANSFORMED COUPLING 

A. General results 

If the electron-phonon coupling is sufficiently weak, 
the last term in Eq. (2. 1) can be treated as a perturba-

tion. Then in Eq. (2.2) the operator V •• is given by 

The required correlation functions are of the form 

(V" -1/( •• +K V." (r» = I g,,_.12 w!_. 

(3.1) 

x[(n,,_.+1)e-iw,,-.T +n,,_.eiW,,-.Tj, (3.2) 

where we have used the results g -Q. = g; and w_. = WqO 
In Eq. (3.2) n,,_. is the thermal equilibrium number of 
phonons in mode k -q, given by 

n"_q =n(w,,_q) = (eSw,,-Q. _1)-1 , (3.3) 

where f3=1/kB T, with kB the Boltzmann constant. Sub­
stitution of Eq. (3.2) in Eq. (2.4) yields integrals lead­
ing to 6 functions: 

x {(n,,_. + 1)[6(E,,+K -E.+K - w"_.)+6(E,, -E. - wk_.)j 

+ n,,_.[ 6(E,,+ K - E. +K + w,,_.) + 6(E" - E. + w,,_.)]}, (3.4 

The scattering rates are then obtained as 

r"" = 2rrN -1 L Igq 1
2w:[ (n. + 1)6 (E"-<I - E" + wq) 

q 

(3.5) 

At this level of approximation, there is no scattering 
unless the excitation bandwidth B is wider than some 
phonon energy so that Single-phonon processes are 
energetically feasible. The hopping rates are obtained 
by substituting Eq. (3.4) in Eq. (2.6) and changing the 
summation variable to k - q: 

( 1 d
2 

d
2

) -1" I 12 2. 
Y"" = "2 dk2 - dK2 rrN L;- g. w. 

x {(no + l)[o(E,,+K - E"_.+K - wq) + 6(E" - E k_. - w.) j 

+n.[6(E,,+K -E,,_.+K+W.)+6(E,,-E,,_.+W.)J}K.fJ' (306) 

In the limit K = 0, both terms in a given square bracket 
have the same derivative with respect to k, which equals 
the derivative of the first term with respect to K. 
Hence Yo" is zero; with weak electron-phonon coupling 
there is no hopping, as expected, and the diffusion co­
efficient is given by the standard band expression in­
volving the scattering rates r kk' 

B. Optical phonons 

For a narrow optical phonon band we can set g. =g, 
w. = w, and n. =n for all q. The scattering rates are 
then 

r~~=2rr~w2[(n+1)Nox(E,,-w)+nNox(E,,+w)j, (3.7) 

where N ex(E) is the excitation denSity of states. In gen­
eral the resulting diffusion coefficient is difficult to ob­
tain except by numerical means. However, for wide 
parabolic excitation bands such that B» w, we can set 

r~: '" 2rr~w2(2n + l)N .. (E,,) , 

v~ =2E,,/m* 

(3.8) 

(3.9) 

where m* is the effective mass. Conventional Rroce­
dures13 then lead to 
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(3.10) 

where a is the intermolecular distance. Since m* - liB, 
then D- BS/21w2• The mobility tJ. =e~D varies as y-1/2 
at low temperatures such that k B T« w, changing even­
tually to T-3 /2 when kB» w. 

C. Acoustic phonons 

We assume that acoustic phonons can be adequately 
described by a Debye spectrum, cutoff frequency wo , 
and that the electron-phonon coupling is given by the 
deformation potential approximation 

gq = (Alwq)1/2 • (3.11) 

The scattering rate is then 

r~~ = 27T AWl L: w.[ (n. + 1)6(E __ • - E_ + w.) 
• 

(3. 12) 

Further formal results can be obtained by defining the 
joint denSity of states at total wave vector k by 

Pk(E, w) =N-l L: 6(w - wq )6(E,-E._q ) , 

q 

which satisfies 

N -1 L: Pk(E, w) =Npb(w)N u(E) , 
k 

(3.13) 

(3.14) 

where NlIb(w) is the phonon density of states. Using Eq. 
(3. 13) in Eq. (3.12) we obtain 

r~~ =21TA S dE S dwp_(E, w)w 

x ([n(w) + 1]6(E - E_ + w) +n(w)6(E - E_ - w)} • (3.15) 

In some limits, results can be obtained more directly. 
In the conventional semiconductor limit B» kBT» wo , 

we have n q '" kB T I w.» 1, and I E_.." - E.I» I w.1 except 
for a few sets of wave vectors. These results yield 

r~~ =47T AkBTN .,.(E_) , (3.16) 

D/a2=[1TlkBT(m*)5]1/2/A, (3.17) 

so that D - B 5/2 / A - B3/2 if we assume A is proportional 
to B. Equation (3. 17) gives the standard y-3/2 temper­
ature dependence for the mobility. 13 

In molecular crystals one may also require the limit 
kBT» wo» B. Then in Eq. (3.12) nonzero contributions 
arise only for frequencies w.::o B. Taking on average 
I E k _. - E.I '" ~B yields for all k, 

rae", 41TAkBTNph(~B) , (3.18) 

where for a Debye spectrum Npb(w) =3w2Iw1. Taking 
similarly (v~)", (~Ba)2, we obtain 

(3.19) 

so that D - wll A - w1/B (with the previous assumption 
A a: B) and the mobility varies as y-2. The narrow ex­
citation band in this limit greatly reduces the number of 
allowed one-phonon scattering processes, so that the 
diffUSion coefficient may be large, as the ratio wolB 
indicates. 

Finally, in the limit kBT» wD, the scattering rates 
are given by Eq. (3.16) but the thermal averages in D 
have to be taken over a narrow excitation band. We 
take v~ - HBa)2 and N ex (Ek ) - liB, obtaining 

D/a2 =B3/(167TAkBT) , (3.20) 

so that the mobility varies as y-2. This result accords 
with the narrow excitation band treatments of Glarum14 

and Friedman. 15 

IV. TRANSFORMED COUPLING 

A. Transformation 

The transformation of the Hamiltonian (2. 1) which 
yields a weak residual excitation-phonon coupling even 
when the gq are large has been discussed several 
times. 4- 7,16,17 It produces a uniform shift in the excita­
tion energy levels and a displacement in the equilibrium 
pOSition of the phonons corresponding to the formation 
of a polaron. Since the transfer interactions J"m com­
pete with this tendency to form a localized state, the 
optimum transformation should be determined variation­
ally.6,17 However, for present purposes we use the full 
clothing transformation which is exact for J = 0 and 
yields the correct untransformed results for large J 
and weak coupling. The results are qualitatively simi­
lar to those which would be obtained with the full varia­
tional transformation, but are simplified by the ab­
sence of the temperature-dependent variational param­
eters. 

After the transformation, the excitation part of the 
Hamiltonian (2. 2) is 

Hex = L.: IE -N -1 L.: wq lg.12+ L.:jh E1k'Rh) a;ak , (4.1) 
_ \' • h 

where Rh is a lattice vector and 

Jh =In+h,"(fJ:+hfJn) , (4.2) 

fJ" = exp [N1/2 ~ (g:)*(b;-b_q )]. (4.3) 

(fJ~+hfJ") =exP[-N-14=(2na + l)lgq 1
2(1_ cosq .~)]. (4.4) 

The phonon part is 

Hpb = L wq(b; bq +~) • (4.5) 
q 

The residual coupling is described by the operators 

Vkq=N-1/2 L.: Jheik'RlIel(t-,.l'B"(fJ;+hfJ"_(fJ:+hfJ,,». (4.6) 
",II 

The excitation part and the coupling are temperature de­
pendent through the thermal averages in Eqs. (4.2) and 
(4.6); this partition of the Hamiltonian ensures the cor­
rect thermal equilibrium behavior. 

B. Correlation functions 

To simplify the treatment of the correlation functions, 
we assume that the phonons belong to a narrow optical 
band and ignore any anisotropy. We neglect any terms 
which are exactly zero for zero phonon bandwidth4 and 
retain only terms corresponding to sites h which are 
nearest neighbors of the origin. Then we obtain 
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+ [Y4(r) -2Y3(r)]exp(i(k+q+K) ·Rh]} 

+ yz(r)(E.E.+ K + EkEk+ K) + 1'3 (r)(EkE. + K + Ek+ KEq), (4.7) 

where Ek is the bracketed quantity in Eq. (4.1) and 

Y1(r)"'e G(T)-I, Y2(r)"'e<1/2)G(T)_I, 

Y3(r) "'e-(1/2)G(T) -1, Y4(r) "'e-G (1) -1 , (4.8) 

with 

G(r)=2N-1 L /go/2[noeiwoT +(no+l)e-iWoT]. (4.9) 
q 

As in Sec. III.B, we take go = g and no "'n for all q, 
but if we take Wo = w the correlation functions do not de­
cay to zero as normally required in the limit r- 00. In­
stead, we put 

(4. 10) 

where A(r) is the Fourier transform of the phonon den­
sity of states Nph(w). Here, A(r) decays to zero as 
r - 00, so making the correlation functions decay to zero. 
These decays in turn determine the form of the quanti­
ties Wo •• +.;k.k+. through their effect on the integration in 
Eq. (2.4). 

For the integration it is convenient to rewrite G(r) 
as 4• 6 

G(r) = 4g 2 [n(n + 1)]1/2 A (r) 

x {exp[i w(r + hf3l] + exp( - iw(r + ii{:l)]}. (4.11) 

Then the y(r) are simply related to the generating func­
tion for the modified Bessel functions, so that for exam­
ple -

(4. 12) 
m;;:- CIO 

where 

y==4~[n(n+l)p/2 • (4.13) 

This form can be used in deriving the results for un­
transformed coupling from those for transformed cou­
pling (see Sec. V), but in general the factor A(r) in the 
argument of the Bessel functions makes analytical inte-

c. Scattering and hopping rates 

With the foregoing assumptions, we have 

gration difficult. However, since the· decay of the y(r) 
is produced by the decay of A(r), which is determined 
by the phonon bandwidth A, it should be possible to find 
some simpler approximate form which gives the decay 
of y(r) in terms of A. 

For analytical convenience we use the Gaussian form 

(4.14) 

where A« w, so that the band is narrow. The integra­
tion is facilitated by changing the variable to z == r + i (:li, 
when A(r)'" A(z) provided {:lA« 1. This limit, implying 
uniform excitation across the phonon band, will be as­
sumed throughout the remainder of this paper. We can 
then write 

Yt (z) =exp[y coswz exp(- A2 z2/4)]_1 • (4.15) 

This has turning values near wz = 11f, and lies below the 
function 

(4.16) 

Because A« wand (:lA« 1, this function shows an al­
most exponential decay which we write as exp(- r2~/4). 
From the half-width at half-maximum we find that to a 
good approximation we can set 

r=A (y$I), 

r= Ay1/2 (y>I). 

Our form for the correlation function is then 

Y1 (z) '" [exp( y coswz) - 1] exp(- r2 z2/4) , 

(4.17) 

(4.18) 

(4. 19) 

with analogous forms for the other YI(Z). These forms 
can now be expanded, 

+ .. 

Y1(z)==exp(-r2z2/4) L elmw·[I",(y)-omO] ' (4.20) 
m;"CU 

with a more tractable dependence on z [compare to 
(4.12)]. 

For large y (strong coupling, high temperature), 
Im(Y) - eY /(21fy)1/2, so that Yt »2Y2 in Eq. (4.7). In 1'4 
and 1'3 the corresponding argument is - y, so that the 
terms in the Bessel series alternate in sign, but again 
1'4» 21'3' We therefore neglect 1'2 and 1'3 as before, 4.6 

except in deriving the untransformed limit of the trans­
formed results, which implies small y. 

W ••• +Ka•k+K = (0 dr{exp [i(E.+ K - Ek+K)r] +el(Eo-E~} L: j:{Y1(r) eIK
- RA +Y4(r) exii(q +k+ K) ·Rh]} , 

Jo A 
(4.21) 

which can be written as 

W S .. d { [·(E E)] HE -Ek)T} _r2Tz/4 " elmwT e-(1/2)mllw [I",(y) - "'mO] 
0.0+ Kik.koK = 0 r exp 1 •• K - k+K r +e 0 e L... U 

m:or .. • 

xL: j-He I It· SA + (- l)m exp [i(q + k + K) . Rh} • 

h 

Only the real part of this expression is required, and this depends on the integral 

fa" dr cosar e-r2 T 2/4 = (1f1 /2 /r) e-a2 /r2 

J. Chern. Phys., Vol. 72, No.4, 15 February 1980 
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so that .. 
WQ.Q+K;M+K = (1T1/ 2/r) 2: e- u /2)IIIS"'[I .. (y) - 1i",o]{exp [ - (EQ+ K - E_ +K + m w)2/rZ] + exp [- (Eq - E_ + mw)2 /rZ] } 

..... co 

x (~~ {e jE'Rh +(-1)"'exp[i(q +k+K) 'RhU). (4.24) 

(The lattice is assume to have inversion symmetry, which makes the last factor real.) 

The terms with m> 0 represent m-phonon absorption processes and those with m:' 0 represent m -phonon emis­
sion. For simplicity in what follows we shall assume that the excitation bandwidth B is less than w, so that only 
zero-phonon processes make any significant contribution in Eq. (4.24). (Note that this condition depends on the 
temperature-dependent renormalized bandwidth, which for strong coupling is much less than the bare bandwidth.) 
Thus we take 

Both r __ and y __ can be obtained from the sum of this quantity over q. We perform this sum by transforming to 
an integral over the excitation density of states, again taken for analytical convenience to be Gaussian: 

Nex(E) =e-E2/B2/(1Tl/2 B) • (4.26) 

In Eq. (4.25), the term in exp[i(q+k+K)'Rh] is difficult to deal with, when Wq.Q+l;M+K is summed over q. In order 
to make it a function of energy, we note that when this term is multiplied by a factor even in q (such as a function 
of EQ)' then when summed over q, 

(4.27) 

where the last form is exact for a one-dimension near-neighbor system, and has the correct average in three di­
mensions. A similar form is easily derived when the factor is even in q +K, by changing the summation over q to 
be over q + K. Then 

N -12:Wq.Q.K;M+K = [lo(Y) - 1](1/rB) r" e-
E2

/ B2 rexp[ - (E - Ek+K)2/r2](2:j~ e jE
' Rh +EEk) 

q -- L h 

+exp[ - (E _Ek)2/r2](~j:ellt'Rh +EEk+K)] 

The required integrals are 

(4.28) 

s.: exp(_(p2.x2±2qx)]dx=(1Tl/2/p)eQ2/,2, 

roo· x exp(- (p2.x2 ± 2qx) ]dx = (q2 /p2)(1Tl/2 /p) e Q2/,2 , 

leading to 

(4.29) 

(4.30) 

N-1 2: WQ •Q+K; k. _+K = {[laCy) - 1J 1T1/2(.82 + r2)-1/2} {exp( - E:+ K/(B2 + r 2)J + exp( - E!/(B2 + r2)]} 
Q 

(4.31) 

This expression contains no assumptions about the relative magnitudes of rand H, which enter symmetrically ex­
cept in the last term, arising from the assumption (4.27). 

The scattering rates are obtained by setting K = O. Then 

r __ = {21T1/2 [lo(Y) - 1] (E2 + r2)"1/~ exp[ - E=/(B2 + r2)1[~ ~ +E=(1 + r 2/B2)-I] . (4.32) 

The last term moves the maximum scattering rate away 
from the center of the band (taken to be E_ = 0), but is 
negligible when r »B and is never large even when 
r« jj is because of the exponential. We therefore omit 
this term for algebraic convenience and write 

21Tl/2[1 ( ) - l]z j2 -2 
r __ = (B2+~)17a exp(-E'!/(B +rZ)], (4.33) 

where z is the number of nearest neighbors of any site 
and j is an average transfer integral. 

In the calculation of the hopping rates, a number of 
terms cancel, because the Gaussian functions in Eq. 
(4. 31) each have the same k derivative as the first 
Gaussian has derivative in the limit IC =0. The first 
derivative of ell' RII with respect to IC yields an odd func-
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tion of h, which is zero by symmetry. The remaining 
terms give 

21T1/2[I (y) - 1] - 2 Z 
Ykk = (B2 + ~)1/2 exp[ - .e2,/(B + r )] 

(
" - Z Z v~ 2E2 v~ ) 

X "rJhRh + 1 + rZ/BZ - (.82 + r)(l + r2/s2) • (4.34) 

Here the term in E~ v~ is never large, by the previous 
arguments. The term in v~ increases the scattering 
significantly near the center of the band when r« ii, 
but has no important qualitative effect. We therefore 
omit both terms for simplicitly, and write 

_ 21T
1/Z 

[IR(Y) - 1] zJz a
Z 

[_ E2/(B2 + r2)] 
Y kk - (13 + rZ)1 /z exp k (4.35) 

(4.36) 

where a is an average intermolecular distance. The re­
sult (4.36) should be qualitatively correct in many 
models, and offers a useful way of estimating Ykk from 
r kk , which is easier to calculate. 

D. Diffusion coefficient 

With Eq. (4.36), the diffusion coefficient becomes 

D = <M/rkk + aZ r kk » . (4.37) 

We evaluate the thermal average over excitation states 
by integrating over the density of states (4.26), setting 

(4.38) 

Then 

D/aZ=Q-l t:" dEe-~Ee-EZIBz 
- 2 -Z 

( 
BZ e-E IB Z - 2 2 ~ 

x 4r
o
exp[-E2/(B2+f2)] +roexp[-EY(B +r )]), 

(4.39) 
where 

(4.40) 

21T1/2 [Io(t) -1] z j2 
ro= (S2+r)1/2 • (4.41) 

The integrations are evaluated using Eq. (4.29), and 
after simplification yield 

Substituting for ro from Eq. (4.41) with the assumption 
2zj2", tBZ, and noting also that the first exponent is al­
ways less than rfrZ/4 which we have assumed to be 
much less than unity, we obtain 

/ 
2 1 (11

2 
+ r2) 1 1 12 [ () 1] 

D a = 1T172 [Io(Y) -1] (i~2+2r2)17Z +"4
1T 10 Y -

-z 
x (211Z!fl!)1)2 exp[-trffJz/(2B2 +r2

)]. (4.43) 

Although the derivation of this expression has used a 

number of simplifying assumptions, there are none 
about the relative sizes of Band r. 

The first term in Eq. (4.43) represents the band con­
tribution, which falls with increasing temperature owing 
to the increase in Io(Y) through n in Eq. (4.13). The 
corresponding decrease in B via Eqs. (4.2) and (4.4) 
contributes to the fall in this contribution unless r» B. 
The second term in Eq. (4.43) represents the hopping 
contribution, which increases with increaSing tempera­
ture through Io(Y) and the exponential factor. However, 
once B becomes much less than r, the exponential fac­
tor becomes constant, and the decrease in lJz outweighs 
the increase in Io(Y), so that eventually the second term 
also decreases with increasing temperature. The oc­
currence of this decrease is discussed in more detail 
below. 

-
In the limit r» B assumed in most previous work, 

Eq. (4.43) reduces to 

Z_ r 1T1/Z [Io<y)_1]fJz 
D/a - (21T)1/2[Io(Y) -1] + 4r (4.44) 

This is essentially of the form derived earlier. 4 We 
note that in Eq. (4.44) r, or equivalently~, cannot tend 
to zero (which would mak~D infinite), because t~e equa­
tion is valid only for r» B. On the other hand, Bean 
tend to zero, in which case only the band term remains. 
As the velocities v~ in Eq. (4.37) tend to zero, so do 
the scattering rates r kk ; both factors vary as 8z, so 
that their ratio tends to a constant. 

At sufficiently high temperatures, Y becomes large, 
so that Io(Y) -1 can be replaced by its asymptotic value 
eY/(21Ty)1/Z, while r=~l/2. The hopping term in Eq. 
(4.44) then dominates, and can be written as 

D/az=(8~?221!2) sinh,8; eXP (-2,gZtanh,8:). (4.45) 

This agrees exactly with Gosar's result for a Gaussian 
denSity of states, 18 and the temperature dependence is 
similar to that of Holstein's result19 except that he ob­
tains the square root of the hyperbolic sine factor. 
When fjw« 1, the hyperbolic functions can be replaced 
by their arguments, leaving the temperature dependence 
of D as 

(4.46) 

For gZ,8w«l, the exponential tends to a constant value 
and D becomes proportional to,8, thus decreasing with 
increasing temperature as noted above. However, for 
g 2» 1 it is possible to have ,8w« 1 so that Eq. (4.46) 
holds, but gZ,8w- 1 so that the exponential dominates the 
temperature dependence. This gives the activated be­
havior usually regarded as typical of hopping transport 
but actually appropriate only to very strong excitation­
phonon coupling (for example, Holstein's much-repro­
duced illustration19 uses g2 = 10, a value thought appro­
priate in transition metal oxide systems). 

In the opposite limit B »r, we obtain the new result 

2 jj (1T/2)1/Z - _~2B2/8 
D/a =1T1/ 2[ro(y)-lt 4 [Io(y)-l]Be • (4.47) 

Here r does not occur and so can tend to zero, being 
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already assumed much smaller than B. If then B tends 
to zero, the diffusion coefficient vanishes, as expected. 
Vibrational dispersion (nonzero <l) is therefore not 
essential to obtain diffusion motion and finite transport 
coefficients in this limit, but to show this has required 
a sufficiently general theory. In the language of time­
dependent perturbation theory, 20 for r»B the dense 
manifold of final states is described by Nph(w) but for 
B >,' r it is described by N ex(E), as in Eqs. (3.18) and 
(3. 16). 

At temperatures high enough to make y> 1, r in­
creases with increasing temperature through the factor 
l/2 in Eq. (4.18), while B decreases through its de­
pendence on J given by Eq. (4.4). Thus, at some tem­
perature B always falls sufficiently far below r to make 
Eq. (4.44) supersede Eq. (4.47). However, the weaker 
the coupling g and the wider the excitation band, the 
more likely this temperature is to exceed the crystal 
melting temperature. 

The behavior of the diffusion coefficient as a function 
of temperature is illustrated for various values of the 
parameters in Figs. 1-5. The curves are obtained 
from the full expression (4.43). All energies are ex­
pressed as multiples of the phonon frequency w, and the 
diffusion coefficient is expressed as a multiple of wa 2. 

For typical values w '" 100 cm'l and a2 = 50 A2, wa2 cor­
responds to 1. 5 X 10'4 cm2 S·l. The phonon bandwidth <l 
is fixed at O.lw (say, 10 cm,l). In order to satisfy the 
condition j3<l <<- 1, l/j3w is restricted to values greater 
than 0.2. To exclude unphysically high temperatures, 
l/{3w is restricted to values less than 5, corresponding 
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FIG. 1. The reduced diffusion coefficient D! wa2 as a function 
of the reduced temperature l/{3w for different values of the 
reduced electronic bandwidth B!w. The electron-phonon 
coupling strength satisfies g2 = O. 1 (very weak coupling). 
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FIG. 2. As Fig. 1, butwithg2=O.3(weakcoupling). 
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FIG. 3. As Fig. 1, but withg2= 1 (medium coupling). 
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to a crystal melting temperature of roughly 750 K for 
w = 100 cm-1

• The drift mobility is obtained as a mul­
tiple of ea2/h by multiplying D / wa2 by {:lw; for the par­
ameter values above, ea2/h corresponds to 1.2 cm2 V-1 S·1. 

The various shapes of curve in Figs. 1-5 result from 
two effects. The first is that as g2 increases the band 
term decreases more rapidly with temperature and the 
hopping term increases more rapidly, while the second 
is that as B/w decreases, the relative importance of 
the hopping term decreases. For very weak coupling 
(g2=0.1; Fig. 1), the hopping term is still increasing 
steadily at 1/{:lw = 5; for B/ w = 1, the hopping and band 
terms are then roughly equal, but for the smaller values 
of B/ w, the band term becomes almost independent of 
B, as in Eq. (4.44), and the hopping term makes a 
negligible contribution. For weak coupling (g2 = 0.3; 
Fig. 2), the hopping term increases more rapidly and 
has started to decrease at 1/ w{:l = 5; for B / w = 1, the 
hopping term succeeds in producing a weak broad maxi­
mum in D, while for the smaller values of B/w, the 
reduced importance of the hopping term means that it 
succeeds only in raising the curve for B/ w = O. 1 farther 
above that for B/ w = 0.01 than for very weak coupling. 
For medium coupling (g2 = 1; Fig. 3), the hopping term 
has a sharper and narrower maximum which is reflected 
in the curve for B/w=1; for the smaller values of B/w, 
D still decreases monotonically, but the more rapid 
decrease of the band term means that the hopping term 
dominates at the highest te~peratures. For strong 
coupling (~= 3; Fig. 4), these features are accentuated, 
with the maximum in the hopping term now sharp enough 
to produce maxima in D for B / w = 1 and O. 1 and a weak 
change of curvature for B/w=O.Ol. Finally, for very 
strong coupling (~= 10; Fig. 5), there are marked 
minima in D for all three values of B/ w, with a rapidly 

8/w=1 

8/w=O.1 

I ~'31 'W' O.I 

IO-6~ ____ L-____ ~ ____ ~ ____ J-____ ~_ 

8Iw=O.OI 

o I 234 5 
IIj3w 

FIG. 4. As Fig. 1. but with g2 = 3 (strong coupling). 

o 

8/w= I 

8Iw=O.1 

8/w=O.OI 

fa 
~ 

FIG. 5. As Fig. 1. but with g2 = 10 (very strong coupling). 

increasing D at higher temperatures which is just 
levelling out at 1/{:lw=5; as noted above, only in this 
case is there any sizable region of activated behavior. 

The effect of changing phonon bandwidth Ll, not shown 
in the figures, can be deduced from Eq. (4.43). Re­
ducing r by redUCing Ll always reduces the band term; 
it has oppOSing effects on the two factors in the hopping 
term, but always increases their product if (:lB < 2. 
Once iJ falls well below r, the diffusion coefficient is 
given by Eq. (4.44), and decreasing Ll is clearly seen 
to increase the relative importance of hopping. 

V. RELATION BETWEEN TRANSFORMED AND 
UNTRANSFORMED COUPLING 

A. Principles 

In the present treatment, it is necessary to use 
transformed coupling if the parameter g is large enough 
and the temperature is high enough, but is is sufficient 
to use untransformed coupling if g is small enough and 
the temperature is low enough. One might also hope to 
recover the results for untransformed coupling from 
those for transformed coupling in the limit g - 0 and 
n- O. However, it is by no means obvious that this 
hope is realized, since the untransformed coupling is 
treated with the perturbation (3. 1) depending on gw, 
whereas the transformed coupling is treated with the 
perturbation (4.6) depending on J as well as g and w. 
This difference stems from the use of the bare and 
clothed excitation representations in the two cases. 

J. Chern. Phys., Vol. 72. No.4, 15 February 1980 

Downloaded 21 Oct 2012 to 18.111.99.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



R. Silbey and R. W. Munn: Electronic transport in molecular crystals. I 2771 

Nevertheless, two different representations may still 
give the same expressions for an observable such as the 
diffusion coefficient. 

As far as we know, the equivalence of the two treat­
ments when the coupling is weak has not previously been 
demonstrated. For untransformed coupling, there is 
no scattering in lowest order unless B::> w for some of 
the phonon modes in question when one-phonon processes 
are possible. For transformed coupling, zero-phonon 
processes are always possible even when B <, r« w, 
which is the usual assumption. Thus the two treat­
ments have been applied in opposite limits which could 
not be related. In the present work we have shown how 
transformed coupling can also be applied to the limit 
B »w» r, and we are therefore able to demonstrate its 
equivalence to untransformed coupling for small g and n. 

We consider only optical phonons, as in Sec. IV, in 
the limit B> w as required for untransformed coupling. 
In this limit the diffusion coefficient is independent of 
r or~, as shown by Eq. (4.45), so that we can set 
~ = O. Then for untransformed coupling the scattering 
rates are given by Eq. (3.7). We show that the same 
scattering rates follow for transformed coupling for 
small g. 

B. Scattering rates 

The results for transformed coupling in Sec. IV as­
sume in several places that the coupling is strong and 
that B < w. In order to recover the weak-coupling limit, 
it is necessary to relax these assumptions. 

The general expression for the correlation functions 
is Eq. (4.7), involving the quantities YI(r) which depend 
on the function G(r) through Eq. (4.8). For strong 
coupling, Yz and Ya can be neglected compared with h 
and Y4' However, for weak coupling G(r) is small in 
magnitude, and then 

(5.1) 

C. Hopping rates 

(5.2) 

Using ~ =0 so that A(r) = 1 in Eq. (4.10) for G(r), we ob­
tain the correlation functions 

(V,,+ K •• + K(r) V." ) = ~(n e1wT + (n + 1) e- i 
wT] 

X(E,,-E.)(Ek+K-E.+K)' (5.3) 

To lowest order in g, j~ = Jh , by Eq. (4.4), so that the 
transformed energies E" in Eq. (5.3) are equal to the 
untransformed energies. 

For the scattering rates, we set K = 0 in Eq. (5.3) to 
obtain 

r"" = 27TN -1 gZ L (E" _ E.)2 
• 

x(no(Ek -E.+w)+(n+1)0(E,,-E.-W)], (5.4) 

r"" = 27Tg 2WZ N-1 L [no(E" -E.+w) +(n+ 1)0(E" -E. - w)]. 
• (5.5) 

Here the delta functions make the transformed pertur­
bation, giving scattering rates varying like J2, yield 
scattering rates varying like w2 as for the untrans­
formed perturbation. Finally, Eq. (5.5) gives 

r "" = 27Tg 2wZ [nN ex(E" + w) + (n + 1)N ex(E" - w)] , (5.6) 

in agreement with r"" given for untransformed coupling 
by Eq. (3.7). 

The equivalence of the scattering rates can also be 
shown from the Bessel function series for Y1(r) and its 
analogues, Eq. (4.12), with A(T) = 1. For strong cou­
pling and B < w, only the term m = 0 is retained, pro­
portional to Io(Y) - 1, but for B> w terms for higher m 
are retained. For weak coupling (small Y), Io(Y) - 1 
varies as t y2- g\ whereas 11(y) varies as t Y-~, so 
that in this limit the term in 11(y) is dominant, provided 
always that B> w. [Note that the transformed coupling 
also yields the weak coupling limit for B < w, which in 
this case is the Io(Y) - 1 term; the transformed coupling 
must be treated to higher order to yield this limit.] 

The hopping rates are obtained from Eq. (5.3), which yields an expression resembling Eq. (3.6): 

(1 d
2 

d
Z

) -1 
Y"" = ~2" dll- dK2 7T~ N 4=(E" - E,,-.l(E"+K - E.+K){n [o(E,,+K - E"_.+K + w)+ o(E" - E,,-. + w)] 

+(n+ 1) [O(E"+K -E"_.+K - w) +o(E" -E,,_. - W)]}KoO , (5.7) 

(
1 d2 d

2
) -1 

Yu = 2" dll- dK'- 7T!I'wN L {(E" - E,,_.) (n + 1) 0 (E"+K - E,,_.+K - w) - no (E,,+K - E"-.+K + w)] 
• 

+ (Ek+K - E"_.+K)[ (n + 1)0(E" - E,,_. - w) - no(E" - E,,-. + w)] h.o . (5.8) 

By arguments like those following Eq. (3.6), it follows that terms involving either an energy difference and the 
second derivative of a delta function or a delta function and the second derivative of an energy difference yield zero 
net contribution in the limit K=O. The only terms which contribute involve first derivatives of the energy differ­
ence with respect to k, but in this limit the energy difference becomes w, independent of k, so that its derivative is 
zero, when K = O. Thus the hopping rates are zero, as deduced for untransformed coupling. 

In Sec. IV. C we suggested that in many models it might be adequate to set Y",,"" a2r"", as in Eq. (4.36). For 
weak coupling this is seen to be untrue, since (to order gZ) Y"" =0 and r"" - g2. However, even if Y"" were taken as 
aZr kR' this would have negligible effect on the diffusion coefficient because the hopping term would then vary as gZ, 
a factor g4 smaller than the band term, which varies as l/ru _ g-z. 
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VI. DISCUSSION 

In this paper we have shown how electronic transport 
in molecular crystals can be treated much more gen­
erally than hitherto. The present treatment avoids (i) 
the assumption that vibrational relaxation is fast com­
pared with excitation transfer (r» iJ, as usually as­
sumed in polaron and exciton transport theories), and 
(ii) the assumption that the excitation-phonon coupling 
is weak (gwn <, B, as usually assumed in conventional 
semconductor transport theories). In particular, such 
a generalization is necessary to treat charge-carrier 
transport in aromatic hydrocarbon crystals. In these 
systems, the carrier bandwidths are of the order of 
1000 cm-1 compared with phonon bandwidths of no more 
than a few tens of cm-!, but the electron-phonon coupling 
need not be weak. This feature has also been recog­
nized in recent specialized theories of carrier trans­
port in anthracene and naphthalene,21 and different re­
gimes of exciton-phonon coupling have been discussed.22 

However, most of the detailed results in this paper 
have been derived under simplifying assumptions to 
permit easier algebraic and numerical analysis. Only 
local linear excitation-phonon coupling has been treated, 
and anisotropy has been ignored. The fully clothed 
transformation given by Eqs. (4.1)-{4.3) has been used 
rather than the proper variational transformation6

•
17 

which requires separate numerical evaluation (although 
this could readily be incorporated once evaluated). The 
excitation and phonon densities of states in Sec. IV have 
been taken as Gaussian, and the parameters have been 
chosen to satisfy {36 <,1 and B/w< 1. 

With these restrictions on the validity of the final re­
sults in Sec. IV, it is not appropriate to attempt a 
quantitative fit to the behavior of any specific substance, 
especially for charge carriers. In any case, informa­
tion on the parameter values is rather sparse. Ade­
quate phonon dispersion curves and densities of states 
are fairly readily available or obtainable by calcula­
tions, but there are rather few exciton and charge-car­
rier band structures available, and these are mostly 
several years old and hence do not incorporate recent 
advances in quantum chemistry. The different types of 
electron-phonon coupling have been identified, but there 
are few attempts to deduce accurate coupling param­
eters. Exceptions are the use of semiempirical calcu­
lations to obtain couplings to molecular vibrations23 and 
the analysis of spectra to obtain exciton-phonon cou­
plings. 24•25 However, even though a quantitative fit to 
experiment is inappropriate, we can indicate how the 
qualitative features of our results may relate to exper­
imental data. We consider only charge-carrier mobil­
ities, which have been measured as a function of tem­
perature for enough substances to begin to reveal some 
kind of pattern. 

Schein26 has emphasized the tendency for mobilities 
in molecular crystals to lie in the range 0.1-10 
cm2V-1 S-l and to vary with temperature as r-n with 
typically 0< n< 2. Most of the crystals studied are aro­
matics and heteroaromatics for which relatively wide 
carrier bands are expected. Figures 1-5 show that al­
though the curves generally give lower mobilities as 

the electron-phonon coupling strength g increases 
(compare the labeling of the axes), this trend is least 
marked for the widest bands with B/ w = 1. Mobilities in 
the required range are obtained at 1/ {3w = 2 (room tem­
perature if w = 100 cm- l

) for g2 = 0.1-1. The curves 
also show that the diffusion coefficient for B/ w = 1 de­
pends only weakly on temperature for much of the range 
shown, except for very weak and very strong coupling. 
Since the mobility contains the extra facto'r rl, these 
dependences imply a variation rn with n close to 1, 
noticeably different from the standard narrow-band re­
sult r2 but in qualitative agreement with the observed 
trend. 

It has been remarked27 that the smallest mobilities 
tend to show an activated behavior, intermediate ones 
the weak temperature dependence just discussed, and 
larger ones a more rapid decrease like T""" with n = 2.5-3-
As noted in Sec. IV, activated behavior requires very 
strong electron-phonon coupling, but it is not obvious 
why this might be present in the very low mobility 
crystals studied, electrons in orthorhombic sulphur28 

and {3-nitrogen29 and holes in y-oxygen. 29 At the oppo­
site extreme, the hole and electron mobilities in the ab 
plane of durene vary as T""2. 5, attaining values as high 
as 50 cm2 vol S-l below 150 K and falling to 5 and 8 
cm2 V-1 S-l, respectively, at room temperature. 30 
Durene has the same crystal structure as anthracene, 
but the peripheral methyl groups might be expected to 
reduce the carrier bandwidths in the ab plane. How­
ever, in the present treatment a smaller bandwidth does 
not necessarily imply a smaller mobility if the electron­
phonon coupling is weaker too. Weaker coupling also 
implies a wider region in which band motion dominates 
with its rather strong temperature dependence. Thus 
the behavior of durene could be explained in terms of 
particularly weak coupling, but any microscopic reason 
for such weak coupling remains to be found. 

The present model is therefore able to interpret the 
observed rough correlation between the magnitude of 
carrier mobilities and their temperature dependence 
consistently as a dependence of both quantities on the 
electron-phonon coupling strength. This interpretation 
appears phYSically reasonable, but the omission of non­
local coupling from the model should be borne in mind. 
Such coupling is central to theories21•31 of the almost 
temperature-independent electron mobilities in the c' 
direction of anthracene and naththalene and their deu­
terated forms and of the rapid increase in the mobility 
for naphthalene and deuteronaphthalene at low tempera­
tures. 32•33 The present methods can be extended to 
treat nonlocal coupling and also strong anisotropy, 
which appears to playa major role in anthracene and 
naphthalene. 21 

The problem with the theory of electronic transport 
in molecular crystals has been to deduce the transport, 
given a model Hamiltonian containing what one consid­
ers to be the essential physical interactions. Since 
several interactions may be comparable in size, simple 
perturbative methods fail. The method12 adopted here 
yields a rather direct solution to the problem. Given 
the clothing transformation, one has then to evaluate 
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the correlation functions, which can be regarded as the 
central factors in the transport theory. The transport 
coefficients are then evaluated by integration and sum­
mations which can be performed numerically if neces­
sary. This more automatic approach to transport 
theory should stimulate the realistic evaluation of the 
necessary parameters. 
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