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General Theory of Optimal Trajectory for 
Rocket Flight in a Resisting Medium I 

N. X. V I N I t  2 

Communicated by A. Miele 

Abst rac t .  This paper considers the problem of optimizing the 
flight trajectory of a rocket vehicle moving in a resisting medium 
and in a general gravitational force field. General control laws for 
the lift, the bank angle, and the thrusting program are obtained 
in terms of the primer vector, the adjoint vector associated to the 
velocity vector. Additional relations for the case of variable thrusting 
and integrals of motion for flight at maximum lift-to-drag ratio 
and flight in a constant gravitational field are obtained. 

1. I n t r o d u c t i o n  

The  problem of determining optimal trajectories for a rocket- 
powered vehicle flying inside the atmosphere of a planet has received 
considerable attention in recent years. In general, it was assumed that 
the gravitational field is uniform. With the advent of the maneuverable 
hypervelocity vehicle and long-range lifting rocket, it is necessary to 
remove that restriction. With the classical results of Lawden  (Ref. 1) 
and Breakwell (Ref. 2) for flight in a vacuum; Lei tmann (Ref. 3), 
Miele (Ref. 4), and Bryson and Lele (Ref. 5) for flight inside an atmo- 
sphere; and the recent contributions by Busemann, Vinh, and Kelley 
(Ref. 6), and Vinh (Ref. 7) it is now possible to derive the most  general 
results concerning the optimal trajectories of a lifting vehicle powered 
by a rocket engine and subject to aerodynamic forces in a general 
graviational force field. 

Consider the motion of a vehicle under  such conditions. At the 
tinae t, the state of the vehicle is defined by  the position vector r(t), 
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Fig. 1. State and control variables. 

the velocity vector V(t), and the instantaneous mass re(t). The flight 
path is controlled by a thrusting force T and the aerodynamic force A 
(Fig. 1). It  is assumed that the direction of the thrust can be orientated 
arbitrarily but, at any instant t, the aerodynamic force is constrained 
in such a way that the terminus of the vector A is located on a certain 
surface that varies as function of the time. 

More specifically, we consider a coordinate system centered at the 
center of mass M of the vehicle with an axis constantly aligned with the 
velocity V (Fig. 2). Then, the control vector T can be taken such that 
its terminus is inside the solid sphere centered at M and with radius 

i L 

; ',T,.o. 

Fig. 2. Control space. 
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Tma X . Hence, while the direction of T can be taken arbitrarily, its 
magnitude is bounded by 

0 ~< T ..< Tmax. (1) 

The aerodynamic force A is decomposed into a drag force D, always 
in the opposite direction to V, and a lift force L orthogonal to it. The 
constraint on A is expressed in the form of a lift-drag relationship 

D =: D(L, V, r). (2) 

We shall use the usual assumption 

L = ½ p S C y  ~, D = ~-pSCDV ~, (3) 

where S is a reference area, and p is the mass density of the atmosphere 
(a function of the position vector r). CL and CD are the lift and the drag 
coefficients, which for hypervelocity flight are independent of the 
Mach number and the Reynolds number. If the vehicle has a plane of 
symmetry, in coordinated flight, A and V are in that plane. We define 
the bank angle ~ as the angle between the osculating plane (r, V) and 
the plane of symmetry (A, V) of the vehicle. We take the L-axis in the 
osculating plane and the N-axis perpendicular to it in such a way that 
the axes V L N  form a right-handed orthogonal axis system. In this 
system, the drag polar as defined by (2) is a surface of revolution about 
the axis V. By the assumption (3), the lift-drag relation can be replaced 
by the relation between the aerodynamic coefficients 

Cz~ = CD(CL). (4) 

Because of this constraint, the aerodynamic force A is defined by its 
magnitude and the bank angle a. 

In practice, the lift coefficient is bounded, and so is the bank angle. 
Hence, for the aerodynamic force control we shall use CL and a or, 
equivalently, the angle of attack and the bank angle. They are subject 
to the constraints 

0 ~ CL ~ Q m~:~ (5) 

and 

0 ~< ]al  ~< ~rraax. (6) 

The surface of revolution Z which defines the control space %r A is 
restricted to two symmetric portions of surface. By using a homothety 
with center M and ratio (½pSV2) -1, we can replace the varying space X 
by the fixed space E' representing the relation (4), subject to the con- 
straints (5)-(6). 
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2. Equations of Motion 

T h e  motion of the vehicle, considered as a mass point, flying in a 
general gravitational field and subject to aerodynamic and thrust ing 
forces, is governed by the equation 

dr/dt = V, dV/dt = (1/m)(T + A) q- g(r, t), dm/dt = --T/c, (7) 

where c is the constant exhaust velocity of the gas ejected f rom the 
engine, and g is the acceleration of the gravitational field. T h e  optimal 
t ransfer  problem is defined as follows. 

At the initial t ime t = 0, r = r 0 , V = V 0, m = m 0 . T h e  vectors 
r 0 , V 0 and the scalar m o are prescribed. At the final t ime t ~ t I , r = r I , 
V = V 1 and m = m s . T h e  problem is to find the t ime histories T(t)  
and A(t) such that some scalar funct ion of the final state is a minimum. 

Using the maximum principle, we introduce the adjoint elements 
P r ,  Pv , and p,~ to form the Hamiltonian 

H = p , - V  - / ( l /m)  Pv" (T + A) + Pv" g(r, t) -- (p,,T/c), (8) 

where P r ,  Pv ,  and Pra are defined by the adjoint equations 

d p r / d t : - - ~ H / ~ r ,  d p v / d t ~ - - 3 H / ~ V ,  dp~/dt--- -~H/~m. (9) 

T h e  solution is obtained by integrating the systems of Eqs. (7) and (9), 
subject to specified end-conditions,  and selecting the control T and A 
in their  bounded  spaces such that at each instant the Hamil tonian 
defined by (8) is an absolute maximum. 

3. Optimal Controls 

T h e  Hamil tonian must  be maximized with respect to T and A. 
At each instant t, the terminus  of the vector T is inside the solid sphere 
with center M and radius Tmax, while the terminus of the vector A 
is on the port ion of the surface of revolution (Z) (Fig. 3). 

Consider the vector Pv in the expression (8) for the Hamiltonian.  
Since T and A are independent  controls, we first maximize the dot 
product  Pv " T. It  is clear that the two vectors Pv and T must  be eollinear. 
Hence,  if the engine is operating, it must  orientate the thrust  in the 
direction of P v ,  and we have 

max(pv • T) = pvT, (10) 

where Pv is the magnitude of the vector P v ,  called the pr imer  vector. 
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L. 

Fig. 3. Optimal controIs. 

Next, it is necessary to select the aerodynamic force A such that 
the dot product Pv • A is maximized. If  the surface 22 is not constrained, 
this is obtained by taking the terminus of the vector A at the contact 
point of the plane tangent to 2, while orthogonal to Pv • To construct 
this point, we consider the plane defined by V and pv .  This plane 
intersects Z atong a meridian (Fig. 4), which is precisely the drag polar 
defined by the relation (2). Let e be the angle between V and Pv- We 
note that this angle is also the angle between V and the optimal thrust 
direction. Since the rotated L-axis is perpendicuiar to V, the tangent 

L 

; . V , l  e .... 

Fig. 4. Optimal tift control. 



194 JOTA: VOL. 11, NO. 2, 1973 

to the drag polar and orthogonal to pv makes the same angle e with 
the L-axis. Hence from the geometry of the figure 

tan E = ~D/OL. (11) 

Since Z is a surface of revolution, a plane perpendicular to the plane 
(V, Pv) along the tangent described is also tangent to X. Hence, the 
optimal control law for the lift is given by (11). Miele first obtained 
this relation (Ref. 8) for two-dimensional flight in a constant gravita- 
tional field. If  we assume that the lift and drag forces are proportional 
to CL and CD by the same factor, relation (11) can be replaced by 

tan e = ~CD/OCL. (12) 

From the construction of the optimal aerodynamic force, it has been 
shown that the three vectors Pv ,  V, and A are in the same plane. Mathe- 
matically, this is expressed by the relation 

(V × P v ) ' A  = 0. (13) 

Hence, (11) and (13) together define the optimal lift and bank programs 
when the aerodynamic force control is not constrained. 

From Fig. 4, it is seen that, if Ineqs. (5) are enforced, then when 

E ~> emax, (14) 

where ema x is the angle between the tangent at the point of maximum 
lift [or, if (12) is used, the point of maximum lift coefficient] and the 
lift axis, in this case the optimal lift program as defined by (12) must be 
replaced by 

optimal CL = CL max- (15) 

The optimal relation (13) is valid when the bank angle is not constrained. 
Let a be the angle between the plane (V, Pv) and the osculating plane 
(r, V). If  the inequalities (6) are enforced, then when 

>~ ~m~x (16) 

the terminus of the vector A must be selected along the drag polar, 
intersection of the plane ~ , :  and the surface X. In this case, relation (13) 
for the optimal bank angle must be replaced by (Fig. 5) 

optimal ~ = ~max. (17) 

Let Pv' be the projection of the vector pv into the plane crm, x . We have 

pv = p f  + p'~, (18) 
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Fig. 5. Optimal lift for maximum bank angle. 

where p~ is the component  of Pv orthogonal to the plane containing the 
optimal aerodynamic force A. Then,  Pv"  A = Pv '"  A. Hence, the 
reIation giving the optimal lift control (t 1) must  be replaced by 

tan E' = aD/aL,  (19) 

where e' is the angle between V and the vector Pv', projection of Pv on 
the plane O'ma x . 

I t  remains to consider the optimal thrust  magnitude. Using (10), 
we rewrite the Hamiltonian as 

H = Pr '  V -}- Pv" [g 4- (1~re)A] 4- (T /m)[pv  - -  (mp,~,/c)]. (20) 

Define the switching function 

K = Pv  - -  (repro~c). (21) 

Then,  to maximize H, the following rules apply: 

if K > 0, 

if K < 0, 

i f K  = 0 

we select T = Tmax (boosting phase); 

we select T = 0 (coasting phase); 

for a finite time interval, 

we select T = variable (sustaining phase). 

(22) 

R e m a r k s  

(i) We notice that if the gravitational field is time independent,  
the Hamiltonian H is a constant of motion. This  constant remains the 
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same throughout the entire trajectory. Then, if the optimal trajectory 
contains a coasting or a sustaining arc, the constant can be evaluated 
at any point along these arcs using the reduced form for the Hamiltonian 

H = Pr" V + Pv'  [g q- (l/re)A]. (23) 

(ii) In the case where the direction of the thrust is constrained, 
then the optimal thrust may not be directed along the primer vector. 
More specifically, let E* be the maximum angle between the velocity 
and the thrust (Fig. 4). If 

> E*, (24) 

the optimal thrust direction is given by ~*, and relation (10) must be 
replaced by 

p v "  T .... p v T  cos(e -- e*). (25) 

In particular, when the thrust is always in the direction of the velocity, 
e* = 0 and 

P v  " T ---: p v T  cos e. (26) 

(iii) The adjoint components being continuous, by the first 
integral (20) for the case of time-invariant gravitational field, a dis- 
continuity in the mass flow (that is, a jump in the thrust control) is 
possible only when 

K ---0. (27) 

Hence, this relation defines a junction point between different types of 
optimal arcs. On the other hand, a discontinuity in the aerodynamic 
force control is possible only when 

p v ' A -  = pv" A+. (28) 

Because of the symmetry of the polar surface Z, this requires that, at 
the instant of switching, either Pv " A_ = Pv • A+ = 0 or, in the case 
of flying at maximum bank angle, pv' ..A_ = p v ' '  A + - - 0 .  Since Pv 
and Pv' are continuous, any discontinuity in A requires that Pv ........ 0. 

(iv) The relation 

p v" A = 0 (29) 

for Pv =/= 0 shows that the tangent to the drag polar at the optimal 
operating point passes through the origin M of the coordinate system. 
The vehicle is flying at maximum lift-to-drag ratio (Fig. 4). 

The results of this section are collected in Table 1. 
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Optimal aerodynamic and thrusting contro]s. 

Optimal  control Characteristic equations 

Lift and bank controls 

max imum lift and CL = CL max 
max imum bank ~ ~ Crmax 

max imum lift and 
variable bank 

CL = C/. max 
(V × P v ) ' A  = 0 

variable lift and tan e = OD/gL 
m a x i m u m  bank ~ = Omax 

variable lift and 
variable bank 

tan e = ?,D/OL 
( V ×  P v ) ' A = 0  

T h r u s t  control, 

T fi pv  

T = Tmax, K > 0 
boosting phase 

T = 0 ,  K < 0  
coasting phase 

T = variable, K = 0 
sustaining phase 

lllll, i l l  

4. Integrals of Motion 

If the lift and drag forces are of the form given by (3), we can write 
the adjoint equations (9) explicitly as 

d p , . / d t  = --V(pv 'g) (l/m) V(pv "A), 

d p v / d t  = --p,. -- [ 2 ( p v  ' A ) / m V 2 ] V ,  (30) 

dpm/dt = (1/m2)(pv ' A )  @ (1/m2)pvT, 

where V is the gradient operator in the position-coordinate directions. 
When the aerodynamic forces are not present, there exists a number of 
integrals of motion (Ref. 9). It has been shown that, in this case, the 
primer vector can be obtained for a general, time-invariant, central 
gravitational field (Ref. 7) when the vehicle is along a coasting arc. 
Also, when the vehicle is along a variable-thrust arc, the planar solution 
can be obtained (Ref. 1). 
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For flight in a resisting medium, because of the nonconservative 
nature of the aerodynamic forces and the nonlinearity of the full equa- 
tions considered in this paper, integrals of motion can only be 
formulated under some restrictive assumptions. 

First, for a time-invariant gravitational field, we always have the 
Hamiltonian constant (20). When the vehicle is along a sustaining arc, 
we have the additional relation 

Pv -- mpm/c = 0. (31) 

This relation being satisfied for a finite time interval, we can take its 
derivative to have 

dpv/dt = (m/c)(dp~/dt) + (p~/c)(dm/dt) 

= (1/mc)(pv "A) + (1/mc)pvT -- (p~T/d) .  

Using (31), we have 

@v/at ----- (1/mc)(pv "A). (32) 

Now, we consider 

(d/dt)(pv" Pv) = 2pv(dpv/dt) = 2pv "(dpv/dt), 

or  

(mp,~/c)(dpv/dt) = --Pv" Pr -- [2(pv "A) /mV2](pv-V) .  (33) 

By eliminating dpv/dt between Eqs. (32)-(33), we have another relation 
for sustaining arc, namely, 

--pv" Pr = (Pv " A){[2(pv "V)/mV z] + (p•,/c'Z)}. (34) 

The thrust magnitude control would appear upon taking the derivative 
of this last equation. This step would remove the indetermination for 
the thrust magnitude control due to the vanishing of the switching 
function K. The two relations (3t) and (34) allow the elimination of 
two differential equations for the adjoint components and make possible 
a complete solution for sustaining flight when other integrals are available 
or when the number of state variables is reduced. 

We next consider the differential 

(d/dt)(mp~) = m(dp~n/dt) + pm(dm/dt). 

Replacing the derivatives on the right-hand side by their expressions 
from the state and adjoint equations, we have 

(d/dt)(mp~) = (1/m)(pv "A) + (T/m)[pv -- (mp,Uc)]. (35) 
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There is an important class of optimal trajectory, namely the equilibrium 
glide trajectory where the vehicle is flown at maximum lift-to-drag 
ratio. The condition for this particular trajectory is expressed by 

pv 'A  = 0 .  (36) 

Then, along this trajectory, the adjoint system (30) becomes 

dp,./dt = --V(pv 'g), dpv /d t  = - - P r  , dpm/dt = (1/m2) p v  T, (37) 

with the Hamiltonian having the reduced form 

H = Pr" V + P v "  g + ( r / m ) [ p v  - -  (mpm/c)]. (38) 

By eliminating Pr between the first two equations (37), we have the 
equation for the primer vector 

d2p v/dt 2 = V(g' p v)- (39) 

Equations (37)-(39) are identical to the variational equations for rocket 
flight when there is no aerodynamic force involved. However, a complete 
similarity does not prevail, since the aerodynamic force A is still present 
in the state equations (7). Nevertheless, the assumption of maximum 
lift-to-drag ratio allows the formulation of some additional first integrals. 
The differential expression (35) now becomes 

(d/dt)(mp,~) = ( T / m ) [ p v  - -  (mp~jc)]. (40) 

Along a coasting arc, T = 0, and we have mp~, = const. Or, since the 
mass does not vary along a coasting are, 

p~ = const. (41) 

This integral can also be obtained by integrating directly the last 
equation (37). 

Along a sustaining arc, we also have 

mp,,, = eonst. (42) 

Since K ~ 0 along this arc, by (21) we deduce 

Pv ~ const. (43) 

If  we write this equation as P v ' P r  = const and take its derivative, 
then, with the aid of the second equation (37), we have 

Pv'P~. z 0. (44) 
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This  relation can also be obtained immediately from (34). Hence, for 
optimal maximum lift-to-drag ratio flight along a sustaining arc, the 
thrust  is in the direction of the primer vector. This  vector has constant 
magnitude and is orthogonal to Pr • 

Furthermore,  from Fig. 4, the angle e between V and Pv is constant. 
This  result is valid for both the boosting arc and the sustaining arc. 
Also from Fig. 4, it is seen that, whenever the engine is operating, the 
thrust  is in the plane of V and A and is directed orthogonally to the 
aerodynamic force. 

Finally, still under  the assumption of maximum lift-to-drag ratio, 
we consider a central force field of the form 

g = --(tz/rn)(r/r),  (45) 

a particular case of which is the familiar Newtonian,  inverse-square 
force field. We rewrite the first two equations (30) as 

apt~at = (t~/rn+l){pv - -  [(n + 1)(pv" r)r/rZ]}, dpv /d t  • - -Pr .  (46) 

We now consider the differential 

( a / d t ) ( p v  " V - -  a p r "  r )  

= ( d p v / d t )  • V @ P v  " ( d V / d t )  - -  a ( a p r / d t  ) • r - -  a p r "  ( d r ~ a t ) ,  

where a = 2 , / ( n -  1). Using the state equations (7) and the reduced 
adjoint equations (46) together with the relations (10), (36), (38), and 
(45), we have 

(d/dt) (pv  " V -- ap r '  r) = - - b H  + b (T /m)[pv  - -  (mpm/c)] + ( p v T / m ) ,  (47) 

where b = (n + 1)/'(n --  1). 
Along a coasting arc, T = 0 and we have the integral 

p v  " V - -  apr " r = - - b H t  + k, (48) 

where k is a constant of integration. 
Along a sustaining arc, where Pv  is constant and K = 0, we have 

the integral 

V - -  apr"  r = - - b H t  @ P v  f (T /m)  dt @ k (49) P v "  
0 

We notice that the integral in the last equation represents the charac- 
teristic velocity A V spent since the initial t ime of thrusting. Hence, if 
impulsive thrust  is allowed, since during the infinitesimal time for 



JOTA: VOL. 11, NO. 2, 1973 201 

thrusting the switching function K is zero, the first integral (49) is also 
valid for impulsive thrust. We conclude that, for flight at maximum 
lift-to-drag ratio, with an engine capable of delivering infinite thrust 
magnitude, we have, over the entire optimal trajectory, the integral 

p v  " V - -  a p r  " r - - - b H t  + p v A V  + k,  (50) 

where AV is the total characteristic velocity. The gravitational force 
field considered is the one defined by (45). 

5. O p t i m a l  T ra j ec to r i e s  in a U n i f o r m  Fie ld  

As in the case of rocket flight in a vacuum, the general equations 
are greatly simplified when the gravitational field is uniform. In these 
circumstances, g is constant and we have the adjoint equations 

d p r / d t  ~-  --(1/m) V(p r" A), 

d p v / d t  ~ --p~ -- [2(pv " A ) / m V 2 ] V ,  (51) 

d p m / d t  ~-  (1/rn~)(pr-A) + (1/m2) p v T .  

If the flight is effectuated at maximum lift-to-drag ratio, we have 

d 2 p v / d t  2 = O, (52) 

and the general solution for the primer is evidently 

pv  = ~t + n, (53) 

where g and ~ are constant vectors. The solution can be obtained in 
a fairly complete form. 

For the case of variable lift program, we take the z-axis along the 
opposite direction to the constant gravity and assume that the atmo- 
spheric mass density is solely a function of the altitude. Then, in com- 
ponent form, along the x-axis and the y-axis, the first equation (51) 
gives 

d p ~ J d t  -~ 0, d p r j d t  = 0. (54) 

These equations give us two integrals 

p~ = const, p~ = const. (55) 

If  the longitudinal and the lateral ranges are free, the above constants 
are zero and subsequently will further simplify the set of adjoint equa- 
tions (51). 

8o9/i i/2-6 
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6, Conc lus ions  

This paper considers the problem of optimizing the flight trajectory 
of a rocket vehicle moving in a resisting medium, in a general gravita- 
tional force field. General control laws for the lift, the bank angle, 
and the thrusting program have been obtained in terms of the primer 
vector, the adjoint vector Pv associated to the velocity vector. A number 
of integrals of motion have been formulated for particular cases of 
special interest. 
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