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ABSTRACT.   The problem of factoring the general ordinary linear differen-

tial operator Ly =ytn' +p  _.y ' + ♦.. + PçV into products of lower order

factors is studied.  The factors are characterized completely in terms of solu-

tions of the equation  Ly - 0 and its adjoint equation  L y = 0.  The special

case when  ¿is formally self adjoint of order 21 = 2zc  and the factors are of order

k   and adjoint to each other reduces to a well-known result of Rellich and Heinz:

L - Q Q if and only if there exist solutions y., •• • , y,   of Ly - 0  satisfying

Wiy y, ' *■••» yj f 0 and [y.; y] = 0 for «', / = 1, • • •, k;  where [ ;   ] is the La-

grange bilinear form of L.

Introduction.   In this paper we investigate the problem of determining when

the classical  22th order linear differential operator

d) Ly = y<">+PnV"-I)+... + p1y' + poy

can be factored into products of lower order operators of the same type and how

these factors may be characterized.

In §1 we collect results from the elementary theory of ordinary linear differ-

ential equations which we use in the subsequent development. §§2 and 3 deal

with the cases of two or more than two factors respectively. Sufficient conditions

on the coefficients for various types of factorizations are developed in §4. Some

applications and illustrations are given in §5.

According to a well-known result of Pólya [12] the operator L has a factori-

zation into "products" of first order factors

(2) Ly = r„(rn_1-.-d1(r0y )')'•.•)'

on some interval / if and only if the equation  Ly = 0 has a fundamental set of

solutions y-., ••», y    suchthat

(3) Wk4 0   on /for A-l, ...,»-1
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342 ANTON ZETTL

where Wl = yl and Wfe = det[y(I_ 1}] iot k= 2, • .<, n - l,  i, j = 1, <<i, k.  For a

short and elegant proof of this result see [14] or [3, pp. 91—92]. Such a factoriza-

tion is closely related to disconjugacy and has received a lot of attention in the

literature.  For some recent papers see [6], [9], [15], [19].

In [16] it is shown that L has a factorization of type

(4) L=PQ

on some interval / where P and Q are of the same type as L of orders n- k

and k respectively if and only if there exist k linearly independent solutions

yv • « «, y,   of Ly = 0 whose Wronskian W, = W(y j, •».', y.) satisfies

(5) Wk=W(yv...,yk)40   on /.

In general not much seems to be known about factorizations of type (4). A

notable exception is the work of Rellich and Heinz given in [7] and the paper of

Krein [8]. See also [4], [3] and [19].

For a result on multiple second order factors see Miller [11].

Explicit conditions on the coefficients which yield factorizations of types

(2) and (4) were obtained in [19] for 72 = 3 and, for type (4) only, in [17] for gen-

eral  72.

1.  Throughout the paper we will assume that the coefficients pi in (1) are

continuous complex valued functions defined on some interval /. Smoothness

conditions-will be assumed as needed. Unless explicitly stated otherwise the

interval / can be any nondegenerate subinterval of the real line: open, closed,

half-open, finite or infinite.

We proceed to list some facts from the theory of ordinary linear differential

equations. For proofs the reader is referred to any of the standard books on the

subject. We mention specifically the books by Coddington and Levinson [2],

Miller [ll] and Hartman [5].

Denote by N(L) the set of all solutions of Ly = 0.

Lemma 1.   The set N(L) is an n-dimensional vector space.  If \y^, • • «, yn\

is a basis of N(L), then W(y v •.., y ) 4 0 a72a"

(6) Ly = W(y1,...,yB,y)/U'(y1,...,yn)    for all y £ Cn.

Ii we assume that p. £ C for  i = 0, ..., n — 1 then the operator

L*y = (-l)"y(n) + (-lr-Up^y)^-" +. -. + (-D(Pjy)' + P~0y

can be put into the same form as L. The operator L * is called the formal adjoint
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FACTORIZATION OF LINEAR DIFFERENTIAL OPERATORS 343

of L and L is said to be formally selfadjoint if L    = L. (By using appropriate

quasidifferential expressions one can avoid making any differentiability assump-

tions on the coefficients and still develop the adjoint operator—see [IS], However

we will not do that here.)

This leads us to the Lagrange identity which will play an important role later.

Lemma 2.   For any u, v in C" we have

v Lu — uL v = [u; v\L

where Vu; v\L = £?=Q Sj^1 (-Dfy^W««-!-/) with pn = 1.

The form [a;  v],   is called the concomitant of L and is bilinear:   For any

constants c. we have
z

Z ciuvv\=zZ eí*¿v]l and   "; zZ civi   = Z ci[u'v}L-
2=1 JL 2=1 L *'=! JL 2=1

Corollary.   If u £ NÍL) and v £ ML  ), then [u; v\,   is constant.  Also

[u; v\L = 0 if and only if [v;  u]   * = 0.

Definition.   Given u £ NÍL) and v £ NÍL  ) we say that v is conjugate to

u if [zz; v\, = 0. Note that v is conjugate to u if and only if u is conjugate to

v. Given y,, •••, y,  £ NiD and v in NÍL  ) we say that v is conjugate to

ivj» • • • > y A if v is conjugate to y. for each z = 1, • • «, k.

Remark.   From the Corollary to Lemma 2 it follows that if each of v.,•••, v

is conjugate to \y., • • •, y A then every member of the subspace generated by

v., • •• , v   is conjugate to every member of the subspace generated by y^ ••«»y^

So the property of being conjugate is a property that subspaces of ML  ) may

have relative to subspaces of NÍD— not just particular elements. A particularly

simple way to construct conjugate elements is as follows:   If u £ NÍL) and

v £ NÍL  ) satisfy the initial conditions u    (a) = 0 for i = 0, • •., k and

v^'ia) = 0 for j = 0, • • -, n - k; then [u; v\L = [zz; v\¡ía) = 0.

For each s £ I, let  V(., s) be the solution of Ly = 0 which satisfies the

initial conditions y(i)d) = 8.      . for i = 0, • • •, n - 1. This function Vit, s)
2,22—1

is called the Cauchy function of L. Some of its basic properties are listed in

Lemma 3.   (a)   For any f £ C the solution y of Ly = f which satisfies the

initial conditions y"'d) = 0 for i =s 0, •••, n— 1 is given by the formula

(7) y(r) =  f ' Vit, s)fis)ds    for t £ I.
Ja
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344 2\NT0N ZETTL

(b)   Assume p. £ C'  so that L     can be formed.  Given a basis y., ••., y

of N(L)  there exists a basis y.,...,y     of N(L*) such that

V(t, s) = yj(i)yj*(s) + ... + ynU)y*(s)    for all t,s £ I.

(c)  (-l)n~1V(s, /) is the Cauchy function of L*.

The next lemma shows how to obtain a basis of N(L   ) from a given basis of

ML).

Lemma 4.   Suppose y., • • • , y    form a basis of N(L).

Let

(8) z. = W(yj,- •. , y .,-. • , yB)/W(yi,-.. , yj

for 2= 1, •••, n where the circumflex over y. indicates that y. is missing.

Then z., • • •, z    form a basis of N(L  ).

2.   The factorization  L = RQ.  We consider the problem of determining when

the operator L can be factored i.e. can be represented by:   L = RQ where R and

Q ate operators of lower order. First we make precise the meaning of such a rep-

resentation.

Given an operator Q of the form Qy = y   + a, _ ,y + • « « + qyy with

a. £ C, certainly  Qy will make sense and be a continuous function, for any y £

C . If  1 < k < n,   a.e C~k for i = 0, 1, ... , k - 1  and R is an operator of type

Ry = y(n"*) + rn_k_ yn~k~ l) + ■•• + r0y with r. £ C then RQ can be defined

by (RQ)(y) = R(Qy) for every y £ C.

So by  L = RQ we simply mean that Ly = RiQy) for every y £ C".

By a direct computation RQ can be put in the form (1) i.e. RQy = y +

s _ jy + • • • + sQy and it follows immediately that L = RQ if and only if

p. = s. lot 2 = 0, •.., « - 1. We list only the first couple of these equations:

P     , = Ii.   t + r     i.   , = s     tarn-l     ^k-l       n-k-\       71-1'

P     -.= ?'l   i + ?l   ■> + r     ti?ti+r     L   ■> - s     ia   etc-rn-2      ' k-1      ' k-2       n-k-1' k-l        n-k-2        n-2'

By solving these equations successively it is apparent that given the p's

and q's (with the  q's satisfying a. e C~ ,  i = 0, 1, •« •, k — 1), the r's are

determined uniquely; and given the p's and r's, the  q's ate determined uniquely.

In other words, given a factorization  L = RQ,  Q determines  R uniquely and R

determines Q uniquely.

Moreover the differentiability properties of the coefficients can be readily

read off from these equations as well.  For instance if p. £ O for 2 = 0, • • •, 72- 1;

then r . £ C~' n C-* for j=l,...,n-k.  So L*,  R* and Q*R* ate
n—k — j
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FACTORIZATION OF LINEAR DIFFERENTIAL OPERATORS 345

all defined.  Consequently L = RQ implies L    = Q   R   —see [ll].

We now state the result from [16].

Theorem 1.   Suppose  1 < k < n.   Then the factorization L = RQ where Q is

an operator of the form  Qy = y'   + q._ ,y        + • • • + qQy, with q. £ C"~  , holds

if and only if there exist k solutions y., • • •, y,   of Ly = 0 which satisfy (5)

i.e.  W(y., • • •, yj 4 0.  Furthermore Q has the representation (6).

The factorization L = RQ holds on any interval where the Wronskian condi-

tion  W(y , ..., yj 4 0 is satisfied and conversely. Note that (5) is always

satisfied locally: determine a fundamental set of solutions y., • • », y    by the

initial conditions y\~ d) = 8.. tot i, j = 1, • • ■ , 22.  Then W(y., .. •, yj(a) = 1
J IJ í K

and therefore  W(y ,, • • •, yj is positive in a neighborhood of a, since it is a

continuous function.

Since the proof of Theorem 1 is short we include it here for the sake of com-

pleteness. Suppose  L = RQ.  Since any solution of Qy = 0 is also a solution of

Ly = 0 we need only choose y,, • • «, y,   to be a fundamental set of solutions of

Qy = 0 to get Wiy., • • •, y.) 4 0. The differentiability conditions of the coeffi- ■

cients q. can be read off the representation of Q given by Lemma 1.

On the other hand suppose W(y., • • •, y.) 4 0. Define

Qy=Wíyi,...,yk,y)/WÍy:,...,yj    fot y £ C".

Then q. £ C"fe for 2 - 0, •• •, k- 1. Letting Ry = y("-fe_ n + .., + r0y, com-

puting RiQy) and setting the coefficients of y , y , —, y       equal to

pn_ j, P__2' • * • » P11 respectively, yields n - k equations (the first two of which

are listed above) which can be solved successively starting with the equation

from the coefficient of y(n_    . Setting N = L - RQ we show that N = 0. The

order of zV is less than k since the coefficients of y '   tot j>k are all zero.

But Ny. = Ly. - RiQy/) = 0 for i = 1, • ■ •, k, hence N = 0 and so L = RQ.

For the remainder of the paper and mainly as a matter of convenience we

assume that p. £ C fot i = 0, ...,«— 1.

As stated in the remark preceding Theorem 1,  L = RQ implies L.   = Q   R

and conversely, since M      = M, we have that L    = Q   R     implies L = RQ.

From this observation and Theorem 1 we conclude that there exist y^, •••, y, £ NÍL)

satisfying  W(y., • • • , y, ) 4 0 if and only if there exist z .,••', z     .   in NÍL   )

satisfying Wizj, •••, z _,) ^ 0. We now investigate this relationship between

solutions of an equation and its adjoint. This relationship is actually between

subspaces of ML) of dimension k and subspaces of ML  ) of dimension n - k.

How are  z.,-",z     ,   determined in terms of y,,-••, y,?

To answer this question we need a lemma which may be of independent interest.
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346 ANTON ZETTL

Suppose yj, • • •, y,  e N(L) and satisfy (5). Since y15 ••.., y,   ate linearly

independent, there exist elements y, , j, • • •, y    from N(L) such that y.,. • •, y,,

y¡, + i> * • * » y„ is a basis of ML). Let z. be defined by (8) for i = 1, • • •, 72.

Lemma 5.   The Lagrange bracket [y.; z.\,   is zero for i 4 j and nonzero for

i = /'.  i, j = 1, ■ • ■ i n.

Proof.   From the expansion of the Wronskian determinant  W = W(yj, • • • , y )

along columns we obtain:

¿   i-D'!+1M(yi!1-1))y^-1)/W = \
9 = 1 (Q

if   7 = /,

(9)
q=l ( 0    if i 4 j,

where M(y\q~   0 is the minor of the element yy~    . Using (9) and the formula

for the Lagrange bracket given in Lemma 2 (with u = y. and v = z) and setting

coefficients of y q   equal we need to show:

uy+'iKyJ-'Vw = p„_r+1*¿ - (?„_,„*,.)' + (p„_r+3*f>"

(io) +... + (-i),-2(p„_^£)(,-2) + i-iY-'z^

for r = 1,2, • • • , 72.

The case  r = 1 with p    taken to be the constant  1 is evident from the definitionr72

of z..
i
Assume we have established (10) for a particular r,   1 < r < 72.  Then solving

for z.~      and differentiating yields:

(r-lY-lzf = (-l)n+r(M(yf-r))/W)' - (Pn,r+1z.Y

* (Pn-r+2*?"- (Pn-r+l*iV" + " " ' + W^n-l*/""-

Using Abel's formula W' = -p _ ,W and the formula for the derivative of a de-

terminant we get

(AKy^-'Vw)' = W-2[(M(yj"-r)))' - M(yf-r))W\

= W-l[(M(yf-T)))' + Pn_yM(y{n-T))\

= ir1[M(y¡B-,-1))- P„_iMy("-r))

+ (-^Pn.r^yi • - y i — y¿+ p„-iutyn~*>l

= Miyf-'-l))/W + t-tf+V/V
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Substituting into the above expression for z.    yields:

Ur1!? = i-l)n+r[Miy("-T-l))/W + i-lY-'p      z .]

Finally, solving for My.     r_1 )/W we obtain:

ur-r4**}-' -n) = (-ir+'+1(-ir+1p„_r^. + fr.^W - K-rrf?"

+ ... + L.iY(pn_iz.)<'-lK(-iy-lz<f).

This is formula (10) with r replaced by r + I and our proof of Lemma 5 is com-

plete.

It follows directly from Lemma 5 that z. is conjugate to iy j, • • •, y A for

each j = k + 1, • • •, 72.  Consequently, by the remark following Lemma 2, the sub-

space of ML   ) generated by z, + j, • • •, z    is conjugate to the subspace of

ML) generated by y,, • • •, y,.  It will be shown later that no other elements of

ML  ) are conjugate to iyj, •••, yj-

Lemma 6.   Suppose L = RQ and y., • • •, y,   is a basis of NÍQ).  Let VÍx, t)

be the Cauchy function of Q and choose a basis y. , • • •, y,   of NÍQ  ) such

that VÍx, t) = ytd)y*d) + ... + yjx)ykit).  Then

k -

(ii) R*z = Z (-1)nfyt; zli7,* f" every z e c"-
2=1

Proof.   Let a £ I, fix t £ I and let uíx) = VÍx, t) for all x in /.  Then,

taking iz = 2 in the Lagrange identity of Lemma 2 and integrating from a to t

we obtain

- ftVÍx,t)Ü7z~)íx)dx=[VÍ.-,t);z]'f
a t=a

2=1 2=1

for each re/.

Since (- l)n+   Vit, x) is the Cauchy function of Q* we have:

Q*\fl (-l)n+1^(x' 'V(*)<fc) = fit)   for all t € 1 and / £ C.

Taking /= L   z and using y.   £ NÍQ ) tot i = 1, •••, k yields L  z =

Q*{S.kali-DnyibJz]L\. Letting Mz=£*=1(-l)"y*[y.;z]L we have shown
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348 ANTON ZETTL

that L   z - Q   Mz for every z e C".  Since L    = Q   R     and R     is unique we

conclude that M = R     and the proof is complete.

Theorem 2~.   Let y., •••, y    be a basis of ML) with y^, •■•,y,   for

1 < k < 72 satisfying (5).  Let z. be defined by (8) /or i = 1, • « •, n.  Suppose

L = RQ with Q given by (6) with n = k and L = Q.   Then z, + j, • • •, z    form a

basis of N(R   ) and

(12) R*z=W(zk + 1,...,zn,z)/W(zk+v...,zn)    for z £ C.

Proof.   The representation (12) follows from Lemma 1, once it is established

that z. tot j = k + I, • • • , 72 are in  N(R   ) and are linearly independent.  The

linear independence follows from the fact that z j, • • •, z    ate a basis of ML   ).

By Lemma 5 we have [y.; z.]L = 0 for i = 1, • • •, k and /' = k + 1, • • •, 72.

Hence, by Lemma 6,

* _

rV=£ (-l)"7*[y, z.]l = 0   for j=k+l,...,n.
1     1=1 '     '     ;

This completes the proof.

Corollary.   Suppose n = 2k and the hypothesis and notation of Theorem 2
NY

hold   Then R    = Q if and only ij

z . £ spaniyj,- •• , y y\    for j = k + I,- • •, n.

The special case of this Corollary when L is formally selfadjoint is a re-

sult due to Rellich and Heinz—see Heinz [7, Satz 3 and Zusatz p. 16], See also

Coppel [3, Theorem 19, p. 80] and Krein [8].

We conclude this section by showing that Lemma 5 characterizes all the ele-

ments of ML   ) which are conjugate to iyj, • • • , y A, thus establishing the sen-

tence just above Lemma 6.

Remark.   Suppose yj, •••, y,   are in ML) satisfying (5) and z. tot i =

1, • • • , 72 are defined by (8). Let z £ NiL  ). Then \y.; z\L = 0 for all 2 =

1, ■ • •, k if and only if z is a linear combination of z. , ,, « « •, z .

Proof.   The if part has already been established. Suppose [y.; z], = 0 for

i = I, • • • , k.  By Lemma 6, R  z = 0 and hence z is a linear combination of

»t. i « • • • i *    since these form a basis for MR   )•
ft T 1 77

We conclude this section with another

Remark.   If we are dealing with a differential operator My = ryy "   + • • • + ryy

with r it) 4 0 on  /, then  L = r~  M has the form (1). We can then apply our fac-
71 71 '

torization results to L.

If (l/r )M = RQ, then M-r RQ where  R and Q have leading coefficient 1.

We observe that r   can be "absorbed" by either R or Q or both to yield a fac-
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FACTORIZATION OF LINEAR DIFFERENTIAL OPERATORS 349

torization  M = R Q   where the leading coefficients of R , Q , say  r , a   have the

property r q = r,.

3.   Multiple factors.   In this section we investigate the factorization of L

into products of more than two factors.  For this purpose we introduce two weak

forms of the well-known ptoperty W introduced by Pólya in [12]: Properties EW

and OW. We say that a linear differential operator L—or equivalently its null

space ML)—has ptoperty EW [OW] if there exists a basis yj, yy, • • •, y    oí

ML) with the property that all even [odd] order Wronskians have no zero on / i.e.

W(yv -.., yk)(t) 4 0 for all t in / and for k even [odd].

A basis yj, ••«, y    oí ML) is called an   EW [OW]   system of   L   if

W(yj> • • •, y A 4 0 for all even [odd] values of k < n.

Only  k < n is significant since the Wronskian of a basis is always nonzero.

We remark that an operator L can have both properties EW and OW without

having property W i.e. without (3) holding. Of course, in this case EW and OW

hold with respect to different bases.  A simple example is given.

Example.   Let Ly = y'" - y ' + y  - y.   A basis of ML) is: y Ax) = ex,

y2(x) = sin x,  y?(x) = cos x.  Clearly  W(yj) = ex 4 0 and  W(yr y})(x) = - 1 ¡¿ 0

so that  L has property OW and EW. But L cannot have property W since it is

not disconjugate on, say / = [0, oo), sin x being a nontrivial solution with infin-

itely many zeros.

Theorem 3.   Suppose y .,•••, y    is a basis of ML).  Let z. be defined by

(8) for 2 = 1, • • •, 72.  (i)   // 72 is even, then y .,•-•, y    is an EW [OW] system

of L if and only if z .,•••, z    is an EW [OW] system of L .   (ii)   // n is oddu

then y., • •. , y    is an EW [OW]  system of L if and only if z., • • •, z    is an

OW[EW]  system of L*.

Proof.   In §2 we saw that W(yj, •••, y.) 4 0 implies that L has a factoriza-

tion L = RQ with y,, ■■•, y,   being a basis of N(Q) and z, +1, ...,z   being a

basis of MR   ). Hence W(z, ,,,•••, z ) 4 0 and so half the theorem follows
ft T 1 71

since 72 - k is even for 72 and k even and odd for 72 odd and k even. The other

half follows by interchanging the roles of L and L   .

Theorem 4.   (i)   Suppose n is even i.e.  n= 2k.  If L has property EW, then

L is a product of k second order operators each of type: y   + ryy + ryy;  i.e.

L = Q\Q2 ' ' ' Ql   uihere each Q. is a second order operator with leading coeffi-

cient 1.  // L has property OW, then L has a factorization L= PQyQy •• Q,_yR

where each Q.  is a second order operator and P and R are first order operators

and all have leading coefficient  1.

(ii)  Suppose 72 is odd, say n = 2k + 1.  If L has property EW then L has a
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factorization L= PQ.-<- Q,   where each Q. is of order 2 and P has order 1 and

all have leading coefficient 1.  // L has property OW then L has a factorization

L=Q.Q2---Q,R where each Q. has order 2,  R has order 1 and all have

leading coefficient  1.

Proof.   We prove the first part of (i) only since the proofs of the other parts

are similar. Let y,, • • •, y    be an EW system of L.  Then by Theorem 1, La

QyQ where 2,  is of order 2 with leading coefficient  1,  Q is of order 22—2 with

leading coefficient  1 and has the representation (6) given in Lemma 1 for k =

22-2 i.e.

Qiy) = WiVl,- - , yn_2, y)/Wiyi,..., yn_j    for all y £ C".

Since y j, • • •, y _2 are in NÍQ) and V/(y j, • • •, y     ,) 4 0 we can apply Theo-

rem 1 to  Q and obtain the factorization Q = QAR where Q2,  R have leading co-

efficient 1,  Q2 is of order 2 and R of order 22 - 4. This yields:   L = Q.Q2R.

Repeating the above procedure we obtain the desired factorization of L:   L -

All of the second order factors Q. appearing in Theorem 4 can be made for-

mally selfadjoint at the expense of introducing a positive function as multiplier.

This result is stated more precisely as

Corollary,   (i)   Suppose n is even i.e.   n = 2k.   If L has property EW, then

L = rP .• • • P,   where r is a positive function and each P. is a second order

formally selfadjoint operator i.e. each P. has order 2 and P.  -P. for each

i = 1, • • « , k.   If L has property OW, then L — rSP. ... P',R where r is a positive

function,  S,  R are first order operators and each P. is a second order formally

selfadjoint operator,  (ii) Suppose n is odd: n = 2k + 1.  Then L having property

EW implies L = z-SPj... Pfe and OW implies L = rPj • • • PfeR where r^S, R, P.

are as in (i).

Proof.   Again we prove only the first part of (i) since the other proofs are

similar. Let L = Q^ • •. Q,   be the factorization of Theorem 4. Let Qky = y   +

ay' + ßy.  Taking Pfe = rkQk with rfe = exp[/a] we get P¿ = Pfe.  Let Qk_ly =

y   + ay' + by, then

ßw'?AW = Qk-1'l1 pk^ - ?W+ K1 - 2d*"1)'i^)'

+ \-ir-j)" + air-j)' +br~j\Pky.

Letting  Sy = r~ ly" + [ar"1 + 2d~ !)']y' + [ir~ ')" + air~ l)' + br~ l]y we have

s*.-1®k.y= SPky- Now writins
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Sy - r?[y" + r^ + 2(r¿)')y> +  r^)" + a(0' + br?)y]

and letting rfe_ j = exp[/(a + 2rfe(r" l)% we get Qk_ xQky = r~ ^'^yP^ y?yy

where  Pfe_ xy = rfe_ jfy" + (a + 2rk(r~ l)')y' + r¿ K(r¿ l)' + a(rk l)' + br~ l)y] and

Pfe_ j = Pk_ j. Continuing in this way we end up with L = r~  rT_. •. • rT P,"-Pi

concluding the proof.

4.   In this section we give sufficient conditions on the coefficients p. for

various kinds of factorizations to hold.

Property W,.   We say that L has property W,   if there exist k solutions of

Ly = 0 satisfying W(y j, ..., y,) 4 0.

We start by recalling some known results:

(1) If pi < 0 for 2 = 0, 1, ..., n - 2; then L has property Wj.

(2) If (- l)n_fpf < 0 for 2 = 0, 1, •. -, 72 - 2; then L has property Wj. Note

that no sign condition is needed on p _..  Also we remark that L having property

Wj is equivalent to L     having property W

(3) Suppose p. = 0 for f ■• 1, 2, ...,« — 3 and p _2 < 0. Then L has prop-

erty EW if p0 > 0 and L has property OW if pQ < 0.

(4) If (- l)n + 1-J'p. > 0 for ; - 0, 1, ...,«- 2; then L has property W^_ j

(and hence W    holds for L*).

Results 1 and 2 are well known-for proofs see [17] for 1 and [5, p. 508] for

2. For 3 and 4 see [17].

Consider My = (pyM)M + (ry(n" n)(n~ l) + qy with p > 0 and p e C, r £

C"~X and q £ C.

Theorem 5.   Suppose r < 0 (272 addition to p > 0). Determine solutions

y V '"' y2n ^ l^e i™*™! conditions y.~l\a) = 8.. for i, j = 1, ..., 2/2.  T/7t?72

yv • • ', y2n is an EW system if a > 0 and an OW system if q < 0 072 a?2y zwier-

jva/ (a, 6) with b> a.

Proof.   Since the proof is similar to that given in [17] for result 3 above we

merely outline it here. Since M is formally selfadjoint we can restrict ourselves

to k < 72. Just as in [17] we construct a vector matrix system Y  = FY where  Y

is a vector of order ( ,  ) whose components are ¿th order Wronskians of yj, •••, yk

and their quasi derivatives up to the (2t2 - l)th derivative.   These determinants

are ordered lexicographically starting with W(yj, •.., y A). The ( ,   ) by (  ,   )

matrix F has entries from the set {0, 1, 1/p, -r, i-l)kq\. Since all entries of the

matrix F are nonnegative and all components of Y ate nonnegative at the point

a with the first component Wiy j, ..., y¡)(a) = 1, it follows from a lemma of

Mikusinski [10], that all entries of Y ate nonnegative to the right of the point a
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and in particular W(Y,, • •« , y jit) > 0 for t > a.

Recently, Ridenhour [13] has obtained sufficient conditions, expressed as 22

inequalities involving the coefficients and their derivatives, for an operator of

order 2n to have property W .

5.   Applications.   In this final section we mention some applications. Deter-

mine a fundamental set of solutions y ,,••>, y    of Ly = 0 by the initial condi-

tions y.      \a) = 8.. tot i, j = 1, • • •, 22 and a £ I. 1

Suppose y is a nontrivial solution of Ly = 0 which has a zero of order k at

a.   Then  y  has no zero of order   n - k  to the right of  a  if and only if

Wiyk+1, •••- y„)d)¿ 0 for t> a.

Proof.   Such a solution y must be a nontrivial linear combination of

y, +,, • • •, y .  Hence y has a zero of order 22 - k at some point b > a if and

only if Wiyk + V ..., yjib) = 0.

Thus, if y , • • • , y,  is an EW system, a nontrivial solution can have a zero

of order k at a and a zero of order n - k at b > a only if n - k is odd. Similarly

if y , • • •, y x is an OW system a nontrivial solution can have a zero of order k

at a and a zero of order 22 - k at b > a only if n - k is even.

As a consequence of these observations we have:   If y , • • •, y, is either

an EW system or an OW system then no nontrivial solution can have zeros at a,

b with a < b of combined order greater than 22 since this would imply that two

Wronskians of consecutive integral order are zero at  b and clearly one of these

must be even and one odd.

Combining the above remarks with explicit conditions on the coefficients

given in §4 leads to the next two theorems.

Theorem 6.   Consider Ly = yM + Pn_lyi"~l) + pn_2y(n~2) + p0y andas-

sume p     , < 0.r22- 2  —

// p0 > 0 [p. < O]  and y is a nontrivial solution with zeros of order k and

n - k at points a,  b with a < b, then n — k is odd [even].  Consequently if pQ

does not change sign on I then no nontrivial solution has zeros at a,  b £ I with

a < b of combined order > n.

Theorem 7.   Consider My = ipy{n))M + (ry(n_ 1Y"~ l) + qy with p > 0,

p £ C, r £ C"-1,  q £ C.

'     If 1 > 0 t? < 0] and y is a nontrivial solution with zeros of order k and

n — k at points a,  b with a < b; then 22 - k is odd [even].
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