GENERAL THEORY OF THE FACTORIZATION OF ORDINARY LINEAR DIFFERENTIAL OPERATORS

BY

ANTON ZETTL

Abstract

The problem of factoring the general ordinary linear differential operator $L y=y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{0} y$ into products of lower order factors is studied. The factors are characterized completely in terms of solutions of the equation $L y=0$ and its adjoint equation $L^{*} y=0$. The special case when L is formally sel fadjoint of order $n=2 k$ and the factors are of order k and adjoint to each other reduces to a well-known result of Rellich and Heinz: $L=Q^{*} Q$ if and only if there exist solutions y_{1}, \cdots, y_{k} of $L_{y}=0$ satisfying $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$ and $\left[y_{i} ; y_{j}\right]=0$ for $i, j=1, \cdots, k$; where $[$;] is the Lagrange bilinear form of L.

Introduction. In this paper we investigate the problem of determining when the classical nth order linear differential operator

$$
\begin{equation*}
L y=y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0} y \tag{1}
\end{equation*}
$$

can be factored into products of lower order operators of the same type and how these factors may be characterized.

In $\S 1$ we collect results from the elementary theory of ordinary linear differential equations which we use in the subsequent development. $\oint \S 2$ and 3 deal with the cases of two or more than two factors respectively. Sufficient conditions on the coefficients for various types of factorizations are developed in §4. Some applications and illustrations are given in §s.

According to a well-known result of Pólya [12] the operator L has a factorization into "products" of first order factors

$$
\begin{equation*}
L y=r_{n}\left(r_{n-1} \cdots\left(r_{1}\left(r_{0} y\right)^{\prime}\right)^{\prime} \cdots\right)^{\prime} \tag{2}
\end{equation*}
$$

on some interval I if and only if the equation $L y=0$ has a fundamental set of solutions y_{1}, \cdots, y_{n} such that

$$
\begin{equation*}
W_{k} \neq 0 \text { on } l \text { for } k=1, \cdots, n-1 \tag{3}
\end{equation*}
$$

[^0]where $W_{1}=y_{1}$ and $W_{k}=\operatorname{det}\left[y_{j}^{(i-1)}\right]$ for $k=2, \ldots, n-1, i, j=1, \ldots, k$. For a short and elegant proof of this result see [14] or [3, pp. 91-92]. Such a factorization is closely related to disconjugacy and has received a lot of attention in the literature. For some recent papers see [6], [9], [15], [19].

In [16] it is shown that L has a factorization of type

$$
\begin{equation*}
L=P Q \tag{4}
\end{equation*}
$$

on some interval I where P and Q are of the same type as L of orders $n-k$ and k respectively if and only if there exist k linearly independent solutions y_{1}, \cdots, y_{k} of $L y=0$ whose Wronskian $W_{k}=W\left(y_{1}, \ldots ; y_{k}\right)$ satisfies

$$
\begin{equation*}
W_{k}=W\left(y_{1}, \cdots, y_{k}\right) \neq 0 \text { on } I . \tag{5}
\end{equation*}
$$

In general not much seems to be known about factorizations of type (4). A notable exception is the work of Rellich and Heinz given in [7] and the paper of Krein [8]. See also [4], [3] and [19].

For a result on multiple second order factors see Miller [11].
Explicit conditions on the coefficients which yield factorizations of types (2) and (4) were obtained in [19] for $n=3$ and, for type (4) only, in [17] for general n.

1. Throughout the paper we will assume that the coefficients p_{i} in (1) are continuous complex valued functions defined on some interval I. Smoothness conditions will be assumed as needed. Unless explicitly stated otherwise the interval I can be any nondegenerate subinterval of the real line: open, closed, half-open, finite or infinite.

We proceed to list some facts from the theory of ordinary linear differential equations. For proofs the reader is referred to any of the standard books on the subject. We mention specifically the books by Coddington and Levinson [2], Miller [11] and Harman [5].

Denote by $N(L)$ the set of all solutions of $L y=0$.
Lemma 1. The set $N(L)$ is an n-dimensional vector space. If $\left\{y_{1}, \cdots, y_{n}\right\}$ is a basis of $N(L)$, then $W\left(y_{1}, \cdots, y_{n}\right) \neq 0$ and

$$
\begin{equation*}
L y=W\left(y_{1}, \cdots, y_{n}, y\right) / W\left(y_{1}, \cdots, y_{n}\right) \text { for all } y \in C^{n} . \tag{6}
\end{equation*}
$$

If we assume that $p_{i} \in C^{i}$ for $i=0, \cdots, n-1$ then the operator

$$
L^{*} y=(-1)^{n} y^{(n)}+(-1)^{n-1}\left(\bar{p}_{n} y\right)^{(n-1)}+\cdots+(-1)\left(\bar{p}_{1} y\right)^{\prime}+\bar{p}_{0} y
$$

can be put into the same form as L. The operator L^{*} is called the formal adjoint
of L and L is said to be formally selfadjoint if $L^{*}=L$. (By using appropriate quasidifferential expressions one can avoid making any differentiability assumptions on the coefficients and still develop the adjoint operator-see [18]. However we will not do that here.)

This leads us to the Lagrange identity which will play an important role later.
Lemma 2. For any u, v in C^{n} we bave

$$
\bar{v} L u-\overline{u L^{*} v}=[u ; v]_{L}
$$

where $[u ; v]_{L}=\sum_{i=0}^{n} \sum_{j=0}^{i-1}(-1)^{j}\left(p_{i} \bar{v}\right)^{(j)} u^{(i-1-j)}$ with $p_{n} \equiv 1$.
The form $[u ; v]_{L}$ is called the concomitant of L and is bilinear: For any constants c_{i} we have

$$
\left[\sum_{i=1}^{k} c_{i} u_{i} ; v\right]_{L}=\sum_{i=1}^{k} c_{i}\left[u_{i} ; v\right]_{L} \quad \text { and }\left[u ; \sum_{i=1}^{k} c_{i} v_{i}\right]_{L}=\sum_{i=1}^{k} \bar{c}_{i}\left[u ; v_{i}\right]_{L} .
$$

Corollary. If $u \in N(L)$ and $v \in N\left(L^{*}\right)$, then $[u ; v]_{L}$ is constant. Also $[u ; v]_{L}=0$ if and only if $[v ; u]_{L^{*}}=0$.

Definition. Given $u \in N(L)$ and $v \in N\left(L^{*}\right)$ we say that v is conjugate to u if $[u ; v]_{L}=0$. Note that v is conjugate to u if and only if u is conjugate to v. Given $y_{1}, \cdots, y_{k} \in N(L)$ and v in $N\left(L^{*}\right)$ we say that v is conjugate to $\left\{y_{1}, \cdots, y_{k}\right\}$ if v is conjugate to y_{i} for each $i=1, \cdots, k$.

Remark. From the Corollary to Lemma 2 it follows that if each of v_{1}, \cdots, v_{r} is conjugate to $\left\{y_{1}, \cdots, y_{k}\right\}$ then every member of the subspace generated by v_{1}, \cdots, v_{r} is conjugate to every member of the subspace generated by y_{1}, \cdots, y_{k}. So the property of being conjugate is a property that subspaces of $N\left(L^{*}\right)$ may have relative to subspaces of $N(L)-$ not just particular elements. A particularly simple way to construct conjugate elements is as follows: If $u \in N(L)$ and $v \in N\left(L^{*}\right)$ satisfy the initial conditions $u^{(i)}(a)=0$ for $i=0, \ldots, k$ and $v^{(j)}(a)=0$ for $j=0, \ldots, n-k$; then $[u ; v]_{L}=[u ; v]_{L}(a)=0$.

For each $s \in I$, let $V(\cdot, s)$ be the solution of $L y=0$ which satisfies the initial conditions $y^{(i)}(s)=\delta_{i, n-1}$ for $i=0, \cdots, n-1$. This function $V(t, s)$ is called the Cauchy function of L. Some of its basic properties are listed in

Lemma 3. (a) For any $f \in C$ the solution y of $L y=f$ which satisfies the initial conditions $y^{(i)}(a)=0$ for $i \neq 0, \ldots, n-1$ is given by the formula

$$
\begin{equation*}
y(t)=\int_{a}^{t} V(t, s) f(s) d s \quad \text { for } t \in I \tag{7}
\end{equation*}
$$

(b) Assume $p_{i} \in C^{i}$ so that L^{*} can be formed. Given a basis y_{1}, \cdots, y_{n} of $N(L)$ there exists a basis $y_{1}^{*}, \cdots, y_{n}^{*}$ of $N\left(L^{*}\right)$ such that

$$
V(t, s)=y_{1}(t) \bar{y}_{1}^{*}(s)+\cdots+y_{n}(t) \bar{y}_{n}^{*}(s) \text { for all } t, s \in I .
$$

(c) $(-1)^{n-1} \bar{V}(s, t)$ is the Cauchy function of L^{*}.

The next lemma shows how to obtain a basis of $N\left(L^{*}\right)$ from a given basis of $N(L)$.

Lemma 4. Suppose y_{1}, \cdots, y_{n} form a basis of $N(L)$.
Let

$$
\begin{equation*}
\bar{z}_{i}=W\left(y_{1}, \cdots, \hat{y}_{i}, \cdots, y_{n}\right) / W\left(y_{1}, \cdots, y_{n}\right) \tag{8}
\end{equation*}
$$

for $i=1, \cdots, n$ where the circumflex over y_{i} indicates that y_{i} is missing.
Then z_{1}, \cdots, z_{n} form a basis of $N\left(L^{*}\right)$.
2. The factorization $L=R Q$. We consider the problem of determining when the operator L can be factored i.e. can be represented by: $L=R Q$ where R and Q are operators of lower order. First we make precise the meaning of such a representation.

Given an operator Q of the form $Q y=y^{k}+q_{k-1} y^{(k-1)}+\cdots+q_{0} y$ with $q_{i} \in C$, certainly $Q y$ will make sense and be a continuous function, for any $y \in$ C^{k}. If $1 \leq k<n, q_{i} \in C^{n-k}$ for $i=n, 1, \cdots, k-1$ and R is an operator of type $R y=y^{(n-k)}+r_{n-k-1} y^{(n-k-1)}+\cdots+r_{0} y$ with $r_{i} \in C$ then $R Q$ can be defined by $(R Q)(y)=R(Q y)$ for every $y \in C^{n}$.

So by $L=R Q$ we simply mean that $L y=R(Q y)$ for every $y \in C^{n}$.
By a direct computation $R Q$ can be put in the form (1) i.e. $R Q y=y^{(n)}+$ $s_{n-1} y^{(n-1)}+\cdots+s_{0} y$ and it follows immediately that $L=R Q$ if and only if $p_{i}=s_{i}$ for $i=0, \ldots, n-1$. We list only the first couple of these equations:

$$
\begin{aligned}
& p_{n-1}=q_{k-1}+r_{n-k-1}=s_{n-1}, \\
& p_{n-2}=q_{k-1}^{\prime}+q_{k-2}+r_{n-k-1} q_{k-1}+r_{n-k-2}=s_{n-2}, \text { etc. }
\end{aligned}
$$

By solving these equations successively it is apparent that given the p 's and q 's (with the q 's satisfying $q_{i} \in C^{n-k}, i=0,1, \cdots, k-1$), the r 's are determined uniquely; and given the p 's and r 's, the q 's are determined uniquely. In other words, given a factorization $L=R Q, Q$ determines R uniquely and R determines Q uniquely.

Moreover the differentiability properties of the coefficients can be readily read off from these equations as well. For instance if $p_{i} \in C^{i}$ for $i=0, \cdots, n-1$; then $r_{n-k-j} \in C^{n-j} \cap C^{n-k}$ for $j=1, \cdots, n-k$. So L^{*}, R^{*} and $Q^{*} R^{*}$ are
all defined. Consequently $L=R Q$ implies $L^{*}=Q^{*} R^{*}$-see [11].
We now state the result from [16].
Theorem 1. Suppose $1 \leq k<n$. Then the factorization $L=R Q$ where Q is an operator of the form $Q y=y^{k}+q_{k-1} y^{k-1}+\cdots+q_{0} y$, with $q_{i} \in C^{n-k}$, holds if and only if there exist k solutions y_{1}, \cdots, y_{k} of $L y=0$ which satisfy (5) i.e. $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$. Furthermore Q has the representation (5).

The factorization $L=R Q$ holds on any interval where the Wronskian condition $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$ is satisfied and conversely. Note that (5) is always satisfied locally: determine a fundamental set of solutions y_{1}, \cdots, y_{n} by the initial conditions $y_{j}^{i-1}(a)=\delta_{i j}$ for $i, j=1, \cdots, n$. Then $w\left(y_{1}, \cdots, y_{k}\right)(a)=1$ and therefore $W\left(y_{1}, \cdots, y_{k}\right)$ is positive in a neighborhood of a, since it is a continuous function.

Since the proof of Theorem 1 is short we include it here for the sake of completeness. Suppose $L=R Q$. Since any solution of $Q y=0$ is also a solution of $L y=0$ we need only choose y_{1}, \cdots, y_{k} to be a fundamental set of solutions of $Q y=0$ to get $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$. The differentiability conditions of the coeffi- cients q_{i} can be read off the representation of Q given by Lemma 1.

On the other hand suppose $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$. Define

$$
Q y=W\left(y_{1}, \cdots, y_{k}, y\right) / W\left(y_{1}, \cdots, y_{k}\right) \text { for } y \in C^{n}
$$

Then $q_{i} \in C^{n-k}$ for $i=0, \cdots, k-1$. Letting $R y=y^{(n-k-1)}+\cdots+r_{0} y$, computing $R(Q y)$ and setting the coefficients of $y^{(n-1)}, y^{(n-2)}, \ldots, y^{(k)}$ equal to $p_{n-1}, p_{n-2}, \cdots, p_{k}$, respectively, yields $n-k$ equations (the first two of which are listed above) which can be solved successively starting with the equation from the coefficient of $y^{(n-1)}$. Setting $N=L-R Q$ we show that $N=0$. The order of N is less than k since the coefficients of $y^{(j)}$ for $j \geq k$ are all zero. But $N y_{i}=L y_{i}-R\left(Q y_{i}\right)=0$ for $i=1, \ldots, k$, hence $N=0$ and so $L=R Q$.

For the remainder of the paper and mainly as a matter of convenience we assume that $p_{i} \in C^{i}$ for $i=n, \cdots, n-1$.

As stated in the remark preceding Theorem $1, L=R Q$ implies $L^{*}{ }^{*}=Q^{*} R^{*}$ and conversely, since $M^{* *}=M$, we have that $L^{*}=Q^{*} R^{*}$ implies $L=R Q$. From this observation and Theorem 1 we conclude that there exist $y_{1}, \cdots, y_{k} \in N(L)$ satisfying $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$ if and only if there exist z_{1}, \cdots, z_{n-k} in $N\left(L^{*}\right)$ satisfying $W\left(z_{1}, \cdots, z_{n-k}\right) \neq 0$. We now investigate this relationship between solutions of an equation and its adjoint. This relationship is actually between subspaces of $N(L)$ of dimension k and subspaces of $N\left(L^{*}\right)$ of dimension $n-k$.

How are z_{1}, \cdots, z_{n-k} determined in terms of y_{1}, \cdots, y_{k} ?
To answer this question we need a lemma which may be of independent interest.

Suppose $y_{1}, \cdots, y_{k} \in N(L)$ and satisfy (5). Since $y_{1}, \cdots, \cdot y_{k}$ are linearly independent, there exist elements y_{k+1}, \cdots, y_{n} from $N(L)$ such that y_{1}, \cdots, y_{k}, y_{k+1}, \cdots, y_{n} is a basis of $N(L)$. Let z_{i} be defined by (8) for $i=1, \cdots, n$.

Lemma 5. The Lagrange bracket $\left[y_{j} ; z_{i}\right]_{L}$ is zero for $i \neq j$ and nonzero for $i=j, i, j=1, \therefore ., n$.

Proof. From the expansion of the Wronskian determinant $W=W\left(y_{1}, \cdots, y_{n}\right)$ along columns we obtain:

$$
\sum_{q=1}^{n}(-1)^{q+1} M\left(y_{i}^{(q-1)}\right) y_{j}^{(q-1)} / W= \begin{cases}1 & \text { if } i=j \tag{9}\\ 0 & \text { if } i \neq j\end{cases}
$$

where $M\left(y_{i}^{(q-1)}\right)$ is the minor of the element $y_{i}^{(q-1)}$. Using (9) and the formula for the Lagrange bracket given in Lemma 2 (with $u=y_{j}$ and $v=z_{i}$) and setting coefficients of $y_{m}^{(q)}$ equal we need to show:

$$
\begin{align*}
(-1)^{n+r} M\left(y_{j}^{(n-r)}\right) / W= & p_{n-r+1} z_{i}-\left(p_{n-r+2} z_{i}\right)^{\prime}+\left(p_{n-r+3} z_{i}\right)^{\prime \prime} \\
& +\cdots+(-1)^{r-2}\left(p_{n-1} z_{i}\right)^{(r-2)}+(-1)^{r-1} z_{i}^{(r-1)} \tag{10}
\end{align*}
$$

$$
\text { for } r=1,2, \ldots, n \text {. }
$$

The case $r=1$ with p_{n} taken to be the constant 1 is evident from the definition of z_{i}.

Assume we have established (10) for a particular $r, 1 \leq r<n$. Then solving for $z_{i}^{(r-1)}$ and differentiating yields:

$$
\begin{aligned}
(-1)^{r-1} z_{i}^{(r)}= & (-1)^{n+r}\left(M\left(y_{j}^{(n-r)}\right) / W\right)^{\prime}-\left(p_{n-r+1} z_{i}\right)^{\prime} \\
& +\left(p_{n-r+2} z_{i}\right)^{\prime \prime}-\left(p_{n-r+3} z_{i}\right)^{\prime \prime \prime}+\cdots+(-1)^{r-1}\left(p_{n-1} z_{i}\right)^{(r-1)}
\end{aligned}
$$

Using Abel's formula $W^{\prime}=-p_{n-1} W$ and the formula for the derivative of a determinant we get

$$
\begin{aligned}
\left(M\left(y_{j}^{(n-r)}\right) / W\right)^{\prime}= & W^{-2}\left[\left(M\left(y_{j}^{(n-r)}\right)\right)^{\prime}-M\left(y_{j}^{(n-r)}\right) W^{\prime}\right] \\
= & W^{-1}\left[\left(M\left(y_{j}^{(n-r)}\right)\right)^{\prime}+p_{n-1} M\left(y^{(n-r)}\right)\right] \\
= & W^{-1}\left[M\left(y_{j}^{(n-r-1)}\right)-p_{n-1} M\left(y^{(n-r)}\right)\right. \\
& \left.\quad+(-1)^{r+1} p_{n-r} W\left(y_{1} \cdots \hat{y}_{i} \cdots y_{n}\right)+p_{n-1} M\left(y_{j}^{(n-r)}\right)\right] \\
= & M\left(y_{j}^{(n-r-1)}\right) / W+(-1)^{r+1} p_{n-r} z_{i} .
\end{aligned}
$$

Substituting into the above expression for $z_{i}^{(r)}$ yields:

$$
\begin{aligned}
(-1)^{r-1} z_{i}^{(r)}= & (-1)^{n+r}\left[M\left(y_{j}^{(n-r-1)}\right) / W+(-1)^{r-1} p_{n-r} z_{i}\right] \\
& -\left(p_{n-r+1} z_{i}\right)^{\prime}+\left(p_{n-r+2} z_{i}\right)^{\prime \prime}-\cdots+(-1)^{r-1}\left(p_{n-1} z_{i}\right)^{(r-1)} .
\end{aligned}
$$

Finally, solving for $M\left(y_{j}^{(n-r-1)}\right) / W$ we obtain:

$$
\begin{aligned}
(-1)^{n+r} W^{-1} M\left(y_{j}^{(n-r-1)}\right)= & (-1)^{n+r+1}(-1)^{r+1} p_{n-r} z_{i}+\left(p_{n-r+1} z_{i}\right)^{\prime}-\left(p_{n-r+2} z_{i}\right)^{\prime \prime} \\
& +\cdots+(-1)^{r}\left(p_{n-1} z_{i}\right)^{(r-1)}+(-1)^{r-1} z_{i}^{(r)} .
\end{aligned}
$$

This is formula (10) with r replaced by $r+1$ and our proof of temma 5 is complete.

It follows directly from Lemma 5 that z_{j} is conjugate to $\left\{y_{1}, \cdots, y_{k}\right\}$ for each $j=k+1, \cdots, n$. Consequently, by the remark following Lemma 2, the subspace of $N\left(L^{*}\right)$ generated by z_{k+1}, \cdots, z_{n} is conjugate to the subspace of $N(L)$ generated by y_{1}, \cdots, y_{k}. It will be shown later that no other elements of $N\left(L^{*}\right)$ are conjugate to $\left\{y_{1}, \cdots, y_{k}\right\}$.

Lemma 6. Suppose $L=R Q$ and y_{1}, \cdots, y_{k} is a basis of $N(Q)$. Let $V(x, t)$ be the Cauchy function of Q and choose a basis $\bar{y}_{1}^{*}, \cdots, \bar{y}_{k}^{*}$ of $N\left(Q^{*}\right)$ such that $V(x, t)=y_{1}(x) y_{1}^{*}(t)+\cdots+y_{k}(x) y_{k}^{*}(t)$. Then

$$
\begin{equation*}
R^{*} z=\sum_{i=1}^{k}(-1)^{n} \overline{\left[y_{i} ; z\right]} \bar{y}_{i}^{*} \quad \text { for every } z \in C^{n} . \tag{11}
\end{equation*}
$$

Proof. Let $a \in I$, fix $t \in I$ and let $u(x)=V(x, t)$ for all x in I. Then, taking $v=z$ in the Lagrange identity of Lemma 2 and integrating from a to t we obtain

$$
\begin{aligned}
-\int_{a}^{t} V(x, t) \overline{\left(L^{*} z\right)}(x) d x & =[V(\cdot ; t) ; z]_{L}^{t} \\
& =\sum_{i=1}^{k} y_{i}^{*}(t)\left[y_{i} ; z\right]_{L}(t)-\sum_{i=1}^{k} y_{i}^{*}(t)\left[y_{i} ; z\right]_{L}(a)
\end{aligned}
$$

for each $t \in I$.
Since $(-1)^{n+1} \bar{V}(t, x)$ is the Cauchy function of Q^{*} we have:

$$
Q^{*}\left\{\int_{a}^{t}(-1)^{n+1} \bar{V}(x, t) f(x) d x\right\}=f(t) \text { for all } t \in I \text { and } f \in C
$$

Taking $f=L^{*} z$ and using $\bar{y}_{i}^{*} \in N\left(Q^{*}\right)$ for $i=1, \ldots, k$ yields $L^{*} z=$ $Q^{*}\left\{\Sigma_{i=1}^{k}(-1)^{n} \bar{y}_{i}^{*}{\left.\overline{\left[y_{i}\right.} ; z\right]}_{L}\right\}$. Letting $M z=\sum_{i=1}^{k}(-1)^{n} \bar{y}_{i}^{*}{\left.\overline{\left[y_{i}\right.} ; z\right]}_{L}$ we have shown
that $L^{*} z=Q^{*} M z$ for every $z \in C^{n}$. Since $L^{*}=Q^{*} R^{*}$ and R^{*} is unique we conclude that $M=R^{*}$ and the proof is complete.

Theorem 2: Let y_{1}, \cdots, y_{n} be a basis of $N(L)$ with y_{1}, \cdots, y_{k} for $1 \leq k<n$ satisfying (5). Let z_{i} be defined by (8) for $i=1, \cdots, n$. Suppose $L=R Q$ with Q given by ((5) with $n=k$ and $L=Q$. Then z_{k+1}, \cdots, z_{n} form a basis of $N\left(R^{*}\right)$ and

$$
\begin{equation*}
R^{*} z=W\left(z_{k+1}, \cdots, z_{n}, z\right) / W\left(z_{k+1}, \cdots, z_{n}\right) \text { for } z \in C^{n} \tag{12}
\end{equation*}
$$

Proof. The representation (12) follows from Lemma 1, once it is established that z_{j} for $j=k+1, \cdots, n$ are in $N\left(R^{*}\right)$ and are linearly independent. The linear independence follows from the fact that z_{1}, \cdots, z_{n} are a basis of $N\left(L^{*}\right)$.

By Lemma 5 we have $\left[y_{i} ; z_{j}\right]_{L}=0$ for $i=1, \ldots, k$ and $j=k+1, \ldots, n$. Hence, by Lemma 6,

$$
R^{*} z_{j}=\sum_{i=1}^{k}(-1)^{n} \bar{y}_{i}^{*} \overline{\left[y_{i}, z_{j}\right]}=0 \quad \text { for } j=k+1, \ldots, n
$$

This completes the proof.
Corollary. Suppose $n=2 k$ and the bypothesis and notation of Theorem 2 bold. Then $R^{*}=Q$ if and only if

$$
z_{j} \in \operatorname{span}\left\{y_{1}, \cdots, y_{k}\right\} \text { for } j=k+1, \ldots, n
$$

The special case of this Corollary when L is formally selfadjoint is a result due to Rellich and Heinz-see Heinz [7, Satz 3 and Zusatz p. 16]. See also Coppel [3, Theorem 19, p. 80] and Kreĭn [8].

We conclude this section by showing that Lemma 5 characterizes all the elements of $N\left(L^{*}\right)$ which are conjugate to $\left\{y_{1}, \cdots, y_{k}\right\}$, thus establishing the sentence just above Lemma 6.

Remark. Suppose y_{1}, \cdots, y_{k} are in $N(L)$ satisfying (5) and z_{i} for $i=$ $1, \ldots, n$ are defined by (8). Let $z \in N\left(L^{*}\right)$. Then $\left\{y_{i} ; z\right]_{L}=0$ for all $i=$ $1, \cdots, k$ if and only if z is a linear combination of z_{k+1}, \cdots, z_{n}.

Proof. The if part has already been established. Suppose $\left[y_{i} ; z\right]_{L}=0$ for $i=1, \ldots, k$. By Lemma $\sigma, R^{*} z=0$ and hence z is a linear combination of z_{k+1}, \cdots, z_{n} since these form a basis for $N\left(R^{*}\right)$.

We conclude this section with another
Remark. If we are dealing with a differential operator $M y=r_{n} y^{(n)}+\cdots+r_{0} y$ with $r_{n}(t) \neq 0$ on I, then $L=r_{n}^{-1} M$ has the form (1). We can then apply our factorization results to L.

If ($1 / r_{n}$) $M=R Q$, then $M=r_{n} R Q$ where R and Q have leading coefficient 1. We observe that r_{n} can be "absorbed" by either R or Q or both to yield a fac-
torization $M=R^{\prime} Q^{\prime}$ where the leading coefficients of R^{\prime}, Q^{\prime}, say r^{\prime}, q^{\prime} have the property $r^{\prime} q^{\prime}=r_{n}$.
3. Multiple factors. In this section we investigate the factorization of L into products of more than two factors. For this purpose we introduce two weak forms of the well-known property W introduced by Pólya in [12]: Properties EW and OW. We say that a linear differential operator L-or equivalently its null space $N(L)$-has property EW [OW] if there exists a basis $y_{1}, y_{2}, \cdots, y_{n}$ of $N(L)$ with the property that all even [odd] order $W_{\text {ronskians }}$ have no zero on I i.e. $W\left(y_{1}, \cdots, y_{k}\right)(t) \neq 0$ for all t in I and for k even [odd].

A basis y_{1}, \cdots, y_{n} of $N(L)$ is called an EW [OW] system of L if $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$ for all even [odd] values of $k<n$.

Only $k<n$ is significant since the Wronskian of a basis is always nonzero. We remark that an operator L can have both properties EW and OW without having property W i.e. without (3) holding. Of course, in this case EW and OW hold with respect to different bases. A simple example is given.

Example. Let $L y=y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y$. A basis of $N(L)$ is: $y_{1}(x)=e^{x}$, $y_{2}(x)=\sin x, y_{3}(x)=\cos x$. Clearly $W\left(y_{1}\right)=e^{x} \neq 0$ and $W\left(y_{2}, y_{3}\right)(x)=-1 \neq 0$ so that L has property OW and EW. But L cannot have property W since it is not disconjugate on, say $I=[n, \infty), \sin x$ being a nontrivial solution with infinitely many zeros.

Theorem 3. Suppose y_{1}, \cdots, y_{n} is a basis of $N(L)$. Let z_{i} be defined by (8) for $i=1, \ldots, n$. (i) If n is even, then y_{1}, \ldots, y_{n} is an EW [OW] system of L if and only if z_{1}, \cdots, z_{n} is an EW [OW] system of L^{*}. (ii) If n is odd A_{\wedge} then y_{1}, \cdots, y_{n} is an EW [OW] system of L if and only if z_{1}, \cdots, z_{n} is an OW [EW] system of L^{*}.

Proof. In §2 we saw that $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$ implies that L has a factorization $L=R Q$ with y_{1}, \cdots, y_{k} being a basis of $N(Q)$ and z_{k+1}, \cdots, z_{n} being a basis of $N\left(R^{*}\right)$. Hence $W\left(z_{k+1}, \cdots, z_{n}\right) \neq 0$ and so half the theorem follows since $n-k$ is even for n and k even and odd for n odd and k even. The other half follows by interchanging the roles of L and L^{*}.

Theorem 4. (i) Suppose n is even i.e. $n=2 k$. If L has property EW, then L is a product of k second order operators each of type: $y^{\prime \prime}+r_{1} y^{\prime}+r_{0} y$; i.e. $L=Q_{1} Q_{2} \cdots Q_{k}$ where each Q_{i} is a second order operator with leading coefficient 1. If L has property $O W$, then L has a factorization $L=P Q_{1} Q_{2} \cdots Q_{k-1} R$ where each Q_{i} is a second order operator and P and R are first order operators and all have leading coefficient 1.
(ii) Suppose n is odd, say $n=2 k+1$. If L has property EW then L has a
factorization $L=P Q_{1} \cdots Q_{k}$ where each Q_{i} is of order 2 and P has order 1 and all have leading coefficient 1 . If L has property OW then L has a factorization $L=Q_{1} Q_{2} \cdots Q_{k} R$ where each Q_{i} has order $2, R$ has order 1 and all have leading coefficient 1.

Proof. We prove the first part of (i) only since the proofs of the other parts are similar. Let y_{1}, \cdots, y_{n} be an EW system of L. Then by Theorem $1, L=$ $Q_{1} Q$ where Q_{1} is of order 2 with leading coefficient $1, Q$ is of order $n-2$ with leading coefficient 1 and has the representation (6) given in Lemma 1 for $k=$ $n-2$ i.e.

$$
Q(y)=W\left(y_{1}, \cdots, y_{n-2}, y\right) / W\left(y_{1}, \cdots, y_{n-2}\right) \text { for all } y \in C^{n} .
$$

Since y_{1}, \cdots, y_{n-2} are in $N(Q)$ and $W\left(y_{1}, \cdots, y_{n-4}\right) \neq 0$ we can apply Theorem 1 to Q and obtain the factorization $Q=Q_{2} R$ where Q_{2}, R have leading coefficient $1, Q_{2}$ is of order 2 and R of order $n-4$. This yields: $L=Q_{1} Q_{2} R$. Repeating the above procedure we obtain the desired factorization of L : $L=$ $Q_{1} Q_{2} \cdots Q_{k}$.

All of the second order factors Q_{i} appearing in Theorem 4 can be made formally selfadjoint at the expense of introducing a positive function as multiplier. This result is stated more precisely as

Corollary. (i) Suppose n is even i.e. $n=2 k$. If L has property EW, then $L=r P_{1} \ldots P_{k}$ where r is a positive function and each P_{i} is a second order formally selfadjoint operator i.e. each P_{i} has order 2 and $P_{i}^{*}=P_{i}$ for each $i=1, \ldots, k$. If L has property OW , then $L=r S P_{1} \ldots P_{k} R$ where r is a positive function, S, R are first order operators and each P_{i} is a second order formally selfadjoint operator. (ii) Suppose n is odd: $n=2 k+1$. Then L having property EW implies $L=r S P_{1} \ldots P_{k}$ and OW implies $L=r P_{1} \ldots P_{k} R$ where $r_{1} S, R, P_{i}$ are as in (i).

Proof. Again we prove only the first part of (i) since the other proofs are similar. Let $L=Q_{1} \cdots Q_{k}$ be the factorization of Theorem 4. Let $Q_{k} y=y^{\prime \prime}+$ $\alpha y^{\prime}+\beta y$. Taking $P_{k}=r_{k} Q_{k}$ with $r_{k}=\exp \left[\int \alpha\right]$ we get $P_{k}^{*}=P_{k}$. Let $Q_{k-1} y=$ $y^{\prime \prime}+a y^{\prime}+b y$, then

$$
\begin{aligned}
Q_{k-1} r_{k}^{-1} r_{k} Q_{k}(y)= & Q_{k-1} r_{k}^{-1} P_{k}(y)=r_{k}^{-1}\left(P_{k} y\right)^{\prime \prime}+\left[a r_{k}^{-1}+2\left(r_{k}^{-1}\right)^{\prime}\right]\left(P_{k} y\right)^{\prime} \\
& +\left[\left(r_{k}^{-1}\right)^{\prime \prime}+a\left(r_{k}^{-1}\right)^{\prime}+b r_{k}^{-1}\right] P_{k} y .
\end{aligned}
$$

Letting $S y=r_{k}^{-1} y^{\prime \prime}+\left[a r_{k}^{-1}+2\left(r_{k}^{-1}\right)^{\prime}\right] y^{\prime}+\left[\left(r_{k}^{-1}\right)^{\prime \prime}+a\left(r_{k}^{-1}\right)^{\prime}+b r_{k}^{-1}\right] y$ we have $Q_{k-1} Q_{k} y=S P_{k} y$. Now writing

$$
S y=r_{k}^{-1}\left[y^{\prime \prime}+r_{k}\left(a r_{k}^{-1}+2\left(r_{k}^{-1}\right)^{\prime}\right) y^{\prime}+r_{k}\left(\left(r_{k}^{-1}\right)^{\prime \prime}+a\left(r_{k}^{-1}\right)^{\prime}+b r_{k}^{-1}\right) y\right]
$$

and letting $r_{k-1}=\exp \left[\int\left(a+2 r_{k}\left(r_{k}^{-1}\right)^{\prime}\right)\right]$, we get $Q_{k-1} Q_{k} y=r_{k}^{-1} r_{k-1}^{-1} P_{k-1} P_{k} y$ where $P_{k-1} y=r_{k-1}\left[y^{\prime \prime}+\left(a+2 r_{k}\left(r_{k}^{-1}\right)^{\prime}\right) y^{\prime}+r_{k}^{-1}\left(\left(r_{k}^{-1}\right)^{\prime \prime}+a\left(r_{k}^{-1}\right)^{\prime}+b r_{k}^{-1}\right) y\right]$ and $P_{k-1}^{*}=P_{k-1}$. Continuing in this way we end up with $L=r_{k}^{-1} r_{k-1}^{-1} \cdots r_{1}^{-1} P_{1} \cdots P_{k}$ concluding the proof.
4. In this section we give sufficient conditions on the coefficients p_{i} for various kinds of factorizations to hold.

Property W_{k}. We say that L has property W_{k} if there exist k solutions of $L y=0$ satisfying $W\left(y_{1}, \cdots, y_{k}\right) \neq 0$.

We start by recalling some known results:
(1) If $p_{i} \leq 0$ for $i=0,1, \ldots, n-2$; then L has property \mathbb{W}_{1}.
(2) If $(-1)^{n-i} p_{i} \leq 0$ for $i=0,1, \cdots, n-2$; then L has property W_{1}. Note that no sign condition is needed on p_{n-1}. Also we remark that L having property W_{1} is equivalent to L^{*} having property W_{n-1}.
(3) Suppose $p_{i} \equiv 0$ for $i=1,2, \cdots, n-3$ and $p_{n-2} \leq 0$. Then L has property EW if $p_{0} \geq 0$ and L has property $O W$ if $p_{0} \leq 0$.
(4) If $(-1)^{n+1-j} p_{j} \geq 0$ for $j=0,1, \cdots, n-2$; then L has property W_{n-1} (and hence W_{1} holds for L^{*}).

Results 1 and 2 are well known-for proofs see [17] for 1 and [5, p. 508] for 2. For 3 and 4 see [17].

Consider $M y=\left(p y^{(n)}\right)^{(n)}+\left(r y^{(n-1)}\right)^{(n-1)}+q y$ with $p>0$ and $p \in C^{n}, r \in$ C^{n-1} and $q \in C$.

Theorem 5. Suppose $r \leq 0$ (in addition to $p>0$). Determine solutions $y_{1}, \cdots, y_{2 n}$ by the initial conditions $y_{j}^{(i-1)}(a)=\delta_{i j}$ for $i, j=1, \cdots, 2 n$. Then $y_{1}, \cdots, y_{2 n}$ is an EW system if $q \geq 0$ and an OW system if $q \leq 0$ on any interval (a, b) with $b>a$.

Proof. Since the proof is similar to that given in [17] for result 3 above we merely outline it here. Since M is formally selfadjoint we can restrict ourselves to $k \leq n$. Just as in $[17]$ we construct a vector matrix system $Y^{\prime}=F Y$ where Y is a vector of order $\binom{2 n}{k}$ whose components are k th order Wronskians of y_{1}, \cdots, y_{k} and their quasi derivatives up to the $(2 n-1)$ th derivative. These determinants are ordered lexicographically starting with $W\left(y_{1}, \cdots, y_{k}\right)$. The $\binom{n n}{k}$ by $\binom{2 n}{k}$ matrix F has entries from the set $\left\{0,1,1 / p,-r,(-1)^{k} q\right\}$. Since all entries of the matrix F are nonnegative and all components of Y are nonnegative at the point a with the first component $W\left(y_{1}, \cdots, y_{k}\right)(a)=1$, it follows from a lemma of Mikusinski [10], that all entries of Y are nonnegative to the right of the point a
and in particular $W\left(Y_{1}, \cdots, y_{k}\right)(t)>0$ for $t>a$.
Recently, Ridenhour [13] has obtained sufficient conditions, expressed as n inequalities involving the coefficients and their derivatives, for an operator of order $2 n$ to have property \mathbb{W}_{n}.
5. Applications. In this final section we mention some applications. Determine a fundamental set of solutions y_{1}, \cdots, y_{n} of $L y=0$ by the initial conditions $y_{j}^{(i-1)}(a)=\delta_{i j}$ for $i, j=1, \cdots, n$ and $a \in I$.

Suppose y is a nontrivial solution of $L y=0$ which has a zero of order k at a. Then y has no zero of order $n-k$ to the right of a if and only if $W\left(y_{k+1}, \cdots, y_{n}\right)(t) \neq 0$ for $t>a$.

Proof. Such a solution y must be a nontrivial linear combination of y_{k+1}, \cdots, y_{n}. Hence y has a zero of order $n-k$ at some point $b>a$ if and only if $W\left(y_{k+1}, \cdots, y_{n}\right)(b)=0$.

Thus, if y_{n}, \cdots, y_{1} is an EW system, a nontrivial solution can have a zero of order k at a and a zero of order $n-k$ at $b>a$ only if $n-k$ is odd. Similarly if y_{n}, \cdots, y_{1} is an OW system a nontrivial solution can have a zero of order k at a and a zero of order $n-k$ at $b>a$ only if $n-k$ is even.

As a consequence of these observations we have: If y_{n}, \cdots, y_{1} is either an EW system or an OW system then no nontrivial solution can have zeros at a, b with $a<b$ of combined order greater than n since this would imply that two Wronskians of consecutive integral order are zero at b and clearly one of these must be even and one odd.

Combining the above remarks with explicit conditions on the coefficients given in $\$ 4$ leads to the next two theorems.

Theorem 6. Consider $L y=y^{(n)}+p_{n-1} y^{(n-1)}+p_{n-2} y^{(n-2)}+p_{0} y$ and assume $p_{n-2} \leq 0$.

If $p_{0} \geq 0\left[p_{0} \leq 0\right]$ and y is a nontrivial solution with zeros of order k and $n-k$ at points a, b with $a<b$, then $n-k$ is odd [even]. Consequently if p_{0} does not change sign on I then no nontrivial solution has zeros at $a, b \in I$ with $a<b$ of combined order $>n$.

Theorem 7. Consider $M y=\left(p y^{(n)}\right)^{(n)}+\left(r y^{(n-1}\right)^{(n-1)}+q y$ with $p>0$, $p \in C^{n}, r \in C^{n-1}, q \in C$.

- If $q \geq 0[q \leq 0]$ and y is a nontrivial solution with zeros of order k and $n-k$ at points a, b with $a<b$; then $n-k$ is odd [even].

REFERENCES

1. J. H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415-509. MR 41 \#2113.
2. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022.
3. W. A. Coppell, Disconjugacy, Lecture Notes in Math., vol. 220, Springer-Verlag, Berlin and New York, 1971.
4. I. M. Glazman, Direct methods of the qualitative spectral analysis of singular differential operators, Fizmatgiz, Moscow, 1963; English transl., Israel Program for Scientific Translations, Jerusalem, 1965; Davey, New York, 1966. MR 32 \#2938; \#8210.
5. P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 \#1270.
6. —————_ On disconjugacy criteria, Proc. Amer. Math. Soc. 24 (1970), 374-381. MR 40 \#4535.
7. E. Heinz, Halbbes chränktheit gewöhnlicher Differentialoperatoren höherer Ordnung, Math. Ann. 135 (1958), 1-49. MR 21 \#743.
8. M. G. Krein, Differential self-adjoint operators and their symmetric Green's function, Mat. Sb. 2 (44) (1937), 1023-1072. (Russian)
9. A. Ju. Levin, Nonoscillation of solutions of the equation $X^{(n)}+P_{1}(t) x^{(n-1)}+$ $\ldots+P_{n}(t) x=0$, U spehi Mat. Nauk 24 (1969), no. 2(146), 43-96 = Russian Math. Surveys 24 (1969), no. 2, 43-99. MR 40 \#7537.
10. J. Mikusiński, Sur l'equation $x^{(n)}+A(t) x=0$, Ann. Polon. Math. 1 (1955), 207-221. MR 19, 141.
11. K. S. Miller, Linear differential equations in the real domain, Norton, New York, 1963. MR 27 \#5947.
12. G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), 312-324.
13. J. Ridenhour, $O_{n}(n, n)$-zeros of solutions of linear differential equations of order 2n, Proc. Amer. Math. Soc. 44 (1974), 135-140.
14. R. Ristroph, Pólya's property W and factorization-A short proof, Proc. Amer. Math. Soc. 31 (1972), 631-632. MR 44 \# 5536.
15. P. Willett, Generalized de la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. (to appear).
16. A. Zettl, Factorization of differential operators, Proc. Amer. Math. Soc. 27 (1971), 425-426. MR 42 \#7966.
17. ——, Explicit conditions for the factorization of nth order linear differential operators, Proc. Amer. Math. Soc. 41 (1973), 137-145.
18. , Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math. (to appear).
19. Wactorization and disconjugacy of third order differential equations, Proc. Amer. Math. Soc. 31 (1972), 203-208. MR 45 \#5481.

DEPARTMENT OF MATHEMATICAL SCIENCES, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115

Current address: Department of Mathematics, The University, Dundee, Scotland, United Kingdom

[^0]: Received by the editors September 14, 1973.
 AMS (MOS) subject classifications (1970). Primary 34A30, 34A05; Secondary 34A0 1.
 Key words and phrases. Linear ordinary differential equations, factoring differential operators, property W, conjugate solutions, Wronskians, disconjugacy.

