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The following corrections. have been made in Technical Report
No. 142, entitled "General Theory of Thin Wing Sections." Please

insert this sheet in your copy of the report.

Page 16, amend the equations to read

Line 10. M = - 4V'pB, @
, *+3.
1
Line 14. B, = - 3% f Edx =
-2 1= (5/
, P
Line 18. M, = 3Vy P . x Edx
- (%Y
4 Jr- (3) ' (33)
‘ i +1 '
x £ dx
. — —X¢9X  for the chord 2. (34)
Line 18. '5tv® 5/3 ./P /i-x%
-3 ‘
+1
M b X £ dx
. = _a -+ —_— (25)
Line 21. 2 3 Jf =" .3
: StV- p/2 ¢/ 1-x
Page 17,
. Omit factor 4 precediné each integral.
- 8 2
Line 2, below table, change % to read %

: 2
Line 20, change %3‘7” to read 715 V-
Page 18,

Lines 18, 20, and Table 3, change %33’to read %‘ y.

Line 22; change 2.83y, to read 8.0y.
Line 23, change 1.63, to read 74
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GENERAL THEORY OF THIN WING SECTIONS.

‘By Max M. Monk.

RESUME. a .

The following paper contains a new, simple method of calculating the air forces to which
~ thin wings are subjected at small angles of attack, if their curvature is not too great. Two
simple integrals are the result. They contain only the coordinates of the wing section. The
first integral gives the angle of attack at which the lift of the wing is zero, the second integral
' gives the moment experienced by the wing when its angle is zero. The two constants thus
obtained are sufficient to determine the lift and morment for any other angle of attack. This
refers primarily to a two-dimensional flow in a nonviscous fluid. However, in combination
with the theory of the aerodynamical induction, and with our empirical knowledge of the
drag due to friction, the results are valuable for actual wings also. A particular result obtained
is the calculation of the elevator eﬁ'ect The following is an outline of the subject as treated
in this report: . )
: I. Introduction.
IL. Calculation of the elevator eﬁect
IT1- General formula for any section.
IV. Examples of the zero angle.
V. Thin sections with upper and lower boundanes
VI. The moment coefficient.
VII. Examples of the moment coefficient.
VIII Table of the sectlons mvestlgated

L INTRODUCTION

By changing the angle between the stabilizer and the elevator the ng section formed
by the combination of stabilizer and elevator is altered, and this alteration gives rise to new
aerodyna.mxcal forces. It is useful to discuss this phenomenon from the theoretical point of
wew, however imperfect the result may be as a consequence-of neglecting the viscosity of the
air. A theoretical investigation at least gives the limit of what to expect. It enables the
investigator to survey and keep in mind a great number of isolated experiences, whether the
agreement between theory and experience be more or less close. It induces him to reflect on
the phenomenon and thus becomes a source of progress by guiding him to new observations
and experiments. It has often occurred even that some relation was thought to be confirmed
by experience till the progress of theory made the relation improbable. And only then the
experiments confirmed the improved relation, contrary to- what they were supposed to do
before. A very conspmuous example of - this is the discovery of differences in the atomic weight
_of certain elements. But is it really necessary to plead for the usefulness of theoretical work ?
This is nothing but systematical thinking ana 1s not useless as sometimes supposed, but the
~ difficulty of theoretical mvestngatlon makes many people dislike it.

-+ In this first section I wish to give a short summary of the theory whlch I am, going later
to apply and to expand This theory deals with the relation between the shape of a wing
section and the air forces applied to it by a nonviscous fluid. Only the two-dimensional prob-

: 3
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lem is considered. The theory thus forms the completion of the theory of the induced drag,
in which latter the three-dimensional arrangement of the wings and the lift produced by them
alone is considered, without paying attention to the details of producing the lift. The value
of the induced drag and the effective angle of attack of every part of the wings result from

* the calculation. The theory of the wing section, however, gives no drag at all, for the drag

additional to the induced drag is due to viscosity. Nor does the theory of the wing section
give the true value of the maximum lift. It can be stated, therefore, that the theory of the
wing section in its present state gives no indication whatsoever of the practical value of the
wing investigated. Still there remain three 'miportant pieces of information which can be
derived from the theory, all more or less agreemg with the real phenomenon. These are the
relation between the angle of attack and the lift, in partlcula.r the angle of attack for zero lift,
the travel of the center of pressure, and the distribution of pressure. It has to be kept in mind
that the angle of attack thus calculated for a particular lift coefficient is not yet the true angle
of attack of a finite wing. The induced angle of attack has to be added.

We are indebted for the theory of the wing section to Kutta. He showed how the method
of the two-dimensional potentisl can be used to calculate the flow around wing sections and
hence to deduce the resulting air forces. He confined himself to the straight line and simple

. circular segments. His idea-is to pick out among the multitude of possible po(;entlal flows

that particular one around the wing section, which at great distance degenerates into parallel

* flow and which leaves the wing section at the rear edge. His results are simple and important.

The direction of the air flow in the case of zero lift of a circular segment of small curvature is
parallel to the line dividing into equal parts the angle between the chord and the tangent at

‘the rear end. The lift is proportional to the sine of the angle of attack. The slope of the curve

of the lift coefficient plotted against the angle of attack is almost independent of the shape and
is 2r (the angle being measured in arc and the lift coefficient being formed by dlwdmg the
lift per unit of area by the dynamcal pressure). That i Is, for small lift:

L=2r8S sin aleﬂ

Joukowsky extended the theory, and investigated sections which at their rear end almost

. coincide with a circular segment, having there a common tangent for the upper and lower

side. The entire form is generated from the circle, a circular segment forming as it were the
skeleton of a Joukowsky section. Considering the connecting line between the rear edge and
a pole near the center of curvature of the leading edge as the theoretical chord, the rule for the
direction of zero lift remains as before. The slope of the lift curve is hardly changed; the lift
is proportlonal to the sine of the angles as before.

Karman replaced the circular segment in the Joukowsky section by one formed by two
circular segments. This is already mentioned in the second paper of Kutta. These sections
have two different tangents at the rear end, and the line which divides the rear angle into two

.equal parts determines the direction of zero lift. together with the theoretical chord as before.
‘The law for the lift is the same again as for the circular segments of Kutta. Mises discusses

in a general way how to obtain even more general sections and proves some general theorems
concerning them. The most 1mportant is the theorem that the slope of the lift curve plotted as
before is never smaller than 2w, and is always exactly 2« if the section is thin and the curvature
small. So far it can be stated that only sections are investigated, the medial line of which is a
circularsegment. If the section is only maderately thick and if the curvature is moderate, too,

the lift agrees with that of. the segment according to the law found by Kutta. :

II. CALCULATION OF THE ELEVATOR 'EFFECT.

In this. paper I intend to investigate any thin section of small curvature at sma.ll angles of E
attack. ‘It is necessary to discuss first more closely the method used by Kutta for the calculation
of the lift of a wing section. He starts with an entire circle, and considers the potential flow
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around it, which was well known before him. It can be obtained by superposition of the sym- -

metrical flow around the circle and a vortex in the center of the circle. By changing the strength
of the vortex the point where the flow leaves the circle can be chosen at will for any given direc-
tion of the flow at a great distance. The lift produced by the flow is proportional to the product
of the velocity at a great distance and the strength of the vortex. It is not essential for the
calculation that the described flow never really occurs; it is only a means of calculation. Kutta
transforms now the plane in such a way that it remains unaltered at a great distance from the
circle. The circle itself, however, is transformed into & new curve, the wing section to be investi-
gated. The transformation has to be of that kind which is called 1sogona.l and leaves in general all

angles unaltered. It is well known that each analytical function gives such a transformation, the
plane represented by complex numbers. The rear edge of the new section corresponds to one

particular point of the circle. After having found this point it is only necessary to determine

the lift of. that flow around the circle that leaves the circle at that particular point and at a
great distance has the same magnitude and direction as'the flow around the sectlon investigated.
This lift equals the lift experienced by the section.

The s1mplest case, the one, moreover, which I need in the following development, is the
straight line. * The transformation of the circle with the radius 1 -and its center coinciding
with the origin of the system of coordinates into the straight. line connectmg the two points
$=2and {=+2is expreSSed by the analytical function

(1) R et

. For large values of z the function degenerates into {=z and hence leaves the plane unal-
tered at a great distance. The rear edge of the straight line {=+2 corresponds to the point
z=+1 of the circle. Each point of the straight line corresponds to those two points of the
circle which have half the abscissa. It is known now that the lift of the circle for the flow which
leaves it at the point z—+ 1 and whose direction at a great dlstance ha.s the angle a Wlth the

real axis is
8x V’-g- sin a

for the unit length of the cylinder. More generally the lift is 7 times as great if 7 is the radius
instead of 1. The lift of the straight lme, or the rectangular plate represented by it, is the
same, and the lift coefficient therefore, since the chord has the length 4, is 2x sin .

It is not necessary for the following development to enter into the details of the flow around
Kutta segments, or Joukowsky and Karman sections. I at once proceed to the subject of this
paper. In his paper Karman speaks of the possibility of finding the transformation for any
~ section approximately, if -this section differs but slightly from another section the transforma-
tion of which is known. He gives also the formulas for the approximation, but he does not
prove them. I proceed to apply a method obviously similar to that of Karman. The formulas
I obtain, however, do not agree with those given by him. I am going to study the effect of an
infinitesimal change of a section, and I chose as the original section the straight line. I begin
with the investigation of a broken line, the two portions of which form almost 180°. This
broken line represents a tail plane, the elevator being slightly turned from the mean position.
The length of the tail plane is 4, the two ends coincide with the ends of the original stra.ight.
line at the points ¢=+2. This is necessary, the function of transformation being unsteady in
these two points. The lift produced by the small cha.nge of the shape is small, too, of course,
but the ratio of the effect to the change which causes it is finite and can be calculated,
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Imagine the straight line and the circle drawn in Figure 1 and above the straight line the
new section consisting of two straight lines. The ordinates of the new section may be called

N/ eading edge

F16. 1. Transformation of the tail plane.

IE and the abscisse. z. If y, and y, denote the ordinates of the intersection points of the two
lmes of the new section thh the i 1ma¢rma.ry axis, we have:

&=, 2-2— for the one part and
E—y, % for the other.

- I try now to ﬁnd the curve in the neighborhood of the qlrcle which corresponds to the new
sectlon accordmg to the tra.nsforma.tlon‘

¢)) | o ' f=z+--
The derivative of ¢ with reference to z is:
| & . 1

@ =l-g

Introducmg the angle ¢ between the real axis and the radms at each point of the circle, the
points of the circle are represented by—

@ - | z=ele
and (2) can be written— ‘

(@) ' ’ %=1—e"2"=2sin¢ie—‘v

d¢ is the change of the ongmally straight tail plane and equals ¢, that is to say is:

(8 . de =1y, (1—cos ¢)
on the right side of the hinge and :
(6) ‘ dt=1y, (1+cos ¢)

on the left side of it, the positive real axis being supposed to be drawn towafd the right from

the hinge. .
At the hinge (5) and (6) agree, the angle correspondmg to the abcissa of the hinge bemg
denoted by @1 1t follows therefore thab—

Y (1 005 @o)-=Ys (1 +cos @)

. 1—cos @,
@) v Y=Uj +cos ¢,
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By substituting (5) resp. (6) in (4) I obtain

d 2y, (1 — cose) (1+cos )
o dom o B resp. i, 050

and the radial small distance of the new curve from the original circle is

- o hl- cos ¢ U 4 - %o
(9) ‘ =3 PR tan 5 between 0= 4o
. L Ilily,l-l-(’:Os«;v y, @ =+‘Po

(10) = ene cot = between o= o

The problem is now to tra.nsform the original circle z=e#! into the curve ev! (1+1) so that the
value at infinity remains unaltered.

- For the present it is not necessary really to perform this transformation; it is sufﬁclent
to imagine the tra.nsformatlon performed approximately by the functlon

ay } Z-Z(1+Z+Zi+?+"")

‘where the a’s are coefficients to be determined properly. This transfermation indeed leaves
the plane at infinity unaltered. It is exact if n approaches zero. For the coefficients are
imagined to be determined by the followmg method. Let n be developed in a Fourier’s series
between 0 and 2x. .

(12) S =

-

A + A4, cos ¢+A cos 2¢ + A, cos 3<p++
°4+ B, sin ¢+B sin 2¢+ B, sin 3¢+ +°

As is well known, the coefficients 4 and B are the integrals:
o .
L - da=Z chosn¢d¢
(13) ' _ : .
: _ o

B.-—fnsmn¢d¢

If, as in thls case, the section has no thlckness, the coefficients A are all 1dent1cally zero.
The coefﬁclents a in (11) may be formed according to the equations: ’

ay=—(A+iB)
2= —(4n+1By)

This transformatlon does not give the desired transformation exactly The pomt of the circle
‘z=e*! is transformed into the point. -

1_ _"{1 —-A, 005¢ B,sinp—4, cos2¢ B, sin2<p——}
. Z, ¢ +z(A2¢—B cos ¢+ 4, sin 20— B, cos 2¢+ —

(14) =e~*[1—n+1i (4, sin o+ 4, sin 2¢+)—1 (B, cos <p+B cos 2¢+)]

) bemg suppOSed to be very small, —-e —el (1 -, the va.lue desired. Hence the point repre-

sented by (14‘) does not exactly comclde with the new cutve in the nelghborhood of the circle,
but differs from it by the last two brackets of (14). The difference is, however, small when
compared with ». For the additional vector is parallel to the circle, so is approximately the
n-curve. The end of the vector z is therefore situated almost at the curve, but for a different
" radius vector than that of the original point of .the circle z. (14) can be considered as the
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desired function of transformation. Since for ¢ =0, n=0, the curve which by the transfox:ma-

tion g‘=z+1 is transformed into the modified tail surface coincides with the circumference of

- the original circle at its two ends. The problem then is to see by how much the point of the circle

2=1 at the end of the diameter is displaced by the transformation (1). This may be calculated
easily, as will be shown. When deduced it will give the value of the additional vector, which
we may assume can be used for other points in the neighborhood, too, because it is a continuous
quantity. So, the point of the circle corresponding to ¢ =0 for the transformed curve is dis-
placed an amount equal and opposite to this. )
The pos1t10n e of the point of the new curve correspondmg to the point z=1 of the circle
is found by using equation (14) ‘and substituting ¢=0. 7 is zero at that point, the changed
%ectlon comcldmg at the ends with the original section. All sines are zero and there remains:

(15) - o e~¥i=1-1(B, +B,+B ++ -
The right-hand side of (15) is apprommately equa.l to e‘(Bl+B'+) Hence
- (16) T . =B,+B,+B,+ + - -

It would be possible to determine the B's and to find the value of ¢, by adding them:.
This procedure, however, can be simplified. By going back to equation (13), (16) can be written.:

(17) A , ‘P1=%f'7 (sin ¢+Sin.'2¢+sin 3o+ ‘!;) de.
0

" The bracket in (17) is formally the development of tan 1} ¢ in a Fourier’s series, though
-indeed this series is not convergent. For

’ 1 e . , 1 (sin o2 . .o ¢ sin ne
(18) - 21J‘tz}n2smn<pd¢ 21]'(:03«;’/22811120085 Sm(p dy
: . . i . 0 :

=%rj(co,s e+1)(2cos(n—1) ¢+2cos (n—.3)¢p+ +ifnis
0
‘ odd.

if n is even.

n: results the most simply if we go back to the eqhation

L . sin
This transformation of <o

. 1 . .
Sin np =z (™! — e~

sin 4p=%:,(e‘°‘ —e~9l)
The result . ’ ’ '
is identical with

Zcos (n—-1) <p+2 cos (n 3)¢++ . 41if nis even.

In both: cases, whether n be odd or even, (18) equa.ls . And although: the bracket in J(17) s
not convergent, the integral (17) is convergent in general and can be written

e@—Dyiy gn—3)¢i} g(n-5) ¢l

‘ . W "
(19) | @ az—wfn tan g de
o



- GENERAL THEORY OF THIN WING SECTIONS, ' 9

(17) represented as we remember the angle of the radius vector through the point of the curve
corresponding to the point z=1, ¢=0 of the circle. According to what has been said, the
point of the circle corresponding to point ¢ =0 of the curve has the radius vector

2r
(20 , o L = —%J‘n tang do
: Sh

I have thus obtained the point of the circle corresponding to the rear edge of the curve
investigated. The lift of the section equals the lift of the circle provided that the potential
flow leaves it at the point determinated. The lift is zero, in particular if the circulation vanishes
and the fluid flows symmetrically around the circle. It is easy to see that in that case the velocity
at infinity is parallel to the radius vector of the point determined. Hence it appears that the
% just found is the angle of attack for the section. mvestlga.ted necessary for zero lift, 1. e.,
is the “angle of zero lift.” ‘
A I.at once proceed to calculate this mtegral for the present. problem 7 has to be substl-
_tuted from equation (10) and (1 1). Hence the integral for a, consists of two parts:-

+vo -~¢0

G fy‘tan=“’d¢+2 fy,d
. . L —@ +eo

. The solution is

. : . 1 +e0 1 y +¢0

. = L 2
@ =5, |2tanz l 27 2 l“’ [
Substituting (7) for y, T obtain finally ” "
__ 2¢, x (1— cos cpo)
(23) ~ "o (2 ta.n 1+ cos ‘Po—,*- 1+ cos ¢,

For positive y,, that is, for the elevator bent down, q, is negative. The flow around the circle
being horizontal at a great distance leaves the circle below the horizontal axis. Such an ele-
vator with the line of connection of the two ends of the whole tail plane horizontal experiences
a positive lift therefore according to the result of the development.

At the same time the stabilizer is no longer horizontal and there remains an elementary
calculation in order to obtain the effect of the elevator separately. Thisis especially simple if ele-
~ vator and stabilizer are equal and hence ¢, = 90°. Then (23) gives ay= —-& The angle between
stabilizer and elevator is y, (the length of the whole tail plane being 4) and the angle of attack
of the stabilizer is —3y,. The positive turning of the elevator not only neutralizes the effect
of the negative angle of attack of the stabilizer, but there is also the effect of the angle of attack
y,/7 in addition. Hence the whole effect is y, (3 + 1/x) and per unit of angle of elevator to stabilizer
divided by the ratio of the elevator to the whole tail plane it is:

y1(2 ") 1+ 2e164

3%

For other positions of the hmge the ratio of the length of the elevator to that of the tail plane
is 4 (1—cos ¢,), the angle between stablhzer and elevator is:

_1—cos ¢, )
Y\ 2 (1+cos 2 (1+cos ¢,) +3

" and the angle of attack of the sta.blhzer is
' Y, (1—cos %)‘

2 (1+cos g,)
79049—22——2 ' :

o
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Let K be the coefficient which gives the effect of the elevatqr. turning acdording to the equation:

. )
a effective= E+S Kg

«a effective is the angle of attack of the whole undeformed tail plane which has the same effect
as the turning of the elevator by the angle 8; E denotes the chord of the elevator and § the
chord of the stabilizer. ‘'Then K is

1—cos ¢,
%ty (14 cos ¢,).

1—ecos g, 1)
(1 cos “’°> Y (2 (T+oose) 2)
Substitﬁting e, from equatlon (20), this can be written
=1- 1 ¢,—sin %]
x1l—cos ¢,

In Flgure 2 the coefficient obtained is plotted agamst the elevator ratio Ef 5= ;‘: If the

tail plane cons1sts only of the elevator the coefficient of course is 1 and the calculation gives

20 [
1

18} —__ —
. 1

16 I

14 e

e S i

x /0 i
i

T
i
!
]

i T
! ! ;
1 1 !
]

i
[
8 9 0

o .-y oD
'\.rf -

A 2 3 4 X
: [/r _

F16. 2. Elevator effect “K”plotted against elevatontau plane
this. For a very small elevator the factor Kis 2. On both ends, however, the curve is rather

inclined and in the usual range of —T=0 .2 to 0.4, Kis between 1.8 and 1.7. The tests with flat

tail plane models show considerably smaller values of K, about 1.3. The entu'ely flat section
is aerodynamically so bad that 30 per cent of the elevator effect is lost. A test with a better
shaped section, however, gave K=1.7, which agrees well Wlth the result of the theoretlcal

calculatxon
III, GENERAL -FORMULA FOR ANY SECTION

The previous calculation of the angle of attack for zero lift shows that this angle is obtained .
by integrating an expression which contains the coordinates of the central curve of the section

" investigated as a factor. Hence the angle for zero lift is a linear function of the coordinates,
- and the law of superposition holds true. That is to say, the zero angle of any séction is the

sum of the zero angles of any other sections if the coordinates of the first sections are also the
sum of the coordinates of the other sections at each point. The result of the previous calcu-
lation hence holds true for thin tail planes also, the central curve of which originally was not a
straight line but was slightly curved in any way. And the result can be used also for the cal-
culation of the effect of two elevators in front and at the end of the stabilizer turned by any

'small angle. If 1¥ denotes the ratio of the front elevs,tor of the entire tail plane, the factor K’

is to be taken from Figure 2 for (1 —-—) and the factor K, of the front tail plane then is
T—E.

K= K’—E————- 1. This results by superposition of the two tail planes each w1th one hmge only

1

¢
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By increasing the number of the hinges, at last every shape of the section.can be obtained
It is more.convenient, however, to go back to the second term of equation (21), which repre-
sents the part of the zero angle due to the stabilizer. Imagine any curve to be composed of a
zigzag line, consisting of an infinite number of pieces of radii vectors originating in the leading
edge of the section and of connecting short vertical lines. (Fig. 3.) These vertical lines do

F16. 3. Zig-zag line replacing the curve of sectlon

not furmsh a contribution to the integral of the zero a,ngle ; 'and this integral is obtained by
substltutmg in - :

‘. . . * 2 .

’ . _i :Ii " . , o

(21a) - 2f2 IR
- R : . 0 .

- the value of y, for each point. This is, if ¢ denotes the ordinate of the section

' ' AP S
29 ' , Y2=11cos )
hence :
: T . . 3x
(25) S —a K 1 _1__,1
, ' _ : v 21r 21+4cos e #

Ehmma.tmg finally the angle ¢ and introducing instead of it the posmon z of the point of the
chord, z= +2 being the ends of the chord,

. 1
- CO8 ¢=§I

1 dz

T 2sin ¢ I: :I«}
I obtain _

T f caIc
or, for the length 2 of the chord, 1
+

.1 _L
(27) : Q4= py l(l+¢)m

In the general case that the length of the chord is t the ahgle is

ik f EENEE)

The integral (27a) is the essentlal result of the previous development. The problem I am
dealing with is the calculation of the theoretical lift of a line-shaped section of small curvature. -

(27a)
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For this calculatlon I first deduce the angle of attack: whxch gives the lift zero. - I choose the
scale so that the chord is:2. On this curve with the ordinates £ from the chord and the rear
edge at the point z=1 of the chord, the other end having the abcissa z= — 1, I apply the integral
(27). 'The angle of zero lift toward the chord results Omitting for the moment the induced
angle of attack, the theoretical lift'is then - . : :

L=21V23 sin (a—a,) S

It is exact enough to replace the sine by ‘the angle. Introducing now the induced angle of
attack -~ . . ' : .

/) =

57.3 in degrees.
P i

while b is the span of the monoplane; the angle of attack corresponding'to any lift is

a _&@s 1 L 1 L
8= 3 ~
57.3 | T fr <1+ )\/( : WbZI:ZZ% A21rsvz&§

. _ 1V. EXAMPLES OF THE ZERO ANGLE.

In this part I proceed to calculate some examples of the zero angle. It is sufficient to
calculate some typical curves; any more complicated one can be created by superposing of
these

. (@) The section may:be represented by the cu_rVe

, f=y(1-2)
where y is a small quantity and denotes the grea.test ordinate. This curve is typical of simple
symmetncal arcs, like a circular segment of pra.ctlcally constant curvature. The integral (27)
is now

+1 ;
I : 1—2*

%= (1 +7)yI— zzd”

. —‘.—;yf\/‘l-!fx .

= — < l arc.sin x4 +/1— :c‘

-1

L Gg= Y.
The angle between the tangent at the rear edge and the chord is —2y. In accordance with
the results of Kutta, Joukowsky, and Karman the direction of the zero flow is that of the line
which divides into two equal halves the angle between the rear tangent and the chord.
-(0) The example of the section consisting of two equal straight lines is contained in the
second part of this paper. This section lies above the preceding at all points if the end tangents
comclde and it is to be expected therefore that the zero angle is greater. It was found to be

- of the rear angle between the elevator a.nd the chord.
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~ (¢) Unsymmetrical sections consisting of two or three stralght lines are conta.lned in
section II of this paper. :

(d) A continual u.nsymmetrica.l curve can be obtained for instance by the expression
| E=y(+a1-m
For m=n=1 the segment dlscussed first results. The zero angle is

" o= ——fa Fa)r- (1 —2)n-ide
The integfafion is especially simple if n=3/2. Then I obtain .

-
%=‘—¥fl<1 —z)m—idz

the integral is :
, -
' 1—-g)m+i
a= —?;I .(__)1_ l
' m+§ ’
and the angle has the value .
. : ‘ y 2m+i
BT T 1
+_
m+3
3/2—

The maximum of the section has the absclssa ?72+—, or, otherwise expressed its distance from

the leadmg edge is 5 of the chord For the symmetncal case m=3/2 the angle results
m +1

3 >/.
.%=—r

For m=2 5 the maximum is at 3/8 of the chord. The angle results— < g The maximal height

T is 1.14 9.

(e) A section with a positive and negative cuﬁature is

§= —y(l +2)(1-z)z-

the zero a.ngle is ay= __'.l/f \/Lfdx

+1
-1

I (1——)1/1 e L aresin z

wmnt.

() An example which is i.medrtant in actual applications is a section which coincides with

the chord at the front half of the chord, the second half being.represented by the equation

§

t=y(l1-2%)2?
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At z=0 the section has a horizontal tangent. The angle of the rear tangent is 2y. The zero
angle for this section is ‘

. .___g 21-7°
. == ‘N'f 1+z. dz
: J 1
A |
@ = —%'| 5arc sin z+(3 5 3)\/1 —z?

y[ __]_ ~0.04y

. If the section is given graphically or by a table, the Zero angle can be determined numeri-
) cally For this numerical calculation the following table can be used: :

e

. TAI;LE 1.
' Permntof&horé....- .............. e 25 5| ] 15| = 2] s 3] ol 0
,F.‘actor.............. ......... e | 650! 392 0.842| o.467] 0315 0.231{ 0.18 | 0.151| 0.128] o. nz| 0.100
Percentofchord.............cooiiiiiiiiiiiiiiaaa.. 55 60 85 70 - 75 8| 8 90 95 97.5
Factor............ [ e 0.092 | 0.08¢| 0.080 | 0.078 | 0.078 | 0.080 | 0.08¢| 0.095| 0.101 | 0.052

Determine the ordinates of the section, start'mé at the chord. If the curve runs beneath
the chord the ordinate must be considered negative. The chord is supposed to be divided
into 100 per cent, 0 per cent being at the leading edge and 100 per cent at the trailing edge.
Now ‘multiply each ordinate for the per cents given in the first line of Table 1 by the factor

given in the.second line .and add all products obtained. Their sum multiplied by —2X1r5t7.3

gives the angle of attack in dégrees ‘at which the lift is zero. The chord and the ordinates of
course have to be measured in the same units. .

V. THIN SECTIONS WITH UPPER AND LOWER BOUNDARIES.

If the section has some thlckness so that the upper and lower boundaries no longer coincide,
the coefficients 4 in equatlon (13) are no longer.zero. The section can be imagined to be
created by first drawing the line of connection of all points equldlstant from the upper and
lower boundaries, which I will call the central curve of the wing section. Afterwards the
thickness, which is supposed to be small when compared with the chord, is created by adding
equal distances on both sides of the central curve. The coefficients B of -equation (13) depend
only on the central curve, the coefficients 4 only on the added thickness. The integral for
the zero angle containing the B’s only and not the A’s, it can be supposed that the sectlon
with but a small thickness has the same zero angle and lift as its central line. '

However, two things are then to be considered. 4, in equation (12) is now no longer
zero, but has a small finite value. Hence the first factor in the bracket of (14) is somewhat
greater than 1 and hence the lift is shghtly increased. It is not necessary, however, to pay
attention to this fact. ‘The real lift is always slightly smaller than the theoretical lift and the
result is-likely to be better if this refinement is neglected.

Another more serious dlﬂicu.lty occurs at the transformed- leadmg edge of the section.
If the leadmg edge of the'section is blunt; its transformation shows a picture as in Figure 4. The
new curve is no longer approximately parallel to the circle at the leading edge, but has an

“irregularity. The assumption for the correctness of the transformation (14) holds true no
longer.

r
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This can be remedied, hoWevér, by adding area to the central curve all around the leading point.
The corner in Figure 4 is then filled and the resulting curve is smooth again (Fig. 5). The
integral (19)-is not affected by this change, if the addition is symmetrlcal The increase of

the area of the new curve is small even when compared with the original increase. * The depth

of the small triangle is filled if the added distance in the direction of the chord is as great as

. the thickness of the section near the leading edge. Hence the rule arises to. make the central
curve of the wing section end in the center of curvature of the leading edge.! The zero angle .

~ for a thin section with two boundaries is calculated as before, substituting in integral (27)
the coordinates of the central curve from' the rear edge to the center of curvature of the leading

Fm 4. Transformation of the head ofa F16. 5. Transformation of the head ofa -
thick section thick section, the central curve endmg
’ at the center of curvature.

edge. This central curve has to be broughﬁ to the standard length 2. The lift, however, is
to be calculated as.before, with the entire chord.

--VI. THE MOMENT COEFFICIENT

The previous’ discussion can easily be completed by the calculatxon of the moment which
. the thin section with small curvature experiences at small angles of attack. Remembering
- that the angle of attack a is a small qua.ntlty, the veloclty of the flow along the cu‘cle, frequently
mentloned before, is
2Vo(sm ¢— o COS ¢+ (a— o))

~and the veloclty at the correspondmg pomts of the stralght line is -

(28) o o : V= Vo(l acot p+2 sm<p

Only the term —a cot ¢ 0 contnbutes to ‘the moment around the middle point =0, and this
moment for the chord 2 is

(29 - ) /][——-1rpaVz M, T

—5a
£ V=‘°

After the variation of the chord into the section, the velocity at each point is only slightly

changed in general. The variation is calculated by determining the variation of the potential.
The corresponding point of the circle has no longer the same angle ¢, but the angle ¢ is increased
by a small quantity which may be denoted ¢ and is.given by (14).
(31) , . €=DB,cos ¢+ B, cos 20+ +
A g . —A4,sinp—A, sin 2p— —
The variation of the potential is ‘ -
C : 2eV, sin ¢

. as’a first approximation; and hence the variation of velocity. at the points of the section js
T ae . . .
V: cos ¢p+.;p sin ¢

‘Sifhp

1 A subsequent investigation shows that it is better to choose,that point as end of the central curve which divides into two equal
. parts the distance between the center of curvature and the leading edge. I shall show thisin a later paper.
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‘The variation of the pressure is the product of density, original velocity, and variation of veloclty h
The moment is the integral of this variation of pressure, multiplied by z dz= —4 cos ¢ sin ¢
and therefore equals .

32) M,-8 Vpr(gi oS ¢.5In ¢+ € cos ’¢) dy

all quantities being omitted which contain the product of two small quantities.
Now ' SO :

de —B, sin ¢—2B, sin 29— —

de —A, cos <p—'2A cos 2¢— —

: »Substltutmg eand- g—— only the terms with B contnbu(se to the va.lue of the mtegra.l and I obtain

) ) M,=4 V’pB
B, was determined by ' ,
’ 2
1l £
B,= wa‘sin sin 2¢de
[\]
or, expressed as a function of z, '
1

(1 x/2)’}(1+z/2)}

7 .Subsmtuung this, I ﬁna.lly obtain for the moment : ;

- (33) . M 4V°’p
the corresponding absolute coeﬁiclent is
StV’% 4fw/1-‘x’,f.°r the ehord =2

The entire moment around the middle of the section is expressed by the absolute coefficient
which is the sum of the two obtamed coefficients - :

+1

M ) .
(35) : = — a—+4 S
o §tvh /v

. -1

If the front and rear half of the central curve are equal, the integral in (35) is identically zero.

The coefficient of moment then is
) T
—az

2
This agrees with the result of Kutta for circular segments.
For sections with different upper and lower boundaries the central curve is to be taken

The numerical calculation of the integral in (35) can be performed by using the next table.
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TABLE 2. ] - ‘ ’ i
N
Pércentofchord.........occvmirieaiiirinannns 2.5 5 10. 15 20 25 30 35 40 45 50
) Faetor..coooemoeeancicanenn M aesccaseceaananean ..] 0.105| 0.206 | 0.133 | 0.098 | 0.075| 0.058 | 0.048 | 0.031 | 0.021 ) 0.010 0. 000
' S = ; S -
Percent ofchord.......covieivneniininmciniminenenann 55 ‘60 65 | 70 75! 80 85 20 95 97.5
FaClOr. e ot ncicii ittt as —0.010 |—0.021 |-~0.081 {—0,048 i—0.058 {—0.075 |—0.008 (—0.133 |—0.206 —0.105

- The procedure is analogue as with the calculation of the zero angle. The sum is to mul- -
tlply by 7 in order to obtain the addlt.lona.l coeﬁiclent of moment. The calculated coefficient

of moment has not yet the same meamng 8s the moment coefficient Ca ordinarily used.. This
coefficient has reference to the leading edge and not to the middle of the section. Calling the
integral in (35) the additional moment coefﬁclent 0.. the ordinary moment coefﬁclent Ca

_results
\ - . ; S
‘:' ; ) - . ,- 0 = —0z +4f‘/——+ 0,‘
(36) - ' Ca=025 OL——aq+0
The center of pressure has the posmlon
S 0
. ! 0 a02 m
(37) - - CP= @—0 25——-C,L—_

" VIL. EXAMPLES OF THE MOMENT COEFFICIENT.

The additional moment coefficient is different from zero for unsymmetrical sections only
and T proceed to calculate it for the two unsymmetrical sections discussed before.
" This was first the section which in its front half was a straight hne a.nd in its rear half was

represented by the equatlon
f=—y (1-2% 2

" The addltlonal coeﬁiclent of moment Cn is
(1 )7}

', G = — 4y i x,dz——ﬁtysfx‘\/_?dz

3 _ o . Cn —4yl3(1,—x’)”’ —(1 z’)"’l
. . 0

-8
_ ‘ 157
Asa second example take the S-shaped curve .
_ 5— —y 11—z
—_i J‘(l —z2)2? dx
=YW) T2

Cony= —_-4yfz’1/1—z’ dz
‘ - oo
Cu,=—y I z(xi—%Jl_zt,+% are sin z

. . N i A

Cm," -'2“ y
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The values obtained have to be substituted in formula (36) or (37).
. Equation (37) shows the center of pressure to be constant if g ap= Cn, ;.

that is to say, if the moment coefficient is zero for zero lift. *In most practical cases the right -
hand. additional moment is too small to neutralize the moment at zero lift. The condition is
fulfilled, however, for all sections with straight central curves, the moment to be neutralized
being then zero too. These are not the only sections, however.

Theoretically, every tail of a section can be modlﬁed so that the sectlon has no 10nger
any travel of the center of pressure, by superposing on the section the section dlSCIISSGd last
but one, representing a bending upward of the tail.

A calculation shows, however, that this proceeding is not eﬁectlve enough if the section
was very unstable and does not lead then to good sections. Consider, for instance, the case
of superposing a circular segment and this curve. The section may have the equation '

t=y, (1= +y, 1—2)?
at the rear half, the front half is circular as before. The zero angle of this section is, accordmg
to the previous calculatlons oo R .
‘ a=—y, +0.04y,

8 4 v v
15 Y, : )
and the condition of constant center of pressure is

. 8
o 1008w, [~

¥,=2.63 y,
The ta.ll is tumed upward 1.63 times as much as the angle at the leading edge is turned down. -

However, by neutralizing only a part of the travel of the center of pressure and by choosing '
a section of small curvature, it is possible, according to the calculation and agreeing with ex~
perience, to obtain a fairly reasonable section with a very small travel of the center of pressure.
By superposmg the S-shaped section investigated before and hending the entire section the
success is more thorough. : _

the additional moment 18

It follows that

TaBLE 3.
\Shape. Equation of shape.. o Cm,
I e ———
e P— .
C —_— e —— £=0 0 0
.
2 — T = :
(/__’_____-_f__— e —— v:‘& fmy(l~1%) —y 0
3 - T T *
— ey 2
] C.:—_—:‘:‘__"h-s— ‘ E=y(i1z) , —yg 0
4//—/"—“‘\\\ . 42 ) 2 .
(_/’:_—:_—hs ‘ Emey(l—11) —y% 0
— i
K3 - \ 2.5 1.5 8 16
— ~— - Wor e Y ——
(= —— =  E=y(142)7(1-3) Y3 i
6 —— —
- ~ . i .
T == t=—y(1-a) = -5
7 . ' ‘ :
’ 0 between —1 und 0 ( _ _8
—— gmyz3(1—z%) between 0 and +1 Y 31 is¥




GENERAL THEORY OF THIN WING SECTIONS. 19

REFERENCES.

1. Lawms. Hydrbdynamics Cambridge. For the present subject chiefly Chapter IV.

2. L. PRANDTL Aeronautical Applications of Modern Hydrodynamics. Chiefly sections 13
and 14. Report No. 116, N.A. C. A, 1921,

3. W. M. Kurra. Ueber eine mit den Grundlagen des Flugproblems in Beziehung stehende
zweidimensionale ' Stroemung. Sitzungsberichte der Kgl. Bayerischen Akademie der
. Wissenschaften. Mathematisch physikalische Klasse. Jahrgang 1910. 2. Abhand-

lung.
4. W. M. Kurra. Ueber ebene Zirkulationsstroemungen nebst ﬁugtechmschen Anwendungen.
The same, Jahrgang 1911. o :

‘5. N. E. Jouxowsky. Geometrische Untersuchungen ueber die Kutta’sche Stroemung.
: Moscow, 1910, 1911. ' :

8. R. v. Misgs. Zur Theorie des Tragﬂaechenauftrlebes Zeltschnft fuer Flugtechnik und
© Motorluftschiffahrt, 1917, VIIT Heft 21/22.

7. Ta. v. KarMaAN and E. TREFFTZ. Potentla.lstroemungen um gegebene Tragflaechenquer-
schnitte. Zeitschrift fur Flugtechnik und Motorluftschiffahrt, 1918, IV, 17/18.

8. R. v. Mises. Zur Theorie des Tragflaechenauftriebes. . II. Zeitschrift fuer Flugtechnik
und Motorluftschiffahrt, 1920, XI, 5/6. (Translated by N.A.C. A)

‘9, Max M. Mu~nk. The minimum induced drag of aerofoils. Report No. 121 N. A."C. A,
1921, Appeared as dissertation 1919,

10. Max M. Monk. - Beitrag zur Aerollynamik: der‘Flugzeugtragorgane Technische Berichte
der Flugzeugmeisterei der Inspektion der Fliegertruppen, II, 2.. Charlottenburg, 1918.

Submiitted to the National Advisory Committee for Aeronautics for publication Oct. 18, 1921.

ADDITIONAL COPIES

OF THIS PUBLICATION MAY BE PROCURED FROM
THE SUPERINTENDENT OF DOCUMENTS
GOVERNMENT PRINTING OFFICE
‘WASHINGTON, D. C. .
. AT
5 CENTS PER COPY
v



