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Abstract

An effective time-dependent approach to compute vibrationally resolved optical spectra from first 
principles is presented for the computation of one-photon electronic spectra induced by either 
electric or magnetic transition dipoles or by their mutual interaction, namely absorption, emission, 
and circular dichroism. Particular care has been devoted to generality, modularity, and numerical 
stability including all the effects that play a role at the harmonic level of approximation, namely 
Franck-Condon, Herzberg-Teller, and Dushinsky (i.e. mode mixing) effects. The implementation 
shares the same general framework of our previous time-independent (TI) model, thus allowing an 
effective integration between both approaches with the consequent enhancement of their respective 
strengths (e.g. spectrum completeness and straightforward account of temperature effects for the 
TD route versus band resolution and assignment for the TI route) using a single set of starting 
data. Implementation of both models in the same general computer program allows comprehensive 
studies using several levels of electronic structure description together with effective account of 
environmental effects by atomistic and/or continuum models of different sophistication. A few 
medium-size molecules (furan, phenyl radical, anthracene, dimethyloxirane, coumarin 339) have 
been studied in order to fully validate the approach.

1 Introduction

Electronic spectroscopy is nowadays among the most powerful tools for the study of 
chemical systems also thanks to ongoing development of both conventional techniques (one-
photon absorption, hereafter OPA, fluorescence, phosphorescence) toward increased 
resolution together with shorter time scales and of more recent and powerful non-linear 
approaches (e.g. Resonance Raman, two-photon absorption and emission, etc.) not to speak 
about chiroptical methods (e.g. electron circular dichroism, ECD).1–3 However, proper 
assignment of spectra relies more and more on quantum mechanical (QM) computations for 
both interpretative and predictive aspects.4,5 Moving from the current practice of extracting 
numerical data from experiment to be compared with QM results toward the direct 
comparison between in vitro and in silico spectra would strongly reduce any arbitrariness 
and allow a proper account of the information hidden behind both position and shapes of 
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spectral bands. Of course, theory can represent a valuable and robust support to experimental 
findings only if it is able to couple accuracy and feasibility for systems of current chemical, 
biological, and/or technological interest. On the one side this has led to the development of 
electronic structure methods able to deliver accurate results for small rigid systems in the gas 
phase, which provide also the balanced description of ground and excited states needed for 
the computation of accurate transition energies.6–10 On the other side, the development of 
methods based on the density functional theory (DFT) and its time-dependent extension 
(TD-DFT) is already allowing a sufficiently accurate treatment of medium- to large-size 
systems and is constantly increasing the range of possible applications thanks to ongoing 
efforts to solve some well-known shortcomings (e.g. charge transfer states, double 
excitations, etc.).9–11 In particular, the development of effective analytic gradients12–14 
and, very recently, of analytic Hessians15,16 is allowing a full characterization of excited 
states.

However, the way in which electronic spectra are simulated is often basic, with a single peak 
per electronic transition, which is related to the associated moment of the property of interest 
(e.g. the electronic dipole for one-photon absorption). The band-shape is then obtained by 
applying a symmetric distribution function. Since this approach neglects the vibrational 
structure present in experimental spectra, it suffers from various shortcomings: for instance 
it cannot be used for the interpretation of high-resolution data showing a detailed vibrational 
structure is visible and is also limited for low-resolution spectra, whose asymmetric peaks 
cannot be reproduced by a single distribution function.17–20

This problem has been widely studied and two parallel theories have been developed 
following time-independent or time-dependent routes, but always relying on a Taylor 
expansion of the transition moment whose first two contributions (constant and linear) give 
rise to the so-called Franck-Condon and Herzberg-Teller approximations.

The first general approach is the so-called sum-over-states or time-independent method, 
where the spectrum is obtained as the ensemble of all transitions between the vibrational 
initial and final states treated independently from one another. Since it is well known that the 
whole vibronic spectrum can be expressed in terms of Franck-Condon integrals, several 
approaches have been developed to compute these terms either by analytic or numerical 
approaches. Sharp and Rosenstock derived analytic expressions for Franck-Condon integrals 
up to four simultaneously excited normal modes using the properties of the generation 
function of Hermite polynomials.21,22 However this formulation was limited to the Franck-
Condon approximation. Baranov and co-workers proposed a generalization to the Herzberg-
Teller level taking into account any combination of excited normal modes.23,24 However, 
this approach was poorly suited for a general computational implementation of the method 
since each type of transition has a different expression, hence all needed Franck-Condon 
integrals had to be known before actual calculations and implemented in order to use the 
proper formulas. Furthermore, the equations become very cumbersome for more than four 
excited modes. These difficulties can be overcome using the recursive approach developed 
by Ruhoff, which relate the Franck-Condon integrals for transition differing at most by two 
quantum numbers.25,26 Using these formulas, once the Franck-Condon integral between the 
two fundamental vibrational levels is known, all the other factors can be derived in terms of 
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some matrices, referred to as the Sharp and Rosenstock matrices. Unlike the approach based 
on analytic formulas, this one is well-suited for implementation and computerization: in fact, 
it is based on a reduced number of quite simple formulas that are general for all the 
transitions. However this method requires also an efficient storage system in order to avoid 
the redundant calculation of Franck-Condon factors required more than once. At this level, 
the time-independent formulation of vibronic spectroscopy presents a general limitation: the 
need of truncating the in principle infinite summations of Franck-Condon integrals to some 
level, which involves, in turn, the development of general and reliable methods to select the 
most relevant transitions without actually computing nor storing all the terms (the so-called 
prescreening). The simplest prescreening approach defines lower and upper bounds for the 
transition energy and proceeds to calculate all Franck-Condon integrals included between 
those bounds.27–29 The method is easy to implement, but becomes quite inefficient when 
taking into account either temperature effects or large spectral ranges. Nooijen and co-
workers have developed a more general procedure to choose the most relevant transitions by 
analyzing directly the Franck-Condon factors.30 However this procedure has strong 
limitations because it breaks down the normalization of the integrals and makes impossible 
the control of the quality of the calculation. Alternative approaches have been proposed, 
each one with its pros and cons regarding the efficiency, generality, ease of implementation, 
computational cost18,31 (see Ref.32 for a more detailed discussion). In our group another 
prescreening method has been developed, based on the separation of the excitations into 
different classes labeled by the number of involved vibrational quanta and treated with 
decreasing levels of precision. Thanks to a number of methodological and technical 
improvements the latest version of the corresponding computational implementation (a 
detailed discussion of which can be found in ref.33,34) represents a very effective and 
general tool for all kinds of one-photon spectra including environmental and temperature 
effects.

Despite all these developments, time-independent methods still suffer from the fundamental 
problems related to the huge number of transitions to be taken into account for medium/
large-size systems and of the intrinsic arbitrariness of any prescreening algorithm. The 
alternative time-dependent approach offers a viable route for avoiding these shortcomings 
since it exploits the properties of the Fourier transform leading to fully converged spectra 
including also temperature effects, without additional computational cost. As we will show 
in the next section, the basic idea behind the time-dependent formulation of spectroscopy is 
to write the Dirac delta function as the Fourier transform of the dipole moment 
autocorrelation function with the aim of working in the time domain rather than in the 
frequency one. This approach has been developed since 1950 and applied to many 
spectroscopic problems. The first studies of time-dependent optical spectroscopy were 
aimed at deriving spectroscopic properties for crystals starting from a proper definition of a 
time-dependent expression for the OPA spectrum of a regular crystal.35 However, the 
validity of this theory was limited to a semiclassical framework and did not take into account 
the vibrational levels associated to electronic states. Kubo and Toyozawa introduced 
significant improvements by deriving a general expression for calculating the OPA vibronic 
spectrum of a crystal under the Franck-Condon approximation neglecting the Duschinsky 
mixing.36 This theory was also extended to the evaluation of internal conversion rates. Next, 
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the group of Mukamel showed that, starting from the expression for the absorption spectrum 
as the Fourier transform of the dipole autocorrelation function, the theory can be recast using 
two different, but equivalent formalisms.37 The first one makes use of the generation 
function formalism38 and can be related to the theory of stochastic processes leading to 
Fokker-Plank-type equations. The second approach is based on the quantum Green 
function’s theory, whose matrix elements can be related to the calculation of an absorption 
spectrum. Mukamel generalized this latter approach to multi-photon processes and non-
linear optical effects, making use of the perturbation theory within the interaction picture.39 
At the same time, the group of Heller and co-workers introduced another formulation, 
namely the doorway-state vector formalism. The doorway-state vector is an auxiliary vector 
that can be written as a linear combination of the vibrational level of the final state and 
whose time evolution is obtained by propagation over the final Potential Energy Surface 
(PES). The absorption spectrum can be thus obtained as the Fourier transform of the overlap 
between this vector at time 0 and the same vector at time t. The work of Heller and 
coworkers has been focused on the derivation of a method to evaluate the time evolution of 
the doorway-state vector, but was limited to a semiclassical model and focused mainly on 
the description of Raman Spectroscopy starting from the interaction-picture formulation of 
perturbation theory in QM.40 In this framework, analytic formulas for the calculation of 
Raman spectra have been derived, valid only under the assumption that the propagation 
occurs over a short time.41,42 Tannor and Heller have derived a more general expression, 
whose validity is, however, limited by the assumption that the molecule is initially in the 
lowest vibrational state.43 As a consequence, this theory cannot be easily generalized to take 
into account also temperature effects. In the last years this approach has been revised and 
further developed by Neese and co-workers, by paying particular attention to band-
broadening effects and to provide a good numerical stability to the simulation of the spectra.
44,45 However, differences between the normal modes of initial and final electronic states 
(the so-called Duschinsky effect) are completely neglected and this is also the case for the 
generalization proposed by Silverstein and Jensen to deal with other multi-photon processes 
like Hyper-Raman scattering.46,47

In recent years, the theoretical framework proposed by Mukamel,48 based on finding an 
expression for the dipole moment autocorrelation function, has been extended to other types 
of problems. Pollak and Tachten used the Green function formalism to analyze the influence 
of Duschinsky effects on photoinduced cooling.49,50 Borrelli and Peluso used this theory to 
calculate the temperature dependence of internal conversion rate of molecules of biological 
interest.51 They included in the calculation also a window function with the aim of helping 
the convergence of the Fourier transform. Similarly, Lin et al. have used the Green function 
formulation in order to calculate the influence of Duschinsky mixing on the rate of electron 
transfer.52 All those approaches led to the same analytic formula, including Duschinsky 
rotation but neglecting Herzberg-Teller effects. The generalization of the theory to Herzberg-
Teller effects has been analyzed by Peng et al. in their studies of internal conversion rates.
53,54 Unfortunately this approach shows a quite poor numerical stability and the derivation 
of equations including Herzberg-Teller effects is not clear. Similarly, Borrelli and co-
workers have proposed a general time-dependent approach to one-photon absorption 
spectroscopy,55 but also in this case the extension to Herzberg-Teller effect is not 
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straightforward. To summarize, several time-dependent models have been proposed till now, 
but their implementation in a general and robust code suffers from a number of difficulties 
including numerical instability, errors in the published equations or lack of significant 
contributions.52 As a consequence we decided to perform a new thorough theoretical 
derivation starting from the equations of Tang and coworkers and proceeding up to the 
coding of a general yet effective computer code closely paralleling our previous time-
independent implementation. We should mention, for the sake of completeness, that Berger 
and coworkers have also proposed an alternative formulation using a generating function 
based on the coherent states including Herzberg-Teller and Duschinsky effects. However, to 
the best of our knowledge, the complete derivation has not been described as a whole, 
hindering its implementation.56,57 Our derivation will not be based on any of the previous 
works because we will not introduce any further approximation besides the restriction of 
initial- and final- state PESs at the harmonic level. Furthermore, band broadening has been 
taken into the proper account, all kind of one photon spectroscopies (absorption, emission 
and ECD) have been included, and temperature effects have been considered. The 
implementation of the whole method within the same framework as the previous time-
independent approach allows direct comparison between the two approaches under the same 
conditions and their combined use to couple their advantages and minimize their respective 
limits. Ease of use (user-friendliness and minimal input), effective inclusion of 
environmental effects (by both polarizable continuum models and/or polarizable force 
fields), numerical stability and computational efficiency have been also taken into account 
during the development also thanks to the inclusion of the whole procedure within a general-
purpose QM code.

The paper is organized as follows. The derivation of the time-dependent formulation is 
discussed in the first section, together with the simulation broadening, and some concluding 
remarks are made regarding the numeric stability of the calculations. This is followed by a 
description of the computational details regarding the simulation of time-dependent and 
time-independent spectra. Then, to illustrate the reliability and accuracy of our time-
dependent model, comparison with experimental spectra and the well-tested time-
independent version will be done, using anthracene and furan as test studies. Several 
medium-sized systems, dimethyloxirane, coumarin 339 and the phenyl radical, will serve as 
examples to show some aspects of the versatility of our procedure, able to easily account for 
environment effects and to support multiple electronic spectroscopies.

2 Theory

2.1 General theory of vibronic spectroscopy

Following our previous works on time-independent vibronic spectroscopy,33,34 we present 
here an extension of the procedure described previously including the time-dependent 
formulation. In this way, it is possible to use all the existing machinery, in particular the 
generalized definition for the transition intensity for one-photon absorption (OPA), emission 
(OPE) and electronic circular dichroism (ECD),
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I = αω
β∑

m

∑
n

ργdmn
A

dmn
B *δ

En − Em

ħ
− ω (1)

where ω is the frequency of the incident (OPA, ECD) or emitted (OPE) photon, ρ is the 
Boltzmann population, δ is the Dirac function, and the double summation runs over all the 

lower- (m) and higher- (n) energy states. I, α, β, γ, d
mn
A  and d

mn
B  depend on the kind of 

spectroscopy, following the equivalency table below,

OPA: I = ϵ ω , α =
10π�

A

3 ϵ0 ln 10 ħc
, β = 1, γ = m, d

mn
A = d

mn
B = μ

mn

OPE: I = I
em

/N
n
, α =

2�
A

3 ϵ0 c
3

, β = 4, γ = n, d
mn
A = d

mn
B = μ

mn

ECD: I = Δ ϵ ω , α =
40�

A
π

3 ϵ0 ln 10 ħc
2

, β = 1, γ = m, d
mn
A = μ

mn
, d

mn
B = ℑ m

mn

where ϵ(ω) is the molar absorption coefficient for a given angular frequency ω, Δϵ(ω) is the 
difference (referred to as anisotropy) between the molar absorption coefficients ϵ− and ϵ+ 

relative to the left and right circularly polarized light, respectively, and Iem/Nn is the energy 
emitted by one mole per second.

d
mn
A  and d

mn
B  are respectively the transition moments of dA and dB between the lower and 

higher electronic states. Since dA and dB are generic in eq. 1, the following discussion will 
be done on a symbolic property dX, which can represent indifferently each of them.

dmn
X = 〈 Ψm | dX | Ψn〉 ≈ 〈χr(m) | de, mn

X | χs(n)〉 (2)

where r(m) respresents the vibrational state r associated to the electronic state m for the total 
lower molecular state m, and s(n) its counterpart for the total higher molecular state n. Ψ 
and χ are the total and vibrational wave functions, respectively. Finally, d

e, mn
X  is the 

electronic transition moment, d
e, mn
X = 〈ϕ

m
| dX |ϕ

n
〉

The main issue in using equation 1 is that no analytic expression for the electronic transition 
moment is known. In practice, a Taylor series with respect to the mass-weighted normal 
coordinates Q about the equilibrium geometry of one of the electronic state is used,

de, mn
X

Q = de, mn
X

Qeq + ∑
i = 1

N ∂de, mn
X

∂Qi 0

Qi + … (3)
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The development is commonly limited to the first two terms in the rhs, with the zeroth-order 
term corresponding to the Franck-Condon approximation58–61 and the first-order correction 
to the Herzberg-Teller approximation.62

Finally, the simulation of vibronic spectra requires the calculation of the overlap integrals, 
which depend on both the normal modes of the initial and the final states. To carry out the 
integration, we will use the linear transformation proposed by Duschinsky63 to express the 
two set of coordinates with respect to one another,

Q = JQ + K (4)

where Q̄ and Q ̿ are the normal coordinates of the initial (symbolized by one overline in the 
following) and final (symbolized by two overlines) states, respectively. J is the Duschinsky 
matrix and K is the shift vector. The expressions of J and K differ depending on the model 
used to describe the electronic transition (adiabatic, vertical) and the level of approximation 
(both potential energy surfaces assumed equal or not). More detailed discussions on these 
approaches and their impact on the Duschinsky transformation are available in Refs.32,34 
and references therein.

2.2 Time-dependent theory: Franck-Condon approximation

The starting point of the time-dependent theory of vibronic spectroscopy is the sum-over-
states formula given in Eq. 1. In the following, we consider the case of a photon absorption 
(OPA, ECD) between two uncoupled electronic states. In practice, this means that the initial 
state is the lower-energy one (m), the final state is the higher-energy one (n), and the double 
summation in eq. 1 is carried out over the vibrational states of each electronic state. For the 
transition dipole, the part of the subscript indicating the electronic states will be dropped so 
only the subscript e indicating the electronic transition dipole moment will remain.

The basic idea to switching from the sum-over-states problem to a time-dependent problem 
is to use the definition of the Dirac distribution function,

δ ω =
1

2π∫−∞

+∞
e

iωt
dt (5)

By replacing the Dirac delta function in Eq. 1 with the previous expression we obtain:

I =
αω

β

Z
∑

j

∑
k

e

−
ε

j

k
B

T
〈χ j | de

A | χk〉〈χk | de
B* | χ j〉∫

−∞

+∞
e

i
E

k
− E

j

ħ
− ω t

dt (6)

Ēj and E̿k are the total energies of the initial and the final vibrational states, respectively, εj̄ 
represents the vibrational energy and Z is the total Boltzmann population of the vibrational 
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levels of the ground states. Under the harmonic approximation, Z can be expressed in the 
following way:

Z = ∏
j = 1

N

∑
n

j
= 1

+∞

e
−ħω

j
n

j
+

1
2

/k
B

T

(7)

The infinite sum can be carried out thanks to the well-known formula for the sum of a 
geometric series. The result is the following:

Z = ∏
j = 1

N
e

−
ħω

i

2k
B

T

1 − e

−
ħω

i

k
B

T

= ∏
i = 1

N

2sinh
ħωi

2kBT

−1

(8)

Since Z is a constant, we can integrate it in α and will use from now on the constant factor α
′ = α/Z.

The difference “Ek̿ – Ēj ” can be rewritten as Ead + εk̿ – εj̄ where Ead = ħωad is the energy 
gap between the vibrational ground states of the initial and final states.

I = α′ωβ∫
−∞

+∞
dt∑

jk

e

−
ε

j

k
B

T
〈χ j | de

A | χk〉〈χk | de
B* | χ j〉e

i
ε̄̄
k

ħ
t

e
−

ε
j

ħ
t

e
i ωad − ω t

(9)

Since εj̄ and ε̿k are eigenvalues of their respective vibrational Hamiltonians, the equation can 
be expressed in terms of exponential operators as follows,

I = α′ωβ∫
−∞

+∞
dt∑

jk

〈χ j | de
A

e
− τ̄̄H | χk〉〈χk | de

B*e
−τH | χ j〉e

i Ead − ω t
(10)

where τ̄ and τ̿ are defined as,

τ =
1

k
B

T
−

it

ħ
; τ̄̄ =

it

ħ

The vibrational eigenstates of the excited electronic states form a complete basis, so the 
closure relation holds on them:

∑
k

|χ
k

〈χ
k
| = 1
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This formula can be used in order to simplify Eq. 10 as follows:

I = α′ωβ∫
−∞

+∞
dt∑

j

〈χ j | de
A

e
− τ̄̄H

de
B*e

−τH | χ j〉e
i ωad − ω t

(11)

The eigenstates |χ̄j) form another orthonormal basis set, so the sum over j can be written as a 
trace. To summarize, the absorption spectrum can be calculated as a Fourier transform of the 
trace of the following exponential operator,

I = α′ωβ∫
−∞

+∞
dt Tr de

A
e

− τ̄̄H
de

B*e
−τH

e
i ωad − ω t

(12)

= α′ωβ∫
−∞

+∞
dt χ t e

i ωad − ω t
(13)

In order to calculate the trace, an appropriate basis set must be chosen. By using the 
continuous basis set formed by the normal coordinates of the initial state (Q ̄), χ(t) can be 
expressed as,

χ t = ∫
−∞

+∞
dQ〈Q | de

A
e

− τ̄̄H
de

B
e

−τH |Q〉 (14)

By introducing Eqs. 5 and 6 in Eq. 14, we obtain,

χ t = de, i f
A

Qeq de, i f
B

Qeq + ∑
k = 1

N ∂de
A

∂Qk 0

de, i f
B

Qeq 〈Q |Qk

∘
e

− τ̄̄H
e

−τH |Q〉

+ ∑
k = 1

N ∂de
B

∂Qk 0

de, i f
A

Qeq 〈Q |e− τ̄̄H
Qk

∘
e

−τH |Q〉

+ ∑
kl = 1

N ∂de
A

∂Qk 0

∂de
B

∂Ql 0

〈Q |Qk

∘
e

− τ̄̄H
Ql

∘
e

−τH |Q〉

(15)

where Q
k

∘  is the operator associated to the k-th final-state normal coordinate.

Under the Franck-Condon approximation, only the first term of the previous summation 
remains. For this case, we will employ the derivation presented by Lin and co-workers52 to 
obtain an analytic expression for χ(t).
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In Eq. 15, we introduce an additional set of orthonormal coordinates for the initial state Q̄′ 
and two of them for the final state Q̿ and Q ̿′, which all verify the closure relation

∫
−∞

+∞
dQ′ |Q′〉〈Q′ | = ∫

−∞

+∞
dQ |Q〉〈Q | = ∫

−∞

+∞
dQ′|Q′〉〈Q′ | = 1 (16)

Using this relationship, Eq. 14 can be rewritten in the following way,

χ t = ∫
−∞

+∞
dQ∫

−∞

+∞
dQ∫

−∞

+∞
dQ′∫

−∞

+∞
dQ′〈Q |Q〉〈Q |e− τ̄̄H |Q′〉〈Q′ |Q′〉〈Q′ |e−τH |Q〉

(17)

Let us introduce the auxiliary matrices a, b, c, d whose elements are defined as,

c
i j

=
ω

i

ħ
coth

ω
i
ħτ

2
δ
i j

c
i j

=
ω

i

ħ
coth

ω
i
ħτ̄̄

2
δ
i j

d
i j

=
ω

i

ħ
tanh

ω
i
ħτ

2
δ
i j

d
i j

=
ω

i

ħ
tanh

ω
i
ħτ̄̄

2
δ
i j

a
i j

=
ω

i

sinh ħτω
i

δ
i j

a
i j

=
ω

i

sinh ħτ̄̄ω
i

δ
i j

b
i j

=
ω

i

tanh ħτω
i

δ
i j

b
i j

=
ω

i

tanh ħτ̄̄ω
i

δ
i j

Two supplementary matrices, C and D, will also be used,

C = c + J
T

cJ D = d̄̄ + J
T

dJ

The matrix elements of the exponential Hamiltonian operator between two coordinate 
vectors play a key role in the Feynmann’s path integral formulation of quantum mechanics, 
and they have been calculated for several hamiltonian operators. One of them is the 
multidimensional harmonic oscillator hamiltonian H̄harm:

〈Q |e
−H

harmτ
|Q′〉 =

det a

2πħ
N

exp
i

ħ

1
2

Q
T

bQ +
1
2

Q′TbQ′ − Q′TaQ (18)

The same relationship holds also for the excited-state normal coordinates.

Since Q̄ and Q̿ are orthonormal, the following equality holds,
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∫
−∞

+∞
〈Q |Q〉 = δ Q − JQ − K (19)

The same equality holds also for the primed coordinates.

Introducing Eq. 18 in Eq. 17, the integration can be carried out over the initial-state normal 
modes, leading to a new formulation of the autocorrelation function,

χ t =
det aa

2πiħ
2N∫ dQ∫ dQ′ exp

i

ħ

1
2

Q
T

bQ +
1
2

Q
′T

bQ′ − Q
T

aQ′

× exp
i

ħ

1
2

K
T + Q

′T
J

T
b JQ′ + K +

1
2

K
T + Q

T
J

T
b JQ + K

− K
T + Q

T
J

T
a JQ′ + K

(20)

The previous equation can be simplified by introducing two new sets of coordinates, U and 
Z, and by replacing ā, a̿, b̄, b̿ with c ̄, c̿, d̄, d̿:

Z =
1
2

Q + Q′

U =
1
2

Q − Q′

χ(t) =
det aa

2πiħ
2N

exp −K
T

dK ∫ dU∫ dZ exp −
1
2

Z
T

D Z − 2υ
T

Z × exp −
1
2

U
T
C U

(21)

where υT = KTd̄J.

Using the well-known analytic expression for a multidimensional gaussian-type integral,

∫
−∞

+∞
d

N
xe

−x
T

Bx + υ
T

x =
π

N

(det B)1/2
exp

1
4

υ
T

B
−1

υ

it is possible to derive this final expression for the autocorrelation function under the Franck-
Condon approximation,

χFC(t) =
det(aa)

(iħ)2Ndet(C D)
× exp ( − K

T
dK + υ

T
D

−1
υ) (22)
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2.3 Extension to the Herzberg-Teller case

Let us consider now the more general case including first-order terms in the Taylor 
expansion of the transition dipole moment. The corresponding autocorrelation function has 
been given in Eq. 15 and its evaluation requires to make the successive terms in the rhs 
explicit.

Let us start with the second term in the rhs of Eq. 15, 〈Q | Q
k

∘
e
− τ̄̄H

e
−τH | Q〉 . By using the 

same technique as for the Franck-Condon approximation this term can be rewritten as,

∫ dQ∫ dQ′∫ dQ∫ dQ′〈Q |Q〉〈Q |Qk°e
− τ̄̄H |Q′〉〈Q′ |Q′〉〈Q′ |e−τH |Q〉 (23)

Q
k
° can be taken out of the trace since 〈Q̿k | is an eigenbra of this operator with eigenvalue 

Q̿k. As a consequence, the integrand must be simply scaled by a factor Qk̿. After rewriting 
this factor in terms of U and Z the integral can be expressed as,

〈Q |Qke
− τ̄̄H

e
−τH |Q〉 =

1
2

〈Q | (Uk + Zk)e− τ̄̄H
e

−τH |Q〉 (24)

Let us consider the autocorrelation function at the Franck-Condon level χFC
1 given in Eq. 

21. By definition of the exponential function, the following equality holds,

∂ χFC
∂vk

= − 2〈Q |Zke
− τ̄̄H

e
−τH |Q〉 (25)

where the derivative is calculated with respect to the k-th element of υ.

The integral containing Uk is null by symmetry since the integrand is odd with respect to Uk. 
The final result is thus,

〈Q |Qk

∘
e

− τ̄̄H
e

−τH |Q〉 = −
1
2

∂ χFC
∂vk

(26)

The calculation of the third term in the rhs of Eq. 15, 〈Q |e− τ̄̄H
Q

k

∘
e
−τH |Q〉, is similar to the 

previous one. A slight difference is that, after application of the closure relation, Q
k

∘  will act 

on | Q ̿′ 〉 instead of 〈 Q̄ | with eigenvalue Q
k
′ ,

1From now on, the time parameter will be implicit
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〈Q |e− τ̄̄H
Qk

∘
e

−τH |Q〉 =
1
2

〈Q |e− τ̄̄H Zk − Uk e
−τH |Q〉 (27)

However, the final result is the same as in Eq. 25 because the integral containing Uk is null. 
The extension of the previous method to the fourth term in the rhs of Eq. 15 is 
straightforward.

〈Q |Qk

∘
e

− τ̄̄H
Ql

∘
e

−τH |Q〉 =
1
2

〈Q | Zk + Uk e
− τ̄̄H

Zl − Ul e
−τH |Q〉 (28)

By taking into account that terms with odd powers of Uk are null by symmetry, Eq. 28 can 
be rewritten in terms of the derivatives of χFC with respect to the elements of υ and C in the 
following way:

〈Q |Qk

∘
e

− τ̄̄H
Ql

∘
e

−τH |Q〉 =
∂ χFC
∂Ckl

+
1
4

∂2
χFC

∂vk ∂vl

(29)

Please note that only the real part of the matrix elements is used in the derivations. For the 
sake of readibility, the real-part symbol will be omitted, so that ∂χFC/∂vk is intended to be 
read as ∂χFC/∂ℜ(vk). The same holds for the derivatives with respect to elements of C. The 
derivatives of χFC can be expressed, starting from eq. 22, in the following way: 2

∂ χFC
∂vk

= χFC ∑
ϱ = 1

N

Dkϱ
−1vϱ + ∑

ϱ = 1

N

Dϱk
−1vϱ* (30)

∂ χFC
∂Ckl

= −
1
2

χFCCkl
−1 (31)

2We recall the following properties of the derivatives of the determinant of a general real matrix A. This is extended to complex 
matrices using only the real part of the matrix elements as the variable of derivation:

∂det A

∂A
i j

= det A A
i j

−1
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∂2
χFC

∂vk ∂vl

= χFC ∑
ϱ = 1

N

Dkϱ
−1vϱ + ∑

ϱ = 1

N

Dϱk
−1vϱ* ∑

ϱ = 1

N

Dlϱ
−1vϱ + ∑

ϱ = 1

N

Dϱl
−1vϱ*

+ χFC Dkl
−1 + Dlk

−1

(32)

2.4 A special case: T=0 K

One of the most important advantages of the time-dependent formulation is the possibility to 
include automatically temperature effects without any additional computational cost. On the 
contrary, in the time-independent framework the computational time increases very rapidly 
because of the large number of overlap integrals to compute.

However, the formulas derived in the previous part suffer from a poor numerical stability in 
the case of low temperatures related to the Boltzmann factor with a discontinuity for T=0 K. 
At such temperatures, the vibrational ground state of the initial electronic state is far more 
populated than the other states, which can be safely neglected. Let us assume that only the 
vibrational ground state | χ̄0 〉 is populated and ρ0 = 1.

I = αω
β∫

−∞

+∞
dt∑

k

〈χ0 | de
A | χk〉〈χk | de

B* | χ0〉e
i
ε̄̄
k

ħ
t

e
i(ωad − ω)t

(33)

Similarly to the previous derivation, we introduce the vibrational hamiltonian,

I = αω
β∫

−∞

+∞
dt∑

k

〈χ0 | de
A | χk〉〈χk |e

iHt

ħ
de

B* | χ0〉e
i(ωad − ω)t

(34)

= αω
β∫

−∞

+∞
dt〈χ0 | de

A
e

iHt

ħ
de

B* | χ0〉e
i(ωad − ω)t

(35)

In this case, the autocorrelation function can be written as,

χ (t) = 〈χ0 | de
A

e

iHt

ħ
de

B* | χ0〉 (36)

As previously, we introduce Q ̿ and Q ̿′, two sets of coordinates of the final state,
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χ(t) = ∫
−∞

+∞
dQ∫

−∞

+∞
dQ〈χ0 |Q′〉〈Q |e− τ̄̄H |Q〉〈Q | χ0〉 (37)

Using Eq. 18, the autocorrelation function can be expressed as,

χ(t) =
det a

(2πħ)N∫
−∞

+∞
dQ∫

−∞

+∞
dQ′

× 〈χ0 |Q′〉exp
i

ħ

1
2

Q
′T

b Q′ +
1
2

Q
T

b Q − Q
T

aQ′ 〈Q | χ0〉

(38)

We recall here the form of the harmonic wave function of the vibrational ground state,

|χ0〉 = ∏
i = 1

N ωi

πħ

1
4
exp −

ωi Qi
2

2ħ
=

det(Γ)1/2

π

N

4

exp −
Q

T
ΓQ

2
(39)

where Γ̄ is the diagonal matrix of the square root of the reduced frequencies γ
i

=
ω

i

ħ
. After 

introduction of two additional sets of normal coordinates for the initial state, Q̄ and Q̄′, the 
autocorrelation function can be rewritten as,

χ t = ∫
−∞

+∞
dQ∫

−∞

+∞
dQ∫

−∞

+∞
dQ′∫

−∞

+∞
dQ′〈χ0 |Q′〉〈Q′ |Q′〉〈Q′ |e

−
iHt

ħ |Q〉〈Q |Q〉〈Q | χ0

〉

(40)

In order to relate this expression to the general formulae used before, the integration is 
carried out over the final-state coordinates, Q̿ and Q̿′. Using Eq. 39, the autocorrelation 
function can be written in the following way,

χ t =
det Γ

π
N

2

det a

2 π ħ
N∫

−∞

+∞
dQ∫

−∞

+∞
dQ′〈Q |e

−
iHt

ħ |Q′〉

× exp −
K

T + Q
′T

J
T

Γ JQ′ + K

2
exp −

K
T + Q

′T
J

T
Γ JQ + K

2

(41)
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It is interesting to analyze the difference between the previous formula and Eq. 20 in order to 

derive the expressions for a, b, c and d at T=0 K. The matrix element 〈Q |e
−

iHt

ħ |Q′〉 is equal 

to the first exponential function of Eq. 20. Thus, by direct comparison of the other factors, it 
is easy to show that b ̄ must be replaced by Γ̄ and that ā must be set to zero. As a 
consequence, also c̄ and d ̄ must be replaced by Γ̄. Those results can be easily obtained also 
with a first-order Taylor approximation of the hyperbolic function. However, it should be 
underlined that ā in the scaling factor can not be set to zero but must be set equal to Γ̄. In 
conclusion, the following equivalency table can be built for the values of the variables of eq. 
22 at different temperatures.

Table 1

Equivalency table for the matrices at different temperatures

T=0K Γ̄ c̿ + Γ̄ c̿ + Γ̄ Γ̄

T≠0K ā C ̄ D̄ d̄

2.5 Extension to emission spectra

The extension of the previous theory to emission spectroscopy is not straightforward. Since 
the higher state becomes the initial one and the lower state is the final one, the Boltzmann 
factor refers to the excited-state vibrational levels, and, in order for ΔE – ω to be null with ω 
positive, ΔE must be defined as Ē – E.̿ Consequently τ̄ and τ̿ must be transformed as,

τ =
1

k
B

T
+

it

ħ
; τ̄̄ = −

it

ħ

In practice, there is another difference between absorption and emission in the choice of the 
state of reference to carry out the Taylor expansion of the transition dipole moment shown in 
Eq. 3. Indeed, the latter is readily available with respect to the excited state, independently 
from the nature of the transition we are interested in. Since our development is done with 
respect to the final state, we need to rewrite the Taylor expansion, assuming that the 
approximation up to the first-order is exact, that is,

de
X(Qeq) + ∑

k = 1

N ∂de
X

∂Qk 0

Qk

= de
X(Qeq) + ∑

k = 1

N ∂de
X

∂Qk 0

Qk

(42)

Using the Duschinsky transformation given in Eq. 4, it is possible to express the final-state 
coordinates in the previous equation with respect to those of the initial, excited state. The 
relation obtained this way allows us to derive a general formulation holding for both 
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absorption and emission spectra by using the following definition of the electronic transition 
dipole moment,

de
X ≈ � + ∑

i = 1

N

�iQi (43)

The expression of � and ℬ, as well as for the variables τ̄ and τ,̿ are summarized in the 

following equivalency table:

Table 2

Equivalency table for the derivatives of the transition dipole moment

OPA/ECD OPE

τ = 1
k
B

T
− it

ħ ; τ̄̄ = it

ħ τ = 1
k
B

T
+ it

ħ ; τ = − it

ħ

� d
e
x

Qeq
d

e
X

Qeq − ∑k = 1
N

∂d
e
X

∂Q
k eq

J
−1

K
k

ℬi ∂d
e
X

∂Q
i eq

∑k = 1
N J

ki
−1 ∂d

e
X

∂Q
k eq

Based on the equivalency table, it is possible to generalize Eq. 15 as,

χ(t) = �
A
�

B + ∑
k = 1

N

�k
A
�

B〈Q |Qk

∘
e

− τ̄̄H
e

−τH |Q〉 + ∑
k = 1

N

�k
B
�

A〈Q |e− τ̄̄H
Qk

∘
e

−τH |Q〉

+ ∑
kl = 1

N

�k
A
�k

A〈Q |Qk

∘
e

− τ̄̄H
Ql

∘
e

−τH |Q〉

(44)

where the superscripts A and B refers to the transition dipole d
e
A and d

e
B respectively

2.6 Inclusion of band-broadening effects

In the previous derivation the electronic spectrum has been considered a sum of Dirac delta 
functions centered on the resonance frequencies. However, bands present in experimental 
spectra have a non-negligible width due to various broadening effects. In practice, such a 
broadening can be simulated by replacing the Dirac delta function with one or more 
distribution functions. Those band-broadening effects can be easily included in the time-
dependent framework. In fact, once the inverse Fourier transform g(t) of the distribution 
function S(ωif, ω) is known,
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S(ω
i f

, ω) = ∫
−∞

+∞
g(t)e

(ω
i f

− ω)t

it can be substituted into Eq. 6

I = α′ωβ∑
jk

e

−
ε
i

k
B

T
〈χ j | de

A | χk〉〈χk | de
B* | χ j〉∫

−∞

+∞
g(t)e

i(ω
i f

− ω)t
dt (45)

= α′ωβ∫
−∞

+∞
dt∑

jk

e

−
ε
i

k
B

T
〈χ j | de

A | χk〉〈χk | de
B* | χ j〉∫

−∞

+∞
g(t)e

i(ω
i f

− ω)t
(46)

By comparing Eqs. 11 and 46, we can note that inclusion of broadening only requires the 
autocorrelation to be multiplied by g(t).

For a Gaussian distribution function, the expression for S(ωif, ω) is,

S(ωi f , ω) =
1
2πσ

e

−
(ω

i f
− ω)2

2σ
2

(47)

where σ is the standard deviation, which can be related to the half-width at half-maximum 
(HWHM) of the Gaussian function in the frequency domain,

σ =
HWHM

2ln 2

The Fourier transform of a Gaussian function is another Gaussian function,

1
2πσ∫−∞

+∞
dte

−i(ω
i f

− ω)t
e

−
σ

2
t
2

2 =
1
2πσ

e

−
(ω

i f
− ω)2

2σ
2

(48)

Thus the autocorrelation function has to be multiplied by a factor ρgau,

ρgau =
1

2πσ
e

−
t
2
σ

2

2 (49)
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Let us now consider the case of a Lorentzian distribution function, where the analytic 
expression for S(ωif, ω) has the form,

1
π

γ

(ωi f − ω)2 + γ
2 (50)

where 2γ is the half-width at half-maximum of the lorentzian distribution in the frequency 
domain. The Fourier transform of the Lorentzian function is an exponential,

1
π

γ

(ωi f − ω)2 + γ
2 =

1
2π∫−∞

+∞
dte

−i(ω
i f

− ω)t
e

−γ | t| (51)

In this case, the correlation function is multiplied by the factor ρlor

ρlor =
1

2π
e

−γ | t| (52)

The time-dependent framework can include both distribution functions, the gaussian-type 
one and the lorentzian-type one, which represent different kinds of broadening. In fact, the 
result of the combination of those effects is a Voigt band-shape function, which is the 
convolution of the product of a gaussian function and a lorentzian function. However, the 
Fourier transform of the convolution of two functions is the product of Fourier transforms. 
As a consequence, to consider both effects one must simply multiply the autocorrelation 
function by an overall factor ρgau × ρlor.

2.7 Stability of the numerical integration

It should be noted that sometimes the computation of the time-dependent spectrum suffers 
from numerical instability. Indeed, the integral is computed by means of a discrete Fourier 
transform, which is a numerical integration procedure. Thus, a certain upper time limit T 
must be set in order to truncate the integration at some level and the autocorrelation function 
is sampled in a finite number (N) of points. However, the truncation is valid only if the 
autocorrelation function goes to zero beyond the upper limit T but this is not always 
guaranteed. For example, when mode mixing is negligible, as shown by Tannor and Heller,
43 the autocorrelation function can present periodic oscillations and thus does not converge 
to zero; in those cases, the convergence is ensured only if a broadening function is included. 
In all the following calculations the total time of integration T has been set to 10−9s. This 
value guarantees a complete convergence of the autocorrelation function with the values of 
Half-Width at Half-Maximum, which are usually used (over 10 cm−1). Furthermore, the 
default value for the number of points in which the function is sampled is set to 224; several 
numerical tests have shown that this value is a good compromise between computational 
time and sampling accuracy.
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In order to improve the convergence of the discrete Fourier transform, a window function 
has been also included. Indeed, it can be mathematically proven that the convergence of the 
discrete Fourier transform of a function f(t) can be improved by scaling this function by a 
window function w(t), with an appropriate choice of w(t).64 The simplest window function 
is the rectangular window function, which is equal to one inside the window interval and 
zero elsewhere. While more elaborated window functions have been developed and applied 
to the calculation of the Fourier transform of the autocorrelation function,51,65 our tests 
have shown that they are often more complex to parametrize in order to get a correct 
convergence for a broad range of systems. In the perspective of building a robust black-box 
procedure, a rectangular window function is well-suited since it provides reliable results 
with very limited parametrization. Indeed, the unique parameter which must be set is the 
time interval in which the function is non-zero. In order to reduce the noise due to artefacts 
periodic oscillations and thus increase the signal-noise ratio, it is necessary for the window 
function to have a range significantly smaller than the time-interval. However, the window 
function must be large enough not to remove the features of the actual spectrum. On the 
other hand, increasing the total number of steps in the time interval raises storage issues as 
the memory required to save the autocorrelation function grows quickly. Our numerical tests 
have shown that a window function which is 28 times smaller than the whole time-interval of 
integration provides a complete convergence of the numerical integration in most cases. In 
practice, and for the default settings, this means that the window function is equal to 1 over 
216 sampling points, so that χ(t) is non-null over these points and null over the remaining 28 

points to ensure the convergence of the discrete Fourier transform.

3 Computational details

Density functional theory (DFT) and its time-dependent extension (TD-DFT) have been 
used to carry out the electronic structure calculations in the ground and excited states, 
respectively. The standard B3LYP functional66 has been used in conjunction with the 
double-ζ SNSD67 basis set, developed for spectroscopic studies of medium-to-large 
molecular systems. This basis set has been constructed from the polarized double-ζ N07D 
basis set68–71 by consistently including diffuse s functions on all atoms, and one set of 
diffuse polarized functions (d on heavy atoms and p on hydrogens).

By default, the spectra were simulated using the adiabatic hessian (AH) model, in which 
both electronic states involved in the transition are treated on the same ground and the 
harmonic potential energy surface (PES) were calculated about their respective equilibrium 
geometry (see ref.32 and references therein for more details). When available, first 

derivatives of the electronic transition moments, d
e, if
X , are obtained from TD-DFT 

calculations by numerical differentiation along the Cartesian coordinates, together with the 
force constants matrix calculated from the analytic gradients.

All calculations of the electronic structure and the vibronic spectra were done with a locally 
modified version of the GAUSSIAN suite of quantum chemical programs.72 The procedure 
employed to generate the vibronic spectra follows the same pattern described in Refs.33,34 
Rotation and translation are minimized by superposing the initial- and final-state equilibrium 
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structures, prior to calculating the Duschinsky matrix J and shift vector K using the 
formulas,

J = L
T

L ; K = L
T

M
1/2 Δ X (53)

where L̄ and L̿ are the transformation matrices from mass-weighted Cartesian to normal 
coordinates of the initial and final states, respectively, M is the diagonal matrix of atomic 
masses, and ΔX = X̿–X̄ represents the changes in geometry between the equilibrium 
structures of the two electronic states. After this step, the time-dependent or time-
independent path is taken depending on users’ requests.

The implementation of the time-independent approach has been described in Refs.33,34 It 
uses the recursive equations of Ruhoff25,26 based on the Sharp and Rosenstock 
matrices21,22,73 to compute the overlap integrals in the sum-over-states formulation. To 
limit the number of integrals to take into account, the class-based prescreening proposed by 
Santoro et al.74–76 has been employed. It relies on a categorization of the transitions in so-
called classes, which correspond to the number of simultaneously excited oscillators in the 
final state, and if temperature is taken into account, the initial state as well. Class 1 
(overtones) and class 2 (2-states combinations) are treated up to a specified number of 

quanta for each oscillator, C1
max and C2

max respectively. Overlap integrals and information 

related to their calculation from these classes are stored and used for the prescreening to 
define the maximum number of quanta for each oscillator in order to choose and compute up 

to NI
max transitions, evaluated to be the most significant ones, for each class starting from 

class 3. Extensive details about the prescreening can be found in Refs.33,34,74–76 In the 
present work, if not specified otherwise, sum-over-states spectra were computed with the 
default settings, that is,

C1
max = 20, C2

max = 13, N
I
max = 108

and up to 7 simultaneously exited modes in the final state have been taken into account 
(class 7).

Since each time step of the autocorrelation function is independent from the others, it is 
possible to greatly speed up the calculation of χ(t) by treating the time steps in parallel, as it 
has been done in our implementation. At this point, the most time-consuming step becomes 
the Fourier transformation. In order to speed up this process, the implementation was 
designed so that vendor-specific, highly optimized mathematical library, in particular the 
AMD Core Math Library (ACML) for AMD processors and the Intel Math Kernel Library 
(MKL) on Intel processors could be used to perform matrix algebra and Fast Fourier 
Transformation (FFT) when available, as well as the free software “Fastest Fourier 
Transform in the West” (FFTW) library.77 A serial, robust version, FFTPACK 4,78 has been 
also included if no supported library is available and to check the correct interface with the 
optimized libraries.
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In order to improve the accuracy of theoretical spectra, input frequencies obtained at the 
harmonic level can be replaced by their anharmonic counterparts. In this work, the latter are 
computed using the second-order vibrational perturbation theory (VPT2).79–83 The 
necessary third and semi-diagonal fourth derivatives of the potential energy are obtained by 
numerical differentiation of the analytic harmonic force constants along the mass-weighted 
normal coordinates (Q). GAUSSIAN default step has been used, that is δQ = 0.01 Å.83,84 Due 
to the unavailability of analytic second derivatives of the potential energy in our TD-DFT 
calculations, an alternative approach, proposed in Ref.,19 is available in our procedure to 
extrapolate the anharmonic frequencies of the excited state from the scaling factors (α′) 
between the anharmonic (ν′) and harmonic (ω′) frequencies of the electronic ground state, 
based on the following sequence3,

α
i
′ = ν

i
′/ω

j
′

α
i
″ = ∑

k

J
ik

2
α

k
′

ν
i
″ = α

i
″ω

j
″

At first glance, the anharmonic correction of the frequency will only correct the band 
position and marginally the band intensity with respect to the photon energy. Under such 
conditions, the scaling scheme would have an impact in the simulation of OPA spectra or if 
temperature effects need to be taken into account, but could be safely neglected for low-
temperature OPE spectra, assuming that a correct calculation difference between the zero-
point vibrational energies of the initial and final states is not sought.85 However, both initial- 
and final-state frequencies are also directly used in the calculation of the overlap integrals, in 
χ(t) in TD calculations (see eq. 41) and 〈0̄ | 0̿〉 in TI calculations. In this regard, the general 
application of the scaling scheme is needed to have a consistent anharmonic correction of 
the band-shape.

4 Results and Discussions

Figure 1 shows the molecules used in this work to illustrate some capabilities of the 
procedure with our implementation of the path integral model.

4.1 Anthracene

The rigidity of anthracene (molecule (1) in Figure 1) prevents the distortion of the molecule, 
so that the Franck-Condon approximation is well-suited to study the S1 ← S0 OPA 
spectrum, and strongly limits the mode-mixing upon the electronic transition, so that full 
convergence of the spectrum generated by mean of sum-over-states approaches can be easily 
reached without requiring complex prescreening algorithms. Together with its medium size, 
such features make the molecule particularly appealing to test and validate implementations 
of procedures to compute vibrationally-resolved electronic spectra.17,18,74,86,87

3Note that the sequence refers to an absorption transition. For emission, the transpose of J must be used.
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The time-independent (TI) spectrum was simulated at T=0K with the default parameters 
given in the computational details. The total convergence of the calculated intensity with 
respect to the analytic intensity based on the sum rules was of 99.9%. The stick spectrum 
was generated and then convoluted using Gaussian distribution functions with two different 
half-widths at half-maximum of 150 and 200 cm−1, respectively.

For the time-dependent (TD) spectrum, the total time used for the simulation was 10−9 s 
discretized in 224 steps. The rectangular window function described in the theoretical part 
was employed with a width 216 and the same broadening function as for the time-
independent procedure was employed. To match the time-independent spectrum, the 
autocorrelation function given in section 2 for T=0K was employed.

Comparison of the time-dependent and time-independent spectra is shown in Figure 2 and a 
comparison of the TD spectrum with its experimental counterpart is reported in 
supplementary information (Figure S1 of SI). To facilitate the analysis, all spectra were 
scaled so their highest band or peak had the same height. Focusing first on the spectra with 
higher resolution (broadening of 150 cm−1), we can note a very good agreement between TD 
and TI spectra over the most intense bands, below 27000 cm−1. For the higher-energy bands, 
which are far less intense, larger discrepancies are observed. By increasing the broadening, 
overlap between the TD and TI band-shapes improves, which hints at the source of 
discrepancies to be related to some background noise, not fully removed by our window 
function. However, it should be highlighted that a broadening of 150 cm−1 provides already 
a rich band-shape of the vibrationally-resolved electronic spectra with several clearly visible 
bands. When very high resolution is needed,19 the sum-over-states model, which allows 
automatically band assignment, is better suited and can be limited to the region of interest 
defined from the total band-shape generated with the path-integral approach to reduce the 
computational costs of the complete procedure.55 Additionally, analysis of the latter shows 
that both bands of the convoluted TI spectrum in the higher region stem from a multitude of 
low-intensity transitions, and that the most intense transitions have an energy below 27000 
cm−1.

4.2 Furan

Furan (molecule (2) in Figure 1) is a five-membered heterocycle, which is used in organic 
chemistry and biochemistry as a building block for the synthesis of various drugs and 
biopolymers. The study of its ionic structure is mostly carried out by mean of photoelectron 
spectroscopy. Due to its chemical interest, furan has been extensively studied, providing a 
rich set of reference data, which can be used to test new theoretical models to compute 
vibrationally-resolved electronic spectra (see Ref.88 and references therein for an overview 
of theoretical and experimental studies on this molecule). Finally, its relatively small size 
allows the application of accurate albeit expensive computational models.89

Previous computational studies provide a solid background to ascertain the quality of our 
electronic structure calculations. Similarly to Luis et al.,89 we have focused our attention on 
the X̃2A2 ← X1̃A1 band in the photoelectron spectrum, associated to the ground states of its 
cationic and neutral form. Both electronic structure calculations were done at the DFT level, 
using the B3LYP functional and the SNSD basis set. It should be noted that our calculations 
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do not take into account interactions with the continuum, so that we do not have access to 
the electronic transition dipole moment corresponding to the photoionization. In such a case, 
we assume that the transition dipole moment is a unit vector and the Franck-Condon 
approximation is used. Following previous simulations of the vibronic spectra,89,90 our 
time-dependent simulation was done at T=0K, hence ignoring temperature effects. The 
spectra were simulated over 10−9 s discretized in steps of 6 · 10−17 s and the window 
function spanned over 4 · 10−12 s. The broadening was done with a Gaussian distribution 
function whose full-width at half-maximum was chosen to match experimental data, that is 
140 cm−1. The adiabatic ionization energy is underestimated in our calculations with respect 
to the experimental value measured by Derrick et al.91,92 by about 0.2 eV. To compare the 
band-shapes, the most intense bands of each spectrum are superposed and shifted to the 
origin.

The theoretical and experimental spectra are shown in Figure 3 (temperature effects at 
T=298K are shown in supplementary information, Figure S2). The theoretical spectrum (TD 
harm) reproduces fairly well the experimental band-shape and all the strong bands observed 
experimentally are clearly visible. It is however difficult to estimate the accuracy of the band 
intensity due to apparent shift of the baseline in the experimental spectrum.

Anharmonic corrections to the frequencies are included using the procedure described in the 
computational details. The resulting spectrum (TD anh.) is shown in red. We can note an 
improvement in the agreement with the experimental spectrum as the band positions are 
corrected with respect to the purely harmonic spectrum (TD harm.) and most of the bands 
are clearly recognizable. For the sake of completeness, it should be mentioned that two low-
intensity bands in the experimental spectrum are not fully reproduced in both convoluted 
spectra. The first one, at about 500 cm−1 does not appear also on the stick spectrum, which 
is in line with previous studies.89,90 The second one, at about 1770 cm−1 seems shifted to 
about 1730 cm−1, based on the analysis of the stick spectrum. While the time-dependent 
band-shapes seem to show a similar trend with a small shoulder about this energy, it is too 
low for an unambiguous assignment. Overall, it should be noted that the noise remains very 
low in this example, even with this rather small broadening.

4.3 Phenyl radical

The electronic absorption spectrum of phenyl radical (molecule (3) in Figure 1), and more 
specifically the A2B1 ← X̃2A1 band, has been previously studied by some of us as an 
illustration of our procedure to compute vibronic spectra within the time-independent 
framework.93 In addition to its chemical interest for a better understanding of combustion 
processes, the molecule, being an open-shell system, represents a challenging task for 
electronic structure calculations. Our previous study followed an earlier analysis of the 
vibrational structure of the electronic spectrum by Mebel et al.,94 who used a sum-over-
states approach to compute the vibronic transition intensities at the Franck-Condon level to 
interpret the band-shape of the electronic spectrum of matrix-isolated phenyl radical 
reported by Radziszewski95 over the 4000–52000 cm−1 energy range. Significant 
discrepancies between the theoretical spectrum, simulated with a reduced-dimensionality 
scheme based on symmetry considerations, and its experimental counterpart were observed 
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and ascribed to several sources, including the possible interaction with a neighbor dark state. 
By adopting a full-dimensionality scheme in the Franck-Condon Herzberg-Teller (FCHT) 
approximation, we showed that a better agreement with experiment could be reached. The 
agreement with experiment was further enhanced by using a previously proposed scheme to 
include in a straightforward way anharmonic effects in our vibronic calculations.19 Finally, 
we were able to offer a different interpretation of the band position corresponding to the 
transition between the vibrational ground states of the two electronic states (0-0 transition).

The same protocol as described in Ref.93 has been used here, but using the SNSD basis set. 
For all spectra, the broadening was simulated with Gaussian distribution functions having an 
half-width at half-maximum of 100 cm−1. All time-dependent spectra were simulated over 
10−9 s with the autocorrelation function computed in 224 points and the window function 
spanned over 216 points. As mentioned before, the FCHT approximation is needed to obtain 
an accurate band-shape, together with the inclusion of anharmonic effects. The latter are 
limited to the frequencies, which serve to compute the autocorrelation function, using the 
same scaling scheme as for furan. The harmonic and anharmonic spectra are displayed in 
Figure 4. As already observed in Ref.,93 anharmonic corrections improve the agreement 
with the experimental spectrum, in particular with the higher-energy bands, which superpose 
better on their experimental counterpart. While the band positions are fairly well reproduced, 
their relative intensities are less accurate, but still reproduce satisfactorily the general trend 
of the overall band-shape. Together with the example of furan, this application of the 
procedure shows two simple schemes to include anharmonic effects and improve the 
accuracy of the simulation without any increase in the computational cost of the vibronic 
spectra.

As a final remark on this system, we can observe a marked mode mixing associated to the 
electronic transition depicted in Figure 5. A common approximation in the simulation of 
vibronic spectra is to neglect such mixing, so that the Duschinsky matrix corresponds to the 
identity matrix and simpler equations are obtained for the autocorrelation function. While 
this approximation can be satisfactory for rigid systems where the mode mixing is small, this 
can lead to wrong interpretations otherwise. As an illustration, Figure 6 shows the 
convoluted vibronic spectra of the A2B1 ← X̃2A1 band with the same broadening function 
used as before. This test confirms the very good agreement between the TD and TI 
procedures. If we restrict ourselves to the Franck-Condon approximation (panels a and b), 
the neglect of mode mixing results in a strongly altered band-shape and only the upper 
envelop seems to be in qualitative agreement. As mentioned previously, inclusion of 
Herzberg-Teller effects has an impact on the band-shape (panels a and c). Again, 
approximating the Duschinsky matrix to identity (panel d) results in an incorrect band-
shape, but the lower and upper envelops are in better agreement than for the Franck-Condon 
approximation, so that it is likely that the neglect of mode mixing will have a lower impact if 
larger convolution functions are used. Incidentally, we can observe a better agreement 
between TI and TD if mode mixing is discarded.
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4.4 Dimethyloxirane

The next example regards the application of our path-integral procedure to electronic 
circular dichroism (ECD). Chiroptical spectroscopies represent methods of choice to study 
and fully characterize chiral molecular systems, providing information about their 
configurational and conformational structures. From a methodological point of view, as 
shown in our development, ECD is very similar to OPA and OPE. However, while the 
Franck-Condon approximation can be sufficient for OPA and OPE when the transition 
probability is high, it is often insufficient for ECD as the scalar product μ · ℑ(m) can have a 
negligible magnitude even in this case.34,96–98 Furthermore, sign alternance of the band-
shape cannot occur at the FC level since this scalar product is only a scaling factor of the 
Franck-Condon integrals, so the Herzberg-Teller approximation must be included a priori to 
correctly simulate ECD spectra. Furthermore, Herzberg-Teller terms are usually quite small 
so that the simulation of ECD spectra is more sensitive to the accuracy of the calculations. 
Moreover, the presence of significant background oscillations may affect the sign of the 
ECD spectrum.

As an illustration of the possibilities of our procedure in the study of chiral systems, the S3 

← S0 ECD spectrum of trans-(R,R)-dimethyloxirane (molecule (4) in Figure 1) has been 
simulated. Its relatively small size makes this derivative of oxirane appealing as a 
prototypical chiral molecule to test novel theoretical methods or setup reliable protocols to 
be applied to larger systems.99–101 The band-shape for the S3 ← S0 transition presents a 
change of sign, which means that the Herzberg-Teller approximation is mandatory to 
compute the spectra. The simulations were carried out over 10−9 s at both T=0K and 
T=298K with the band broadening described by mean of Gaussian distribution functions 
(HWHM=150 cm−1). The autocorrelation function was computed in 228 points and the 
window function spanned over 216 points.

The spectra are shown in Figure 7. Temperature effects on the band-shape are clearly visible 
and the spectrum at T=298K is consistently red-shifted with respect to the one at T=0K. This 
may have an impact on the analysis of the band-shape when interpreting an experimental 
spectrum. Indeed, the common practice for this kind of studies is to set the transition 
between the vibrational ground states of each spectrum to the origin and to define band 
energies with respect to this reference. While the 0-0 transition energy can be unequivocally 
defined for the computed spectra, it can be unknown for the experimental counterparts, so 
that the band-shape superposition has to be done manually by maximizing the overlap of the 
most intense bands. In the present case, and in the hypothesis that the experimental spectrum 
would be recorded at room temperature, a visual superposition with a theoretical spectrum 
computed without taking into account temperature effects is prone to several artefacts. This 
behavior with respect to temperature is likely to be observed with a sensitive spectroscopy 
like ECD but also when studying molecules with low vibrational energies, for instance in the 
case of adsorbates on solid surfaces.

4.5 Coumarin 339

4-Methyl-6,7,8,9-tetrahydro-2H-pyrano[3,2-g]quinolin-2-one, more commonly known as 
Coumarin 339 (molecule (5) in Figure 1), is a type of 7-aminocoumarins, an important class 
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of laser dyes in the blue-green region, whose optical properties have been deeply 
investigated.20,102–107 Coumarin 339 (C339), which has been previously studied by some 
of the authors,20 is used here as a test case to illustrate some additional aspects of our 
computational approach.

The S1 → S0 OPE spectrum of C339 has been simulated at T=0K in vacuum using both 
path integral (TD) and sum-over-states (TI) models. The TD spectrum was simulated over 
10−9 s using 224 steps with a window function spanning over 216 points. The broadening was 
obtained with Gaussian distribution functions with HWHM=135 cm−1. For the TI spectrum, 
the default settings presented in the computational details resulted in recovering 88% of the 

total intensity. A modification of the parameters (C1
max = 30, C2

max = 20, N
I
max = 109)

improved the spectrum convergence to 93.3%, but at the expense of significant increase in 
the computational time. The TI and TD spectra are shown in Figure 8. The convoluted 
spectrum shows a pattern of regularly spaced intense bands, interspersed with less defined 
bands partly merged in the former. The stick spectrum provides a deeper insight on the fine 
structure of the bands, which shows a wealth of low peaks contributing to the lower-intensity 
convoluted bands. On the other hand, the high-intensity bands can be unequivocally related 
to the vibrational progression of a single mode, the C=O stretching, except for the leftmost 
peak, which corresponds to the 0-0 transition. Such an example shows the complementarity 
of the path integral and sum-over-states models to obtain an accurate and complete analysis 
of the computed spectra.

Another example of the features available in our computational procedure is shown in Figure 
9 with the S1 ← S0 OPA spectrum of C339 in toluene solution. Solvent effects have been 
accounted for using the conductor-like polarizable continuum model (CPCM).108 The 
spectra have been simulated with the path integral approach using the same settings as for 
the OPE spectrum, including the broadening parameters. It is noteworthy that the OPA 
spectrum of C339 in toluene is significantly different from the OPE one in vacuum, with the 
absence of the characteristic vibrational progression observed previously and the strong 
dominance of the 0-0 transition. Comparison of the spectra computed at the FC (in solid red) 
and FCHT (in dashed magenta) levels of approximation of the transition dipole moment 
within the Adiabatic Hessian model shows that AH|FC is sufficient to describe the electronic 
transition. When considering large systems or in the case of virtual screenings to assess the 
quantum yield of various chromophores,109 the cost of computing the frequencies of both 
electronic states, in particular the excited one at the TD-DFT level, may quickly become 
prohibitive. An alternative, less expensive approach is to consider that the PES of the final 
state is the same as the initial one’s except for a shift of the minimum energy geometrical 
parameter; as a consequence only the frequencies of the initial state must be computed. The 
Adiabatic Shift (AS, in yellow) is the approximated counterpart of AH and requires only the 
optimized geometry for the final state. In practice, the shift vector is the same as in AH but 
the Duschinsky matrix becomes the identity matrix. We can observe an energy shift of the 
band-shape between AH|FC and AS|FC, which corresponds to the missing account for the 
difference between the zero-point vibrational energies in the approximated model. Overall, 
the band-shapes are very similar, with only the second and fourth bands slightly lower in AS|
FC than in AH|FC with respect to the first, highest band. Such an agreement hints at a 
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limited mode mixing during the electronic transition. The Vertical Gradient (VG, in cyan) 
model, also known as the Linear Coupling Model,110 is different as it is an approximated 
model derived from the vertical approach (see Ref.32 for a more detailed discussion on the 
various models). The central idea in vertical models is that the correct representation of the 
strongest features of the vibronic spectra requires an accurate description of the PES in the 
Franck-Condon region, that is about the equilibrium geometry of the initial state. A practical 
issue of this concept is that the equilibrium geometry of the final state is not known, so that 
the shift vector in the Duschinsky transformation must be extrapolated assuming that the 
PES of the final state is harmonic. Similarly to AS, the PES of the final state is assumed in 
VG to be the same as the initial state, so that the Duschinsky matrix is the identity matrix. In 
the VG approximation, the shift vector is,

K = Ω
−2

L
T

M
1/2

g
X

where Ω is the diagonal matrix of the initial state’s frequencies, g̿X is the gradient in the final 
state at the equilibrium geometry of the initial state expressed in Cartesian coordinates.

As expected, an energy shift is observed between the VG|FC and AH|FC band-shapes due to 
the lack of zero-point vibrational energies differences in the former model. However, since 
the exact minimum of the final electronic state is not known in the VG model, its energy is 
extrapolated on the basis of the harmonic approximation using the force constants and 
normal modes of the initial state; this leads, of course, to slight differences with respect to 
the AH|FC band-shape. The most significant difference is the merging of the first two bands 
observed in both AH|FC and AS|FC in the case of VG|FC.

Depending on the accuracy required for the vibronic structure of the electronic spectrum, the 
approximated models may be insufficient, thus their reliability should be carefully assessed 
depending on the needs on sample systems before using them on molecules or groups of 
molecules of interest. A more detailed analysis of the various transition models is deferred to 
a future work.

Conclusions

A general time-dependent model allowing the computation of vibronic contributions to 
different electronic spectra (one-photon absorption, one-photon emission and electronic 
circular dichroism) in a fully automated manner has been presented. The necessary 
validations have been performed for a few medium-size, closed- and open-shell, molecular 
systems. Additionally, the reliability of the results from TD-DFT computations has been 
assessed through the comparison with their accurate experimental counterparts, showing 
also that possible discrepancies should be mostly attributed to the underlying vertical 
excitation energies. These findings are of relevance for the accurate study of larger 
molecular systems by hybrid models in which excitation energies obtained by accurate 
many-body approaches are coupled to structures and force fields computed by cheaper DFT 
and TD-DFT approaches possibly integrated in QM/MM/PCM models.
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Furthermore, the time-dependent model introduced in the present work is based on the same 
general background as our previous time-independent implementation thus allowing 
integration of both strategies for obtaining at the same time high resolution band 
assignments and complete spectra at variable temperature. It should be also pointed out that 
both approaches, implemented in the GAUSSIAN suite of programs, can be applied in 
conjunction with any quantum mechanical model for which at least analytic gradients are 
available. This means that, together with isolated molecules, a black-box procedure to 
evaluate spectroscopic properties at the harmonic level is available also for systems in 
solution described by the polarizable continuum model. Additionally, an approximate 
anharmonic treatment allows to take into account simultaneously anharmonic and 
environmental effects on vibronic spectra even for relatively large molecular systems.

In conclusion, we think that the approach described in this work and its companion time-
independent model represent very useful tools for the reliable evaluation and interpretation 
of band shapes for electronic spectra of medium-to-large semi-rigid molecular systems in the 
gas phase and in solution whenever non-adiabatic effects can be neglected.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(1): anthracene, (2): furan, (3): phenyl radical, (4): R,R-dimethyloxirane, (5): coumarin 339
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Figure 2. 
S1 ← S0 OPA spectrum of anthracene simulated with the path integral (TD, in red) and 
sum-over-states (TI, in green) approaches. Convoluted band-shapes were obtained by 
applying Gaussian distribution functions with HWHM=150 cm−1 (dashed line) and 200 cm
−1 (solid line), respectively. All spectra were simulated at the AH|FC level at T=0K in 
vacuum.
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Figure 3. 
Experimental and calculated X̃2A2 ← X̃1A1 photoionization spectra of furan. The 
convoluted spectra were simulated with the path integral (TD) approach using Gaussian 
distribution functions with HWHM=70 cm−1. The anharmonic spectrum (in red) differs from 
its harmonic counterpart (in blue) by the use of anharmonic vibrational energies instead of 
the harmonic ones. The stick spectrum was calculated with the sum-over-states approach 
using anharmonic frequencies. All computed spectra were done at the AH|FC level at T=0K 
in vacuum. The experimental spectrum (dashed black line) was taken from Ref.91,92
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Figure 4. 
Experimental and calculated A2B1 ← X̃2A1 electronic spectrum of phenyl radical. Both 
theoretical spectra were simulated with the path integral model (TD) at the AH|FCHT level 
at T=0K in vacuum. The harmonic spectrum (TD harm., in blue) was simulated using 
harmonic frequencies, while the anharmonic one (TH anh., in red) was done with 
anharmonic frequencies using a scaling scheme to include anharmonic correction to the 
frequencies of the excited state (see text for details). Gaussian distribution functions with 
HWHM=100 cm−1 were used to convolute the spectra. The experimental spectrum (dashed 
black line) was taken from Ref.95
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Figure 5. 
Duschinsky matrix of the A2B1 ← X2̃A1 electronic transition of phenyl radical. The matrix 
is displayed as follows. The square elements Jik are calculated and a shade o gray is 
associated to the element (i, k) in the displayed matrix based on the value (0: white, 1: 
black). Hence, a mode mixing will be displayed as a block of gray elements.
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Figure 6. 
Comparison of time-dependent (TD) and time-independent (TI) A2B1 ← X̃2A1 electronic 
spectra of phenyl radical with different approximations. Panel a: Franck-Condon 
approximation with correct Duschinsky matrix. Panel b: Franck-Condon approximation with 
Duschinsky matrix assimilated to the identity matrix. Panel c: Franck-Condon Herzberg-
Teller approximation with correct Duschinsky matrix. Panel d: Franck-Condon Herzberg-
Teller approximation with Duschinsky matrix assimilated to the identity matrix. Gaussian 
distribution functions with HWHM=100 cm−1 were used to convolute the spectra.
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Figure 7. 
S3 ← S0 electronic circular dichroism (ECD) spectrum of trans-(R,R)-dimethyloxirane 
computed with the path integral approach at the AH|FC level. Band broadening was 
simulated at T=0K (in blue) and T=298K (in red) with Gaussian distribution functions with 
HWHM=150 cm−1.

Baiardi et al. Page 41

J Chem Theory Comput. Author manuscript; available in PMC 2019 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 8. 
S1 → S0 one-photon emission (OPE) spectrum of coumarin 339 in vacuum at the AH|FC 
level at T=0K. The convoluted spectrum (AH|FC TD, in red) was simulated with the path 
integral approach using Gaussian distribution functions with HWHM=135 cm−1. The stick 
spectrum (AH|FC TI, in green) was computed with the sum-over-states model. Since all 
transitions originate from the initial vibrational ground state, only the vibrational final state 
is indicated in the assignment. | 0 〉 corresponds to the vibrational ground state, | ni 〉 means 
that only mode i is excited with n quanta
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Figure 9. 
S1 ← S0 one-photon absorption (OPA) spectrum of coumarin 339 in toluene solution 
simulated with the path integral approach at T=0K. Band broadening was obtained by means 
of Gaussian distribution functions with HWHM=135 cm−1.
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