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A aenenJ two-dImensional theory 01 laminated cylindrical shells is preseated. Tbe tbeo" aceoUDtI for a

desired degree 01 approximation of tbe displacements tbrougb the thickness, tbus accouDdDI foraaJ dlscoad

nuJttes ia tbeir derivatives at the iaterface of laminae. Geometric nollllDtartly ID tbe sease of tile yo. KarmU
straias is also included. Navier-type solutions of tbe linear tbeory are presealed lor simply supported boaadaly
conditions.

z

Fia. 1 Shell geometry aad coordiDate system.

•

(2)

(I)

ux(X, 8,:,/) = u(x, 8,/) + U(x,8,%,/)

ug(x,9,%,/) = v(x, 8,/) + V(x,8,%,/)

u:(x, 8,%,/) = w(x, 8,t) + W(x,8 t4,/)

U(x,8,O) = V(x,8,O) = W(x,8,O) =0

In developing the governing equations, the von Karman type

of strains are considered,8 in which strains are assumed to be
small, rotations with respect to the shell reference surface are
assumed to be moderate, and rotations about normals to the

shell reference surface are considered negligible. The nonlinear

where (u, v, w) are the displacements of a point (x, 8to) on the
reference surface of the shell at time I, and U, V, and W are

yet arbitrary functions that vanish on the reference surface as

Formulation of the Tbeory

Displacements and Strains

The displacements (uDU,.u:) at a point (x, 8,%) (see Fig. 1) in
the laminated shell are assumed to be of the form

the use of polynomial expansion with compact support (Le.,
finite-element approximation) through the thickness proves to
be convenient. This approach was introduced recently for
laminated composite plates by Reddy. 11 It is shown that the

theory gives very accurate results for deflections. stresses, and
natural frequencies. lJ The theory is extended here to lami

nated composite cylindrical shells.
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Introduction

L AMINATED cylindrical shells are often modeled as
equivalent single-layer shells using classical, i.e., Love

Kirchhoff shell theory in which straight lines normal to the
undeformed middle surface remain straight, inextensible, and
normal to the deformed middle surface. Consequently, trans
verse normal strains are assumed to be zero and transverse
sneatdefofrI'lations are neglected. 1-

3 The classical theory of
shells is expected to yield sufficiently accurate results when the
lateral dimension-to-thickness ratio s / h is large, the dynamic
excitations are within the low-frequency range, and the mate
rial anisotropy is not severe. However, application of such
theories to layered anisotropic composite shells could lead to

as much as 300/0 or more errors in deflections, stresses, and
natural frequencies.4-6

As pointed out by Koiter,1 refinements to Love's first ap
proximation theory of thin elastic shells are meaningless unless

the effects of transverse shear and normal stresses are taken
into account in a refined theory. The transverse normal stress
is, in general, of order hla (thickness-to-radius) times a bend

ing stress, whereas the transverse shear stresses obtained from
equilibrium conditions are of order h / t (thickness-to-Iength
along the side of the panel) times a bending stress. Therefore,
for alt> 10, the transverse normal stress is negligible com

pared to the transverse shear stresses.

The effects of transverse shear and normal stresses in shells
were considered by Hildebrand et aI.,8 Lure,9 and Reissner, 10

among others. Exact solutions of the three-dimensional equa
tions and approximate solutions using a piecewise variation of
the displacements through the thickness were presented by
Srinivas,11 where significant discrepancies were found between

the exact solutions and the classical shell theory solutions.
The. present. study deals with a generalization of the shear

deformation theories of laminated composite shells. The the
ory is based on the idea that the thickness approximation of
the displacement field can be accomplished via a piecewise
approximation through each individual lamina. In particular,
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str~-displacement ~uations in an onholon81 Cartesian co
ordinate system become

(7)

+ O'~to,.'t + O'~d)d V - \ qou,dO
v Q

-p[(U+ (,O(U+ U)+(iI+ V)O(iI+ V)

+ (IV + Wlo(w + w)]}dA dz

- LqO(W + W)dA ]dt

where the following additional approximation, consistent with

the Donnel approximation, is used:

f f(x.8.z)dz = f"f frdrdO= f1l/2 f f· (1 +!)c1zdA
J., J"Jo J-1I/2Jo a

_ f''l/2 f f.dzdA for z <Ca (8)

J-h/2J Q

- \ p(ilxoilx+ iI,oil, + utoil,)d Vldt (6)
iJ Y

where a;o as, a~ ax~ aft' etc., are the stresses, q the distributed
transverse load, p the density, V the total volume of the lami.
nate, {) the reference surface of the laminate (assumed to be the
middle surface of the shell), (. ) the differentiation with respect
to time, and- 8 the variational symbol.

Substituting the strain·displacements relations (Eq. (5)) into
Eq. (6), we obtain

0= 1 : [ l ~ : / 2 L [ a x e : ; + a:~ +~xo~x)
a,(aav aav )

+ Q as + ai + ow + oW + {3,oI3,-

aaw (oow aou aow)
+ t7zT + ax:. ax + az + ax

a,:(aaw ~ ac5W ~v aov)+- --uv +---u +a--:::-aas as a:

axf( aav aau ac5 v aau )
+ a a--ax + ai + trax + as + aI3xol3f + a {3,o~z

(4)

(3)

au" I 2 au
e:a =-;- + -2 13:r, 13:r = __t

uX ax

e = _1_ (au, ) 1. l
H (Q + z) 08 + u~ + 2 ~,

au av l(au au)
'Yd = - + - + - ~ + - + 13 ~,ax ax a 08 a8 x

where- a is the radius of curvature of the shell. Introducing

Donnell's approximation,9 Le., z ~ a, strains eH, *(xf, and *(St,

can be simplified as

1 (au, ) 1 ~ 1 aUt
elf = - - + u + - 13" {j, = - - -a af ~ 2 aaB

1 auz au,
~xf=--+- +1313,

a at ax "

l(av av ) 1e,,=- -+-+ w + w +-~i
a as a8 2

aw
e --

U - az

Yh = ~(a;t -u,) + ~

Substituting for Ux» U't and u~ from Eq.. (1) into Eqs. (3) and

(4), we obtain

VariadolUll Formal.do.

The Hamilton ~ a r i a t i o ~ a I _principle is used to derive the

equations of motion of a qIindrica11amin~te composed of N
constant-thickness Qnhotropic lamiJ;la, whose p r i n ~ p a 1 mate

rial coordinates are arbitrarily orien-ted with respect to the
laminate coordinates. The principle can be stated, in the ab-

where UJ, Vi, and Wi are undetermined coefficients and (j)i(z)

and Vti(z) are any continuous functions that satisfy the condi-

(9)

II

U(x, 8,z,t) = EUi(x,8,/)tPi(z)
ja 1

l'I

V(x, B,Z,/) = EVi(x; 8,/)(j>i(z)
i a 1

m

W(X, 8,z,t) = EWJ(x,8,t)t!l(z)
ja 1

Approximation tbroUlb Tbickness

In order to reduce the three-dimensional theory to a two-di
mensional one, we use a Kantorovich-type approximatioD. 12•16

where the functions V, V, and W are approximated by

where f; and f 0 denote the inner and outer radius, respectively,
of the cylindrical shell and z is a coordinate measured along
the normal to the shell surface with origin at the reference

surface.

(5)

(
aw aw)

13 = - - +-
z ax ax

(j, = _!(aw + aw)
a-a, a9
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+ t t 1JkWi6Wk] - q6)dAdI (11)
I - It - 1 J

Here N;o N" etc., denote the stress resultants,

(N",N..N...Q-Qh) = r/tI2 (a", a,.axf.a;w a,:)<U;J-h/2

. ~." h/2
( M L M S . M f . , . M ~ ) = (a;o a"a~,C18:)4>idz

-h/2

. Jhl2 d<t>'
(Qk,~) = «1.q,(1h) A:"' dz

-h12 ~

( M { ' ~ , M ~ . M - b M i h ) =r1112 (a", a,.axf.a;w a,:)y,J<u;J-"/2

. Jhl2 dt/l
~ = (1: ... _ dz

- "12 Uo4

( M k . L J k . L ! , , ~ =rh/2 (a", a,.axf)y,J",k<U;J-"/2

Governing Equations
To complete the theory, we derive the equations relating the

(3 + 2n + m) variables (u, v, w, VI, VJ, WJ). Substituting Eq. (9)
into Eq. (7) and integrating through the thickness, we obtain

J
"J [[ (aou aw dOW) 1 (aovo= N - + - -- + -,V8 - + owo Q x ax ox ax a' d8

1 aw aow) 1 (aov aou aw aow+--- +-Nxf a-::- +-+---a a6 a8 a ax a8 ax de

aw dOW) Q aaw .!.n (aow .t. )]+ - - + - - -="'h - + uVa8 ax .qax a as

"[ .ollU} 1 ' aav} . . l(~+ E M~-- + - M~ -- + QkoUJ - -\~\1'e~. 0v.. 'J,./I _ I ax a a8 a '--_._~ .:C'" •

. . aaV} 1 . aOUJ] m [M~ .+ ~ 0Vi + Mf, -- + - M~ -- + t""' - 0WJ~ ax a d8 j ':-'1 a

N . '"'rj (JoWl U{: aowI]
+ ~:oWJ + M~ ax + a ---a8

+ ~ [Ui(aw (Jaw) + dOW aWl)
,J.I. x ax ax ax axJ-

M'... ~.( .. aw. 06W... j 06.waw.. i) M{.(OW06W
i

+ 4 2 a8 ---a8 +ai as + a ax---a8

06w 0Wi <Jc5w <J Wi ow 06 Wi)
+ ax --as+ai ax + a9 ax

'" '" [ . aWl ac5Wk 1 'k aWl OOWk+ E E Lik- a- -a- +.., LI ~ - - ; a -I _ It _ I ~ X a CJU CJU

+! Lilc aWl ac5wk
+ !Lilc aowi aWk]

a XI ax aB a XI ax de

- [[0(il6U + iJ6v + w6w) + t P(iJ6(jJ + il6 Vi
i-I

'"+ (;10" + Vi6iJ) + E]i(wc5WJ + Wiow)
" " i-I

+ E E[it ( U)oUt + Via Vk)
j-It-I

where underscored terms denote the nonlinear terms due to
the von Karman strains.

Boundary CondldoDS

The virtual work principle gives the following geometric and
force boundary conditions for the theory: .

(130

(13e)

(13e)

(13d)

(13a)

(13b)

1 ~ ....Nx•x + aNxf., =IOu + i.J [I U J

j. I

Geometric (essential) Force (natural)

u aNxl'x + NxtIf. =0
,)

v aNxflIx + N,n, =0

w aQx:!Ix + Qs:". =0
UI aM!.:nx +M~,=O
Vj a M ~ x + ~ n . = O
WJ aMxzlIx + MJ,:", = 0 (14)

(
I k OWk)] "rioo ~ pic .• k+ - L~ -- = I"W + i.J Wa as.x Ie. I

(1-' aw) (1 '"', aw) (1... . aw)+ -~- + -M{,- + -M{,-a2 08 ,8 a ax ,8 Q . a8 .x

'"= [iN + EWJ]i - q
r-I

MJ -0{. +!M!",=Ji&+ EflkVkX.X x ~ a' Ie _I

1 . 1 '" ~ · I c · · 1 e- M~.8 + - .\f:.: - ~: + Mi-f.x = [Jv + i.J [J V
a a Ie-I

1 '"'. N. _. 1 '"' oj ( .... aw)
-;; ~ - ~ : + ·\1h.lt +;; M,:., + M{ ax oX

1 1 ~ , ....- Ns., + - Q't + Nxf.x = [of) + i.J IJ V.u
a a j_1

1 1 (aw) ( 1 aw)-;; N, + Q.:.x + ;; Qh.' + Nit ox oX + a2 N, as ,8

( 1 rl.i aw.. i) (1 lij aWi) (1 M'"rj OWl) ]+ -M;-·- + -J.YIXf- + - d-
Q2 as, 9 Q ,ax" a as.x

( 1 aw) (lOW) '" [( .... aWi)+ -Nxf- + -Nxf- + E M~-a ax ,f) a of) ,x 'j a I ax ,x

+ t[ ( L ~ 1 c aWIe) + (-\ LJk 0Wk) + (! L~ aWk)Ie _I ax.x a a9 . ,8 a aX.9

and 10
, Ii, and 11 are the inertias,

~ ~ / 2 )"
/0 = \ p<U;. (Ji,1I) = p«(j)i, y,J)d%

oJ -1t/2

(flk,P") = j'PWl/l k
, ~"''')dz (12)

Equations of Motion

The Euler-Lagrange equations of the theory are obtained by
integrating the derivatives of the varied quantities by parts and
collecting the coefficients of ou, ou, ow, lJUJ, 0VJ, and 6WJ as

(10)

tions lef Eq. (2»)

~(O) = 0; j = 1,2, n

V)(O) =0; j = 1,2, m
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where (n»n,) denote the directiODcosines of a unit normal to
the boundary of the reference surface O. '

In this form, we keep a nonlinear coupling between the trans
verse deflection of the middle surface (w) and the transverse
deflections of the interfaces. All remain unchanged but Eq.
(130, which reduces to

Furtber Approximations
The theory can be easily simplified for linear behavior and/

or zero normal strain (ta = 0). The term (l/a)Q,: in Eq. (13)
is neglected in Donnen's quasishaUow shell equations l

.,., and
it can be neglected here. To be consistent, the term ( l / a ) M ~ t
should also be neglected simultaneously in this theory.

Consistent with the assumptions made in the derivation of
the kinematic equations for the intermediate class of deforma·
tions, we can assume that the transverse normal strain is small
and nealect the products of. the derivatives of the interface
transverse displacements,

awl aWl
-.-. - • 0 with a, /3 =x,8aa a~

(IS)

- ! ~ - ~ + U{z.x +! St'Ic., + (u{ aw)
Q a ax ,x

(1('~ aw) (1" . aw)+ - il'T, - + - M{, -
Q2 a8,8 a aX.8 (

+ (! M{, aw) = Pw + Eptwt (16)
a oB,X Ie. I

In addition, we can assume that the normal strains in the
transverse direction 0 Wi / ox are very small and neglect the
products (aw /oa)(a Wi /0/3). In this case, the third and sixth of
Eqs. (13) reduce to

_! N, + Q.xx.x + ! QIz.' + (Nx aa
W

) + (.; N, aw)
a a X.x a a8.,

(lOW) (1 aw) Iff •• ~
+ QN", ax .' + QN", a8 ,)C = lOw + i~1 WI, - q

1 ~~ Ai ~ I 1· Iff--.l1'T, - v~ + m~x + - &f'h.' =]Jw + ~ JikWIc (17)
a a ,,':.

Obviously, there is a range of applicability for each of the
cases discussed above.

Constitutive Equations

The constitutive equations of an arbitrarily oriented, or·
thotropic laminae in the laminate coordinate system are

C li C12 C13 0

o
=

(J~ 0

o

o

o o c., C... 0

o C66

1 aw v

aaB - a
av 1 au aw 1 aw
ax + aa8 + ax aa8

aUi . aw aWl y)
"I

ax 41 ax ax

1 aVJ . ! ( Wi +! aw aWi)y.i--. q,J
a a8 a a a8 as

0 wJdy)

n Iff
d:

+I;
UJ d(j)i

+I; aWJ .
j-l j - I

ax VIdz

v(dql 1 )
1awJ .

'J ---4>' --1/1
dz a a a8

CaUi aVi) . lew aWi + aw aWi)~--+- (jI
a a8 ax a ax as a8 ax

(18)

where Cij denote the elastic constants. Here the nonlinear strains used are those consistent with an intermediate class of

deformations and correspond with the simplifications made to arrive at Eq. (16).

I
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Substitution of Eqs. (18) into Eq. (12) gives the following laminate constitutive equations:

r
Nx1 rAil A 12 0 0 A I6 rau +~ewyI I ox 2 axI

I Il au + ~ +l (l awy: N 9 I !A l2 An 0 0 A 26
! ade a 2aoe
i

owf

Q-n I 0 0 A" A 5.. 0
ax

Qh 0 0 A .., A 44 0
1 aw v
-----

Q a6 Q

0
1 au au aw 1 awN". A 16 A 26 0 A66 --+-+---aa6 ax oxaa6

[BII
U) aUi

B 12 0 0 B16 ax
1 aVi8 12 8 22 0 0 B26 a af}

"+E 0 0 B'S B,.. 0 Ui
J. I

0 0 B.., B.. 0 Vi

1 aU) ayJ

B l6 8 26 0 0 B66
--+-
a as ox
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r
DII

U.k).
aUJ

DI2 0 0 D 16 ax
1 aVi

I Dt2 D*12 0 0 D26 aaB
"

I
+1: I

0 0 Dss DS4 0 VJ
/(:1

I

I 0 O· D." D44 0 Vi

I
I

1 au) aVIIDt6 D26 0 0 D66 --+-

l a as ax
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U.i) awawJ
011 OIZ Ou 0 0 016 ---ax ax

012 Qu On 0 0 Q%6 \ J I awaWI)- w +---
a a as a6

0 032 033 0 0 0 Wi
Iff

+1:;
0 0 0 0" 0,. 0

aWl
k-I

ax

0 Q.u Q44 0
1 aWl

0 0
ti7

Q16 Q26 Q63 0 0 Q66 !eW aWl + aw aWl)
aaxa6 a8ax

(21)

(22)

ti

U,k) (J,k)

au +!(awyLx Ell E12 £16 ax 2 Jx

L, = E12 E22 £26 ! [au + w+!! ( ~ y ]
a a8 2a a8

E16 E26 £66 leu au awaw)Lxf a o8+aa;+ ax a8

Gl2 0 16

U,k,r) au'
Gil ax

11 1 av'
+1:; G l2 G22 0 26 ti18,-I

1 au" aV"
0 16 0 26 0 36 --+-

a a8 ax

U,k,r)

all 01Z 0 16 AU
8waw"

ax ax

/PI

012 022 0 26 0 23
! ( w' + ! aw aw')+1:; a a a8 a8,.1

lew aw' + aw aw;)G61 AU 066 063 a8xa888ax

W'

(23)
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for each of the modes (m,n). The solution of the eigenvalue
problem [Eq. (26)) gives 3N + 3 frequencies for each mode
(m,n).

(

(25)

(26)

(24)

[K] ( ~ ) = w~,,[M] (~J

Vi(x.8.t) = EEI{"" sinm8 sinax T"",(t)

'" "a. a.

Wi(x.8,t) = EEOi",,, cosm8 sinax Tmo(/)

". "
T".,,(t) =e iwIftIt

Ui(x.8.t) = EE-rim" cosm8 cosax T"",(t)
". II

CIt a.

u(x,9,/) = EEX"." cosm8 cosax T",,,(t)
'" II
a. a.

v(x, 8,/) = EEr",,, sinm8 sinaxT",,,(/)

'" "=- a.

w(x,8,/) =E En",,, cosm8 sinax T",,,(/)
". "

where Q =nr/b and b is the length of the cylinder.
After substitution into the constitutive equations and equa

tions of motion, we get a system of 3N + 3 equations that
relate the 3N + 3 unknowns tt) = (X",,,,r,,,,,,n,,.,.,im,,, Pm.
Oim,,), j = 1, ..., JV as

AnalYtic81 Solution of the Linear Equations
The theory presented so far is general in the sense that the

interpolation functions t;i and VI can be chosen arbitrarily u
long as they satisfy the conditions in Eq. (10). In order to
produce an actual solution, we choose here linear Laaran.e
polynomials for both til and "". In this particular case, the
coefficients Ui, Vi, and WI are identified as the displacements
of-each-jth-interface b e t w ~ n layers. In order to be a61e to
obtain an analyt!,;al solution and to compare the results with
existing solutions of the· three-dimensional elasticity theory,
we must restrict ourselves to the linear equations obtained by
eliminating the underscored terms in Eqs. (13). The solution
of equations of even the linear theory is by no means trivial.
These equations of motion combined with the- constitutive
relations are solved exactly for the case of onhotropic, simply
supponed laminated shells. Using a Navier-type solution
method (see Refs. 11 and 16), a set of kinematically admissible
solutions is assumed, as follows

where A. B, F, etc., are the laminate stiffness defined by



SS2 BARBERO, REDDY, AND TEPLY AIAA JOURNAL

.~ Tablet Noadlmeaslo." lreqllftdel for ........,. tide .........

First Second Third
frequency frequency frequency

blnQ ", ExaetA GLSTb Exact GLST Exact GLST

0 0.32461 0.32706 1.8186 1.8074 3.0037 2.9666
1 0.33631 0.33855 1.7031 1.6939 3.1438 3.1003
2 0.36737 0.36911 1.4689 1.4629 3.4615 3.4020
3 0.40447 0.40603 1.2612 1.2571 3.8451 3.7631
4 0.42507 0.42687 1.1822 1.17873 . 4.2502 4.1407

2 0 0.28282 0.28354 0.91614 0.91301 1.5441 1.5389
1 0.30591 0.30649 0.73938 0.73162 1.7807 1.7725
2 0.30838 0.30897 0.60419 0.60213 2.2071 2.1913
3 0.219S9 0.22066 0.80118 0.79792 2.6748 2.6466
4 0.20414 0.20S21 1.1467 1.1396 3.1559 3.1098

8 0 0.20999 0.20989 0.22904 0.22898 0.51742 0.S1708
1 0.07054 0.070~2 0.41957 0.41930 0.84128 0.83941
2 0.03594 0.03638 0.78928 0.78801 1.3559 1.3476
3 0.06940 0.06966 1.1956 1.1900 1.9113 1.8887
4 0.12237 0.12254 1.6OS8 1.5909 2.4841 2.4354

·Exact resulu from Srinivas. II ~ G L S T = generalized laminate sheD theory (present).

Table 1 Nondlmensional frequencies for a three-layer tbick laminate

First Sec:ond Third
frequency frequency frequency

~
bInG Exacta OL$Tb Exact OLST Exact GLSTm

1 0 0.40438 0.40838 1.6205 1.5064 1.7475 1.9271
1 0.42140 0.42401 1.5294 1.4333 1.7S30 1.9478
2 0.4649S 0.46524 1.3354 1.2110 1.7633 1.9850
3 0.50904 0.51186 1.1742 1.1233 1.7626 2.0148
4 0.52631 0.53482 1.1S40 1.1003 1.7309 1.9960

2 0 0.31807 0.32042 0.89129 0.87015 1.4316 1.3733
t, 1 0.35573 0.35501 0.71061 0.69823 1.4242 1.5282

2 0.33947 0.34297 0.62782 0.61531 1.3608 1.5689
3 0.28099 0.28233 0.850S1 0.84972 1.5134 1.7085
4 0.33070 0.328S1 1.1398 1.1460 1.7260 1.9032

8 0 0.21844 0.21680 0.22955 0.22916 0.54260 0.53637
1 0.06638 0.06696 0.46207 0.46070 0.86049 0.85054
2 0.08773 0.08718 0.82383 0.82943 1.3288 1.2941
3 0.18459 0.18276 1.1547 1.1553 1.6937 1.6713
4 0.28616 0.28404 1.3692 1.3842 1.9282 1.9686

'Exact results from Srinivu. II bOLST • aeneralized laminate sheD theory (present).

Table 3 NoadllDellSioDai lrequeades of a two-ply Inpblte-epoxy cyUDder

First frequency Second frequency Third frequency

Rotary inertia No rotary Rotary intenia No rotary Rotary inenia No rotary
included inenia included inenia included inenia

bInG m It _0 I ~ =0 et. ~O· It -0 et ;II! 0 It = 0 I~ ;II! 0 e: = 0 It ~ O I ~ =0 e:. ;Il!O It. =0

0 0.6370 0.6370 0.6353 0.6353 0.7716 0.7809 0.7725 0.7838 2.2094 2.2102 2.15S8 2.1594
t 0.4153 0.4163 0.41S2 0.4170 1.202 1.212 1.195 1.207 2.2208 2.2219 2.1657 2.1698
2 0.2936 0.2938 0.2937 0.2947 1.818 1.834 1.788 1.804 2.2581 2.2619 2.1978 2.2052
3 0.2666 0.2660 0.2667 0.2673 2.212 2.268 2.214 2.210 2.S134 2.5444 2.4253 2.4612
4 0.3109 0.3092 0.3111 0.3115 2.3S7 2.35S 2.287 2.289 3.1302 3.1670 2.9841 3.0258

2 0 0.3185 0.3185 0.3186 0.3186 0.7606 0.7692 0.7610 0.7700 1.1360 1.1360 1.1273 1.1277
1 0.2133 0.2135 0.2133 0.2136 1.108 1.112 1.104 1.108 1.1678 1.1748 1.1579 1.1667
2 0.1397 0.1391 0.1397 0.1400 1.211 1.209 1.200 1.199 .,1.7S87 1.7785 1.7314 1.7524
3 0.lS18 0.IS10 0.1518 0.1515 1.302 1.300 1.287 1.286 2.4325 2.4602 2.3586 2.3879
4 0.2313 0.2291 0.2314 0.2303 1.419 1.418 1.399 1.398 3.0777 3.1126 2.9432 2.9816

8 0 0.0797 0.0797 0.0798 OJ)977 0.2864 0.2863 0.2863 0.2862 0.7601 0.7684 0.7603 0.7685
1 0.0439 0.0439 0.0439 0.0439 0.3585 0.3S83 0.3582 0.3S80 1.0958 1.1078 1.0923 1.104S
2 0.0454 0.0451 0.0454 0.0451 0.5145 0.5144 0.5134 0.5132 1.7338 1.7S30 1.7086 1.7285
3 0.1147 0.1133 0.1147 0.1136 0.7015 0.7014 0.6984 0.6983 2.4132 2.4404 2.3421 2.3706
4 0.2133 0.2105 0.2133 0.2115 0.9004 0.9003 0.8937 0.8936 3.0623 3.0968 2.9310 2.9686

'Exact resulu from Sriniva. 1I bOLST • aeneralized laminate sheD theory (present).
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As an example, a three-ply laminate with orthotropic layers

is analyzed. The stiffnesses of the inner layer are assumed to

be: ell =0.08. ell =O.OS. ell =0.07, C22 =0.19, ell =0.32,

ell = 1.0, CoW =0.04, CH =0.03, and eft(, =0.34; the outer

layers are assumed to have stiffnesses 20 times those of the

inner layer. The results are presented in terms of a nondimen

sional parameter X as

Conclusions

A general two-dimensional shear deformation theory of

laminated cylindrical shells is presented. The theory allows for

. the inclusion of a desired degree of approximation of the

displacements through the thickness. Geometric nonlinearity

in the von Karman sense is also considered. Exact solutions of

the linear equations for simply supported cylindrical shells are

presented. The results correlate very well with the three-di

mensional exact solutions. The validity of Donnell's approxi

mations and the applicability of various simplifications made

for the, nonlinear equations are to be investigated further. The

finite-element models of the theory are to be developed in

where r; is the radius of the ith interface and r0 is the outer

radius of the cylinder.

Results for a thin laminate (rt = 0.95ro' '2:: 0.955'01

'3 == O.99Sro ) are presented in Table 1. Similar results for a

thick laminate (r. =0.8ro , '2 =O.82ro , fJ =0.98(0) are pre

sented in Table 2. The exact results using three-dimensional

elasticity are taken from Srinivas. 11 In Table 3, results for a

two-ply cylindrical shell are presented. The material properties

used are those of a graphite-epoxy material (Et =19.6 msi,

£" = 1.56 msi, 1'12 = 0.24, "23 = 0.47, G ll = 0.82 msi,

Gn =0.523 msi) and the thickness of each layer is O.OS rO. The

three lowest frequencies are presented in Table 3 in nondimen

sional form as before. While neglecting the rotary inertia, the

in-plane inertia still needs to be considered for cylindrical

shells because the displacements tangential to the reference

S i i r f a c e ~ m i i n l y u" play an important role in the· behavior of

the shell. This is in contrast to plate theory, w here the in-plane

inertia are usually neglected along with rotary inertia. Results

obtained for zero transverse normal strain are also presented.

They were obtained using the reduced stiffness matrix16 in

stead of the three-dimensional stiffness matrix. The present

results are, in general, in good agreement with those presented

by Srinivas. lt

[

~ ., ~ ]1 /2I.Ipl(rr.. 1 - ,,-)

I a 1

A = wro -.,,------

E C~J (r?.. 1 - rl')
;. t

(27)

~ r d e r to s ~ l v e . cylindrical shells with general boundary condi

!10nS, lamInation scheme, loadiol, and geometric nonlinear

tty.
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