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The states OIA1A2) are considered, where the operators 0 are associated with a unitary 
representation of the group Sp(4, R), and the two-mode Glauber coherent states I A~ A2 ) are 
joint eigenstates of the destruction operators a I and a 2 for the two independent oscillator 
modes. We show that they are ordinary coherent states with respect to new operators bl 
and b2, which are themselves general linear (Bogoliubov) transformations of the original 
operators al, az and their hermitian conjugates a~, a* 2. We further show how they may be 
regarded as the most general two-mode squeezed states. Most previous work on two-mode 
squeezed states appears to be based on more restrictive definitions than our own, and 
thereby reduces to special cases which are unified within our treatment. 

We first consider the annihilation and creation oper- 
ators a and a t associated with a single oscillator mode, 
and which obey the usual canonical commutation 
relation, 

[a,.a*] = 1. (1) 

The one-mode squeezed states associated with these 
operators are by now well-known (see e.g. [1-6]). In 
terms of the vacuum state 10), defined as usual by 
a l0) = 0, they are defined as, 

]A;p02)  -~ U2(pO2)]a ) = U2(pO2)UI(A)IO ) (2) 

where the displacement operator, UI(A), given by 

Ut(A ) - e x p ( A a t -  A*a), A c C  (3) 

and the squeezing operator;  U2(p02), given by 

U2 (p 0)~) --- exp ( - �88 io a t 2 + �88 w a 2) exp (i2a* a) 

p,O, 2 ~ ,  p > 0 ,  0 <  0 <  2re, (4) 

* Present address: Department of Electrical Engineering and Elec- 
tronics, University of Liverpool, Brownlow Hill, P.O. Box 147, 
Liverpool L69 3BX, United Kingdom 

are unitary representations of respectively the Weyl 
group and the group SU(1, 1). These squeezed coher- 
ent states are just ordinary coherent states with respect 
to the operators b and b*, 

U2aUt2 ~ b = 7a+Sa t, 

U2atUtz --- b t = 5*a+7*a t (5) 

7 -- e-iZcosh(�89 6 = e-i~z+~ 

which are linear (Bogoliubov) transformations of the 
original operators a and a*. The transformation is 
easily seen from (1) and (5) to be a canonical one, 

[b, b*] = 1. (6) 

Two-mode squeezed states were first considered as 
trivial products of two one-mode squeezed states, 

IA1A2; PtO1)q, P20222) - 

U(2t)(pl O121) UpI(PzO222)IA1A 2 ), (7) 

where IA1A2) = IA1 ) IAz )  are two-mode Glauber 
coherent states associated with two independent mo- 
des described respectively in terms of operators a t and 
a 2 (and their hermitian conjugates), and where 
U~)(piO~2i), i = 1, 2 are the squeezing operators given 
in (4) in terms of annihilation and creation operators at 
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and a~. In fact, Milburn [7] proved that a certain 
particular definition of two-mode squeezing, leads 
precisely to the states defined in (7) as the most trivial 
generalisation of the one-mode squeezed states. 

Caves and Schumaker [8] later adopted a different 
definition of two-mode squeezing and studied the 
associated squeezed states. More recently we have 
ourselves shown [9] that these latter squeezed states 
are based on the so-called discrete series represen- 
tation of the group SU(1, 1). Both this type of squeez- 
ing and also a separate type of squeezing based on the 
so-called Schwinger representation of the S U(2) group, 
have been used recently both in the study of interfer- 
ometers [10] and in other applications in quantum 
optics I-1 1]. It is one of our purposes in the present 
paper to show that all of these different types of two- 
mode squeezing which have been considered sep- 
arately in the literature, may be unified within our 
treatment which is based on the larger group Sp(4, ~). 

In terms of the annihilation and creation operators 
for the two independent modes, which obey the usual 
canonical commutation relations, 

[a s, a[]  = 1 = [a2, at2] (8) 

[as, a2] = [a , ,  a'z] = Jail, a2] = Earl, a~] = 0, 

we consider each of the ten possible pairing operators, 

s.t2 K(1) , 2 s t +�88 K(+ I) ~ ~t~ 1 , - ~ ~al, K(o I) ~ )-asa s 

~.,2 K(2) s ~ K(o 2) 1 * +�88 (9) K ~  ) =- ~,.2 , - =- ~a2, ~ ~a2a2  

a*a ~ L_  =- asa2, J+ - at~a2, J_  = ala*2, L+ - 1 2, 

which satisfy the Sp(4, ~)  algebra. From (8) and (9) it is 
a simple business to verify the commutation relations, 

ld '(1) I ( ( 1 ) - I  ..}- K~), [K~), K~)] = 2K(o s) at~ 0 , xx  _+ d ~ 

[Kto :), K~ ) ] = + K ~  ), [K~ ), K(+ 2)] = 2K~o 2' 

[L_,  L+ ] = [d+, J_ ] = 

2(K(o u + K(o2)), ")iV(l) ~-"(2)~ -~V txO - - J t x O  ! 

[K~ ~,L_]  = - � 8 9  [K~ ) , d _ ]  = - � 8 9  

[K~), L+]  = �89 " [K~), J + ]  = � 8 9  

[ K ~ ) , L _ ]  = - - �89  [K~), J + ]  = --�89 

[K~ ) ,L+]  = �89 [K~ ) , J _ ]  = �89 

[K~o~), L_+] = +_�89 [K~o'),d+] = +_�89 

[ K ~ # , L + ]  = +}L+_,  [K~o~),J+_] = -7-�89 

[L+,  J+ ] = - 2K~ ), [L_,  J+ ] = 2Kt_ 2) 

[L +, J_  ] = -- 2K(+ 2), [L_,  J_  ] = 2K9 ' ,  

(lO) 

and that all other commutators are zero. 
We see immediately that the three operators K~ ), 

K(_ ~> and K~o ~) close under commutation into a sub- 
algebra of Sp(4, g~). We explained in detail elsewhere 

[1] that with the particular realisation of these oper- 
ators considered here, this is simply the "�88 3 represen- 
tation of SU(1, 1)." The operators K(+ 2), K~ > and K(o 2) 
similarly close under commutation into the same 
subalgebra. The three operators L+, L_ and Lo - K(o 1) 
+ K(o 2) also close into the same SU(1, 1) subalgebra, 
but we explained elsewhere [9] that in this case the 
particular realisation of (8) and (9) now leads to the 
"discrete series representation of SU(1, i)." Finally, 

7.1(i) k - ( 2 )  the three operators J+,  J_  and Jo - -~o - - ~ o  also 
close under commutation, in this case into (the 
Schwinger representation of) the angular momentum 
subalgebra of SU(2). 

We now consider a unitary representation of the 
group Sp(4, ~)  which is realised by the ten-parameter 
family of operators 0 - 0 (o ~ ,  r49, p l 0 i 2 i ,  p202 /~2 )  , 

defined by, 

b - W2(o, 0)V2(r, 49)U(21)(psOl"~'l)U(22)(p202"~2) (11) 

where, 

W2 (a), 0) - e x p ( -  �89 a2 + �89 at2); 
co, 0 e ~  

V2(r, 49) =- exp(- -  �89 a~ a*2 + �89176 as a2); r, 49 e R 
(12) 

U~O(pjO/y)  _ s -~o~ ,z  e x p ( -  zpje aj 

s i 0 j  2 " t �9 +~pje  aj)expO2ja j aj), 

pj, O j , 2 jE~ ,  j = 1 , 2 .  

As we have already explained, the following special 
cases of (11) and (12) apply: (i) for either P2 = )-z = r 
= e ) = 0  or P x = 2 1 = r = o ) = 0 ,  we have the ~, 
representation of SU(1, 1); (it) for Pl = P2 = 21 - 22 
= co = 0, we have the discrete series representations of 
SU(1, 1); and (iii) for Pl = P2 = 2s + 2z = r = O, we 
have the Schwinger representation of SU(2). 

We note next that it is not difficult to show that the 
mode of action of the unitary operators 0 on the basic 
operators a i and a~ (i = 1, 2) is as follows, 

OasO t = bx = ala~ + zta~ + # laz  + vsatz 

OatO t = b~ =C{a 1 +a*a~+v*a2+#~a t2  (13) 

Oa 2 O* -- b 2 = a 2 al + 272 a~ + #2 a2 + v2 atE 

0atz0t=b~2 �9 * t �9 * t = "-l- V 2 a 2 + # 2  a 2  27 2 a s + O" 2 a s 

where the constants o-i, % #i and v i (i = 1, 2) are 
defined by, 

a 1 _-- e-iZleosh(�89189 

_ el(C- zl - 0, + 0)sinh(�89 s ) sinh(�89 sin tim) 

271 = e-i(z '  +~189 )cosh(�89189 ~  

_ e-i(~, +r +O) cosh(�89189189 



]21 ~ ei(~P --z, -Ol)sinh(�89189189 ) 

+ e  -i~1 +*)cosh(�89189189 

V 1 = e - i ( .h  +4')cosh(Xpl)sinh(Xr)cos(�89 

+ ei(O-x,-~189189189 (14) 

a 2 - ei~g'-z2-~189 sinh(�89189 

-ei~O- Z])cosh(�89189189 

z 2 - e-i~z]+0)cosh(�89189189 ) 

-e - i (o+ z2+~189189189 

#2 -= e - i Z 2 c ~ 1 8 9 1 7 6 1 8 9 1 7 6 1 8 9  co) 

+ei(O-z~-0~ - q,)sinh (�89 2) sinh (�89 (�89 

v 2 - e-i(z2 + 0~)sinh(�89189189 ) 

+ e i(q'- ~ -O)cosh(�89189 

Equations (13) and (14) provide us with the most 
general homogeneous linear transformations among 
the four operators a 1, at ,  a2, at2 that preserve the 
commutation relations (8), 

[bl,  b t l ]=  1 = [b 2, bt]] (15) 

Ebb, b2] = [b~, b'z] = [bI, b2] = [bl,  b'z] = 0. 

The operators 0 thus most completely generalise to 
two modes, the Bogoliubov transformation (5) for a 
single mode, which is in turn generated by the operator 

U 2 �9 
From (13) and the fact that 0 is unitary, we may 

trivially prove that for an arbitrary function 
f (ax ,  a], a2, a'z) we have, 

~?f (a 1 , a~, a 2, atz)Ot=f (bl, btl, b2, b~).~ 

Of(a1, al,  a], a~) = f (b 1, bl, b], b~)~. (16) 

If we now define the general two-mode squeezed states 
as 

I A i A a ) s q  - [gIA1A2) , (17) 

then (16) implies that 0ax = blO and [9a2 = b20, and 
hence that the states IA ~ A2 )~q are simultaneous eigen- 
states of the transformed operators bz and b2, 

bllA1A2)sq = AI[A1A2)sq 

b]IA1A2)~q= A2IA1A])~q. (18) 

We note also the relation, 

[ A I A 2 ) s q  : O exp(A l a ~ - A*~ al )exp(A 2a*2 

-A~a2) lO,  O) 

= exp(A~ bl - A*bl)exp(A2b~2 - 

A*b2)[0, 0)~q. (19) 
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It is clear from (18) and (19) that the states IA1Az)sq 
are ordinary (Gtauber) coherent states with respect to 
the transformed operators bx and be. As special cases 
of our general two-mode squeezed states, we mention 
the following: 

(i) r = c~ = 0, which corresponds to squeezing of the 
two modes independently; 

(ii) Pa = P2 = 2 1 - 2 2  = ~ = 0, which corresponds 
precisely to the squeezing considered by Caves 
and Schumaker [8]; and 

(iii) Pl = P2 = 21 +-~2 = r = 0, which corresponds to 
SU(2) squeezing. 

in conclusion, it is clear that we have completely 
generalised and unified the various different types of 
two-mode squeezing that have been studied in the 
literature. 
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