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Infinitesimal canonical transformation of a field operator 1s written in terms of the 

chronological product of the field operator and the generating current. This relation is then 

generalized to the infinitesimal transformation of the chronological (and retarded) products 

of any number of field operators. It is shown that the general relations thus obtained con

tain identities known as the generalized Ward relations in various forms. 

The general relations given in integral form are converted into differential form. The 

relation to the similar identities obtained by the path integral method is discussed and use 

of the general relations is suggested. 

The argument of a previous paper is, thus, refined and extended in three aspects: (i) 

constraint variables are treated systematically, (ii) it is pointed out that the general relations 

hold true for the retarded products, (iii) relation to the path integral method is discussed. 

§ 1. Introduction 

The generalized Ward relation played a vital role m the past two decades 

m various fields of physics such as the current algebra supplemented by the PCAC 

hypothesis, D the infra-red problem in quantum electrodynamics, 2J the gauge theory3l 

and the dynamical rearrangement theory4l in particle physics. 

Despite extensive developments in techniques in such theories, the origin and 

the validity of the relations are not entirely clear, and the derivation of the various 

relations within the conventional field theory is attributed to the property of the 

chronological ordering and the canonical commutation relations between field oper

ators. On the other hand, the derivation of the relations by the path integral 

method is general and makes use of the fact that the transformation of integral 

variables causes no change. 5) 

It is the purpose of this article to derive the relations from the first principle 

in the conventional field theory, hereby showing their validity and unifying the 

independently developed procedures. 

In the next section, we derive the relations between the infinitesimal transfor

mation of the field variables and the generating current associated with it. The 

derivation is quite general and model-independent. It will be seen that the validity 

*l Work supported in part by the National Research Council of Canada. 

**l Permanent address: Department of Physics, College of Science and Technology, Nih on 

University, Kanda, Tokyo 101. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

7
/5

/1
7
3
2
/1

8
2
2
3
9
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



General ·ward-Like Relations in Canonical Field Theory 1733 

of the relations is just the same as that of the canonical equation. Those relations 

obtained in this section are the generalized Ward relations in integral form. 

We can convert them into a differential form by considering a transformation 

involving a test function. In doing so, it will become essential to know the con

straint structure of field variables, which, of course, is model-dependent. This 

problem will be discussed in § 3 with some elementary examples in § 4. 

In order to familiarize ourselves with the derivation of the relations from 

the general point of view, we adopt quantum electrodynamics and show how the 

various identities follow, without the requirement of the notion of gauge invariance. 

Section 6 is devoted to demonstrate one-to-one correspondence between the 

general identities and those obtained by the path integral method,4J,sJ Several 

remarks are given in the last section and use of the general relation is suggested. 

§ 2. Derivation of the integral identities 

We shall find it useful first to rev1ew briefly salient features of the mathe

matical formalism6J of quantum field dynamics that find repeated application in 

the derivation of the relations. 

Let us consider an infinitesimal transformation 

(2·1) 

(2·2) 

The change of the action integral is, due to the Euler-Lagrange equation, 

(2·3) 

where 

(2·4) 

We have denoted the field variables by ¢/', which can be divided into two sets: 

¢f, called the canonical variables, and ¢A, termed the constraint variables. The 

second set is characterized by the relation 

(2. 5) 

The Euler-Lagrange equation for the constraint variables degenerates into 
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1734 T. Takahashi and T. Goti5 

(2·6) 

with 

II ·A= f)_[ . 1 2 3 
' ' z= ' ' . f)f)iql 

(2· 7) 

The condition that Eq. (2 · 5) has the Lorentz invariant significance IS expressed 

in the form 

(2·8) 

where Spv IS the skew-symmetric spin matrix, and J!a the Canonical momentum 

given by 

Substituting (2·8) into (2·6), we obtain 

f)_[ = -;::, .J!a s.aA 
a¢/ u, ,4 • 

(2·9) 

(2 ·10) 

Under the assumption that (2·10) can be solved for ¢A, the constraint variable 

¢A is given explicitly as a function of the canonical variables ¢a and I!a. Thus, 

the change of the constraint variable iJ¢A is not independent but is calculated 

from that of the canonical variables ¢a and Ila. The change of I!a associated with 

o¢a can be calculated, but we shall not do so, since for the derivation of the 

advocated relations, such an information will not be used explicitly. 

Returing to Eq. (2 · 3), we define the generator 

for which the canonical relation holds 

where iJL is the Lie variation defined by 

iJL¢a(x) =¢a' (x) -¢a(x) 

=o¢a(x) -Oxvav¢a(x). 

(2 ·11) 

(2·12) 

(2 ·13) 

The canonical relation (2 ·12) is valid regardless of whether the transformation 

(2·1), (2·2) leaves the action integral invariant. 

In order to transform the commutator in (2 ·12) into the chronological product 

form, we rewrite it as follows: 

-iiJL¢a(x) =¢a(x) {G(a") -G(- oo)} + {G(oo) -G(a) }¢a(x) 

-G(oo)¢a(x) +¢a(x)G( -oo). (2·14) 
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General Ward-Like Relations in Canonical Field Theory 1735 

By the aid of the relation (2 · 3), we obtain 

-irhp"(x) = J d4x'T{¢"(x)O/J"(x')} 

- S d4x'8/T{¢"(x)J"(x')}. 

Alternatively, we rewrite (2 ·12) as 

-ioL¢"(x) = [¢"(x), G(cr) -G( -oo)] + [¢"(x), G( -oo)] 

to obtain 

-ioL¢"(x) = J d 4x'R{¢"(x)8/Jf.l(x')} 

- S d 4x'8/R{¢"(x)Jf.l(x')}, 

where 

R{A(x)B(x')}=B(x0 -xu') [A(x), B(x')]. 

A general definition of the R-product will be given shortly. 

(2·15) 

(2·16) 

(2·17) 

(2·18) 

The relations (2 ·15) and (2 ·17) can be generalized to the case of the chron

ological (and retarded) product of any number of field operators, in view of the 

fact that (JL is the infinitesimal operation obeying the product rule and it does 

not upset the chronological ordering. We thus obtain 

-ioLT(¢"•(xt) ···¢"n(xn)) 

= S d 4x'T(¢"• (xt) · · ·¢"-n (xn) 8/ Jf.l (x')) 

- S d4x'8/T(¢"•(x1)···¢"n(xn)Jf.l(x')) (2·19) 

and the identical relation for the R-product. *> The multiple R-product is defined 

by 

R(¢(x)¢(xt) ···¢(xn)) 

= :E [···[¢(x),¢(xt)],¢(x2)], ···],¢(xn)J 
P(l···n) 

(2. 20) 

for boson-like operators, and 

R(f(x)f(xt) ···f(xn)) 

= :E (-1)P[···{[{f(x),f(xt)},f(x2)Jf(x3)}···f(xn)J 
P(l···n) 

(2·21) 

*> We thank H. Matsumoto for verifying directly Eq. (2·19) written in terms of the R-product. 
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1736 T. Takahashi and T. Goto 

for fermion-like operators. The summations in (2 · 20) and (2 · 21) are taken over 

all possible permutations among X 1 • • ·xm and 

(-1l={ 1 
-1 

for even permutations, 

for odd permutations. 

Equation (2 ·19) is the generalized Ward relation in integral form. The derivation 

given above clearly shows that it is nothing but the familiar canonical equation 

(2 ·12), and how the transformation property of ¢a is related to the current gener

ating the transformation. 

The two alternative forms given in terms of the T-product and the R-product 

have their own merit. The T-product form is appropriate in dealing with the 

S-matrix or the relation between the causal Green's functions, whereas the R

product form is powerful when it is combined with the LSZ expansion of the 

Heisenberg operator in terms of the asymptotic fields. Note that the operators 

m the T or R product can be composite objects such as interpolating field operators 

of a bound state. 

We conclude this section by three remarks: (i) Since the relation involves 

only the T-product or the R-product, it is no longer necessary to express the 

current J, in terms of canonical variables, provided that the Lie variation in the 

left-hand side is correctly obtained for the constraint variables. (ii) The identity 

given in (2 ·19) is valid even when the current J, happens to be a fermion-like 

operator. (iii) Since only the 4th component of the current J, (x) plays the 

role in the relation, the 0¢A in Jl' Can be ignored. 

§ 3. The identity in differential form 

It is possible to convert (2 ·19) into a differential form by considering a 

transformation containing an arbitrary test functionf(x). Let us consider the trans

formation 

¢a(x)-+¢a'(x') =¢a(x) +f(x)o¢a(x). 

(3·1) 

(3 ·2) 

The variation of the constraint variables cannot be given m a general form, but 

can be calculated from (3·2) and (2·10). We shall give such examples later. 

On account of the remark (iii) at the end of preceding section, the current 

associated with (3 · 2) is effectively given by 

(3· 3) 

Restricting ourselves to the canonical variables, we therefore obtain 

n 

- i I: f(xi) T {¢ (x,) ···¢ (xH) oL¢ (x;) ¢(xi+,) .. ·¢ (xn)} 
i=l 
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General "Ward-Like Relations in Canonical Field Theory 1737 

= S d 4x'f(x')T{¢(xi) ···¢(xn)IJ/ J,a(x')} 

- S d 4x'f(x')a,a'T{¢(x 1 ) ···¢(xn)J,a(x')}. (3·4) 

In calculating the right-hand side of (2·19) with the current (3·3), we encounter 

the derivatives of the test function. However, since f is c-number, the T-symbol 

has no effect, thereby they cancel out leaving (3 · 4). 

Since f(x) is arbitrary, we arrive at 

n 

- i I; ow (x -xi) T {¢(xi) .. ·¢ (x;-J) iJL¢ (x;) ¢ (x;c,I) .. ·¢ (xn)} 
i=l 

A general formula in differential form involving the constraint variables can be 

worked out, but it complicates the equations a great deal with no practical advan

tage. 

§ 4. Examples 

We shall first illustrate, by taking the free Duffin-Kemmer field/) how the 

constraint variables are handled. The field equation is 

(4·1) 

with 

(4·2) 

The canonical variables 

(4·3) 

and the constraint variable 

t{;A (x) = (1- (3/) t{; (x) (4·4) 

are related by 

(4·5) 

The transformation 

(4·6) 

induces 

oL</l(x) = _l_(3iaioL<r (x) 
m 

(4·7) 
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1738 T. Takahashi and T. Goti5 

Combining ( 4 · 6) and ( 4 · 7), we have the Lie variation for the total <jJ (x) 

OLrp (x) =-C., (x) O,rp(x) + l_OiCv (x) fJ.{Jirpa (x) 
m 

(4·8) 

Hence, the identity in a differential form is 

=i8/T {¢ (x) Tl'.(x')}. (4·9) 

This relation can be verified directly if we know the canonical commutation relation 

[¢ (x), (/) (x')] o (xo- Xo1
) 

= {s4- 1~ (/1i/14 + {14{1i) ai} o<4) (x- x') (4·10) 

and the explicit form 

(4·11) 

It is worth pointing out that in deriving (4·9), the explicit form (4·11) has 

never been used. It is also interesting to see that due to the relation7> 

T {¢ (x) (/) (x')} = T* {¢ (x) (/) (x')} + _i_ (1- {1/) o<4l (x- x') (4-12) 
m 

and (4·11), we can cast (4·9) into the form 

o(4) (x-x') 8.</J(x) =ifJ,'T* {</J(x) T"" (x')}. (4·13) 

In other words, the constraint variables can be treated as if they were independent, 

when the T*-method is employed. We conjecture that this is the case in interacting 

fields also, but it is difficult to prove it generally. 

The Proca field can be treated in a similar manner, but the calculation is 

much more complicated. 

As the second example of the use of the relation, let us take the spinor-scalar 

system and derive the Dyson equation as a special case. For the sake of con

creteness we adopt the Lagrangian 

..f= -(/i(x) (rfJ+m)<jJ(x) -H8"¢(x)8"¢(x) +!-l¢(x)¢(x)} 

-g(/i (x) T<jJ (x) ¢ (x). 

The field equation for ¢ (x) is 

(0-f-!2)¢(x) =g(/i(x)T<jJ(x)=J(x). 

Consider the transformation 

(4·14) 

(4·15) 
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General ~Vard-Like Relations in Canonical Field Theory 1739 

¢(x) -'>¢(x) + f(x) (4·16) 

with an arbitrary e-n umber function f(x). We shall denote 

(4·17) 

for the obvious reason. The current is 

( 4 ·18) 

Hence, we obtain the identity 

-i!YT(···) = S d 4xf(x)T(O¢(x) ···) 

-J d 4xf(x)aj.IT(a,,¢(x) ···), (4·19) 

where 

( 4· 20) 

Again, the arbitrariness of f(x) yields 

=i I:; ow (x-zi)T(ljl(xl) ···¢ (yl) ···¢(zJ) ···¢(zi-J)¢(zi,J) ···) 
i 

= i-0-T (-- ·) 
o¢(x) , 

where we used the formal stipulation 

In view of the relation 

we can rewrite ( 4 · 21) as 

(D- !t2
) T(¢ (x) ···)-T(J(x) ···) = i__jj___T (· · ·). 

o¢(x) 

(4-21) 

(4 -22) 

( 4. 23) 

( 4. 24) 

Upon taking the vacuum expectation value of ( 4 · 24), we obtain the Dyson equa

tion. It is straightforward to derive the Dyson equation for the spinor field. 

§ 5. The divergence relations in quantum electrodynamics 

We shall derive general relations in quantum electrodynamics. For this pur

pose we adopt the Lagrange multiplier method.sl, 10) The Lagrangian is given by 
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1740 T. Takahashi and T. Goti5 

where B is the Lagrange multiplier and 

j,, = ie(/J r~~. 

The electromagnetic potential satisfies the equation 

a~F,,v(x) = (Oo,v-a,av) A 1,(x) 

= -jv(x) +avB(x), 

a,A,+aB(x) =0. 

The current j, (x) is conserved, i.e., 

Consequently, we obtain 

OB(x) =0, 

Oa,A,(x) =O. 

The canonical momentum conjugate to A, is 

If;=A;+a;A0 =iF4i, i=1, 2, 3, 

II.= -iB. 

The canonical commutation relations among A, and Ifv are reduced to 

at x 0 =x/. 

[A; (x), A 1 (x')] = io;1o (x -x'), 

[A4 (x), B(x')] = -o(x-x'), 

[A;(x), B(x')] =ia;o(x-x'), 

[A; (x), B(x') J = [A,(x), A1(x') J 

= [B(x), B(x')] =0 

Let us now consider the following three transformations: 

(A) o~(x) =ieA(x)~(x) =oA~(x), 

o(/J (x) = - ieA (x) (j} (x) =oA(/J (x), 

oA,(x) =oB(x) =0 

(5· 2) 

(5. 3) 

(5·4) 

(5·5) 

(5 ·6) 

(5 ·7) 

(5 ·8) 

(5 ·9) 

(5 ·10) 

(5 ·11) 

(5 ·12) 

(5 ·13) 

(5 ·14) 

(5 ·15) 

with an arbitrary c-number function A(x). The current associated with (5·15) IS 

(5 ·16) 

and 
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General TVard-Like Relations in Canonical Field Theory 1741 

Denoting as 

we obtain the relation 

(B) 

ioAT(--·) = J d"x'a/T(-··i~(x'))A(x'), 
o<jJ(x) =a(/) (x) =0, 

oA~(x) =ffJ.(x)=oeA~'(x), 

(5 ·18) 

(5 ·19) 

oB(x)=O, (5·20) 

where _it, (x) is an arbitrary c-number vector function. The current IS given by 

J/(x) =FJJ.v(x).fv(x) -B(x)ft,(x), (5. 21) 

which yields the relation 

ioeT (- · ·) = s d 4x' {.fv (x') a/T ( · · · F~v (x')) - f~ (x') a,,'T (-- · B (x')) 

- .fv (x') T( ···a/ F"v (x')) +_it, (x') T(-- ·a/ B (x'))} 

= J d 4x'fv(x') {T(-··iv(x')) + (D'ojJ.v-a/av')T(···A,(x')) 

-av'T(···B(x'))}. (5·22) 

In the last step, we have used Eq. (5 · 4) and 

'"'-' (5 ·14). 

the commutation relations (5 ·11) 

(C) o<jJ(x) =a(/) (x) =oA,(x) =0, 

iJB(x) =J.(x)~ocB(x). 

Here, }. (x) is an arbitrary c-number function. The current 

yields the identity 

iocT(···) = fz'x'J.(x')a/T(-··L1,,(x')) 

+aS d 4x'l(x')T(-··B(x')). 

The local gauge transformation 

OL</J(x) =ieA(x)<j;(x), 

oL(/J(x) = -ieA(x)(/)(x), 

(5. 23) 

(5. 24) 

(5. 25) 
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1742 T. Takahashi and T. Goto 

oLA.u(x) =8.uA(x), 

oLB(x) =0 

IS a combination of (A) and (B) with 

(5. 26) 

(5. 27) 

Since the divergence relation holds true regardless of the invariance of the Lagrang

ian, we do not require the condition 

DA(x) =0. (5. 28) 

As was mentioned earlier, the identities (5 ·19), (5 · 22) and (5 · 25) are valid 

for the retarded product also. Since the functions A (x), f.u (x) and }. (x) appearing 

in the above transformations are all arbitrary, we can convert the relations into 

differential form. They are respectively 

ie{~ ow (x' -xJ- ~ o(4) (x' -yi)} T(- ··) = -i8/T( ··-j11 (x')), 
i=l j =1 

i--0 - T(···) =T(---j,(x')) 
oA,(x') 

(5. 29) 

+ (D' o",-8/8/) T(-··A.u(x')) -8/T(···B(x')), 

i oB~;?)T(--·) =8/T(--·A,.(x')) +aT(···B(x')) 

with the stipulation that 

o~(x) =o 0(4) (x-x') 
oA,(x') "" ' 

oB(x) =o<4l(x-x'). 
oB(x') 

It is easy to show that the combination of (5 · 30) and (5 · 29) gives 

D'T (- · ·B(x')) = -e{~ o<4l (x' -x;)- ~ o<41 (x'- yj)} T(- · ·) 
i=l j=l 

- i8v' -JA~(x') T ( · · ·), 

from which follows, for example, 

D'T(B(x)B(x')) =0, 

D'T(A.u(x)B(x')) = -i8/o<4)(x-x'), 

(5. 30) 

(5· 31) 

(5. 32) 

(5. 33) 

(5. 34) 

(5. 35) 

(5. 36) 

D'T(<jJ(x)(/j(y)B(x')) = -e(o(4) (x' -x) -o<•J (x' -y) )T(<jJ(x)(/j (y)). 

(5. 37) 
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General ~Vard-Like Relations in Canonical Field Theory 1743 

The vacuum expectation value of the last equation is the familiar relation originally 

proposed by Greeno 91 

The pole structure can now be determined by the use of (5° 31), (5° 35) 

and (5o 36) together with the spectral representation of the Green's functions 

<T(B(x) B(x')) ) 0 =iS d!C 2p0 (!C2
) dc(x -x'; !C2), 

<T (A ,a (x) Av (x')) ) 0 = i S d!C2p1 (!C2
) de (x- x'; !C2) O,av 

- i S d!C 2P2 (!C2
) 8 /)vdc (x -x'; !C 2

), 

<T(B(x) A 1,(x')) )o = -<TCA.a (x) B(x')) )o 

= - i S d!C2Ps (iC2
) 81,dc (x- x'; !C2

) 0 

If we substitute (5° 38) and (5° 40) into 

(5° 38) 

(5° 39) 

(5° 40) 

8/ <T(B (x) A.a (x')) ) 0 + a<TCB (x) B (x')) ) 0 = io''1 (x -x'), (5° 41) 

which is obtained from (5° 31), we have 

IC2Ps (iC2) + apo (!C2
) = 0 , 

S d!C 2Ps (iC2
) = 1 o 

On the other hand, Eqo (5° 36) gives 

IC2Ps (iC2) = 0, 

which implies on account of (5o 42) and (5o 43), 

Hence, 

Ps (iC2
) = 0 (iC2

), 

Po (K2
) = 0 0 (if a=foO) 

<T(B(x) A,u(x')) ) 0 = -i8"Dc(x-x'), 

<T(B(x)B(x')))0 =00 (if a=foO) 

To determine p1 and p2, we make use of the equation 

8/ <T(Av(x) A, (x')) ) 0 +a<T(Av (x) B(x')) ) 0 =0 

following from (5° 31) 0 The substitution of (5o 39) into (5o 47) gives 

P1 (iC2) - IC2P2 (iC2) = ao (K2), 

s dK:2p2 (K2
) = 0 o 

(5° 42) 

(5° 43) 

(5° 44) 

(5° 45) 

(5° 46) 

(5° 47) 

(5° 48) 

(5° 49) 

(5° 50) 

(5° 51) 
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1744 T. Takahashi and T. Goto 

Let us assume 

(5. 52) 

where !J.2 , which may or may not vanish, is the mass of the electromagnetic field. 

Equation (5 ·50) then gives 

(5. 53) 

and consequently 

(5. 54) 

where K is a constant to be determined. Due to Eq. (5 ·51) we obtain 

It is convenient to consider the following two cases separately. 

(i) !J.2 = 0. Then, the quantity K becomes 

If we choose the gauge parameter 

a=Z3 , 

(5. 55) 

(5. 56) 

(5. 57) 

the first term in the right-hand side of (5 ·56) disappears, I.e., the dipole ghost 

1s eliminated. Hence, we have 

<T(A,(x) Av(x')) )o = i(Zso,v+ Koa,av) Dc(x -x') 

+ i f dr. 2(J (r. 2) (o ~'"-_!_a pav) Lie (x- x'; !C2) 

J,,+o /C2 

X {Llc(x-x'; !C 2) -Dc(x-x')}, 

(5. 58) 

which agrees, under the condition (5 ·57), with the expression obtained by Naka

nishi. 10) Here, 

(5·59) 

Note that 

(5. 60) 
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General Ward-Like Relations zn Canonical Field Theory 1745 

(ii) ;l=/=0. 

In order to eliminate the term o ("')I"', we choose 

a=O. (5. 61) 

Denoting K with a=O by Km, we obtain 

(T (A" (x) Av (x')) )o= iZs (o 1.,- ~/)"a") Lie (x- x'; ;/) 

+iKmo"o"De(x-x') +if . d"'rJ("') (o"" _ _I_o"a")Lie(x-x'; "') 
J,.z+o /l,2 

Obviously, 

=i(Do""-iJ"aJ {23 (Lie(x-x'; ;/) -Dc(x-x')) 
;l 

+ S d"'(j ~')(Lie (x-x'; "')-De (x-x'))} 

= i (DI'o"- a l'oJ sd"' PI("') (LIe (x- x'; "') -De (x- x')). 

"' 
(5. 62) 

(5. 63) 

In the above argument, we have chosen the gauge parameter a in such a 

way that the spectral function does not contain the dipole ghost term o ("')I"'· 
With this restriction, both the massless and massive solutions do not contradict 

the canonical relation and the gauge invariance. The above restriciton enables 

us to write down the following in-field expansion. 16l 

(i) 

where 

(ii) 

1J.2 =0, a=Zs, 

At<(x) =Z 3 112 a~ 0 (x) + ···, 

B(x) = -Z 3 - 112 0 11 a~<in(x) + ... , 

lf.'=/=0, a=O, 

A"(x) =Z/I'u"in(x) + Zso"bin(x) + ···, 
/). 

B (x) = -;LZs-112 (bin (x) -in (x)) + ... ' 

where uJJin(x) IS the Proca field satisfying 

(5. 64) 

(5. 65) 

(5. 66) 

(5. 67) 

(5. 68) 

(5. 69) 
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and 

T. Takahashi and T. Goto 

{ (D- /L 2 )0~v-O)Yv}zt} 0 (x) = 0, 

[u,/n (x), u:n (x')] = i (a"" _l_i) iiv) £1 (x- x'; ;/) 
;i 

Dbin(x) = Dxin(x) =0' 

[bin (x)' bin (x') J =- [xin (x)' xin (x') J 

= -iD(x-x'). 

(5. 70) 

(5·71) 

(5·72) 

(5. 73) 

It is important to note that the bin(x) field is of negative norm, whereas the 

xin (x) field is of positive norm. The field xin (x) is the massless bound state 

composed of an electron and a positron. This statement can be justified by (5 · 37) 

and the singular nature of the electron propagator. *1 

§ 6. The relation to identities in the path integral method 

The relation obtained in (2 ·19) is quite different in appearance from that 

IS derived by the path integral method.'1' 5l' 121 To show their close connection, 

we first define the generating function 

(6 ·1) 

where .£8 (x) IS given by 

(6·2) 

with a e-n umber function Ja (x). Since the right-hand side of (6 ·1) is g1ven m 

T-product, the operators (pa (x) can be treated as if they were c-number. 

If we use the symbol 

(6·3) 

the effect of the variation 

(pa(x) ~¢/"' (x) =q/'(x) +chj/x(x) (6·4) 

can be expressed as 

(6· 5) 

Using the relation (2·15), we obtain the master relation 

*1 The singularity of the electron propagator at x=x' is related to the G-I-S term. 111 
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General 1Vard-Like Relations in Canonical Field Theory 

- J" (x) 811 ' <¢" (x) J 11 (x') )J} 

= i Jcrx{<8 11J 11 (x) )J-8,,<J11 (x) )J}. 

1747 

(6· 6) 

Differentiating (6 · 6) with respect to the e-n umber function J" (x) n times and 

putting J" = 0, we obtain the relation (2 ·19). vVe emphasize here that our rela

tions are q-num ber relations. 

The R-product relation is also obtained from the generating function defined 

by 

g{(x· J) = w- 1 (J)--0-W(J). 
, oJ"(x) 

(6·7) 

We can now see from the above argument that there is a one to one cor

respondence between the vacuum expectation value of the relations derived above 

and relations obtained by the path integral method. We do not claim, however, 

that two methods giv·e the identical result. 

§ 7. Discussion 

We have expressed the infinitesimal transformation of the T-product (or R

product) of any number of field operators in terms of the T-product (or R-product) 

of field operators and the generating current. The content of such relations is 

completely identical to the canonical equation involving equal-time commutator. 

Hence, the validity of our general relations is identical to the canonical equation. 

If we define the generating function of the T-product, the derivation of the 

general relation resembles that by the path integral method. This enables us to 

translate relations obtained by the path integral method into the language of the 

conventional field theory. It should be borne in mind, however, that the derivation 

of the general relation given here is only formal. A . correct derivation would 

have to employ an appropriate regularization procedure and would bring out the 

anomalous terms which we have ignored. This point calls for further study. 

As we proposed in our earlier paper, 13J the spontaneous breakdown of symmetry 

can be accommodated in our formalism if vve combine our method with the LSZ 

and the NHZ construction. We have shown in Ref. 13) that the transformation 

of the Goldstone boson correctly reproduces the transformation property of the 

Heisenberg operators. We hereby confirmed the idea of the dynamical rearrange

ment of symmetry originated by Umezawa. 

The notion of the dynamical rearrangement of symmetry Yvas further extended 

by Umezawa and his collaborators vvith the help of the so-called boson theorem!) 

'iVe can prove the boson theorem within our formalism by extending the discussion 

given in § 4. More direct and simple proof of the boson theorem is provided, 

however, by the Yang-Feldman formalism, which we shall not elaborate here 
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1748 T. Takahashi and T. Goto 

any further. 

The essence of the boson theorem lies in its capability of treating the macro

scopic quantum state. Umezawa and his collaborators have treated successfully 

the problem of superconductivity,w and also magnons, 15J all of which are based 

on the idea of the dynamical rearrangement and the boson theorem, obtained by 

the aid of the path integral method. 

This paper provides us with a method entirely based on the conventional 

canonical formalism to deal with the same problems. It is hoped that our method 

will clarify physical mechanism of the problems thus far hindered somewhat by 

the mathematical formulation. 
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