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General Weighted Optimality of Designed Experiments

Jonathan W. Stallings

ABSTRACT

Design problems involve finding optimal plans that minimize cost and maximize informa-

tion about the effects of changing experimental variables on some response. Information is

typically measured through statistically meaningful functions, or criteria, of a design’s cor-

responding information matrix. The most common criteria implicitly assume equal interest

in all effects and certain forms of information matrices tend to optimize them. However,

these criteria can be poor assessments of a design when there is unequal interest in the ex-

perimental effects. Morgan and Wang (2010) addressed this potential pitfall by developing

a concise weighting system based on quadratic forms of a diagonal matrix W that allows

a researcher to specify relative importance of information for any effects. They were then

able to generate a broad class of weighted optimality criteria that evaluate a design’s ability

to maximize the weighted information, ultimately targeting those designs that efficiently

estimate effects assigned larger weight.

This dissertation considers a much broader class of potential weighting systems, and hence

weighted criteria, by allowing W to be any symmetric, positive definite matrix. Assuming

the response and experimental effects may be expressed as a general linear model, we provide

a survey of the standard approach to optimal designs based on real-valued, convex functions

of information matrices. Motivated by this approach, we introduce fundamental definitions

and preliminary results underlying the theory of general weighted optimality.

A class of weight matrices is established that allows an experimenter to directly assign weights

to a set of estimable functions and we show how optimality of transformed models may be

placed under a weighted optimality context. Straightforward modifications to SAS PROC

OPTEX are shown to provide an algorithmic search procedure for weighted optimal designs,

including A-optimal incomplete block designs. Finally, a general theory is given for design

optimization when only a subset of all estimable functions is assumed to be in the model.

We use this to develop a weighted criterion to search for A-optimal completely randomized

designs for baseline factorial effects assuming all high-order interactions are negligible.
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Chapter 1

Introduction

1.1 General linear model and estimation space

Suppose an experimenter has N experimental units, possibly subject to nuisance factors

such as blocks, that are to be assigned some combination of settings for the experimental

variables. An optimal design is the “best” allocation of these settings to the N units, relative

to a statistically meaningful criterion associated with how the data will be analyzed once

collected. For a given design, d, we represent the effects of the experimental variables on the

response as parameters in the linear model

y = Xdτ +Lβ + e , (1.1)

where y is the N × 1 vector of responses; β is a b× 1 vector containing all nuisance effects;

L (which often includes the all-ones vector, 1, for the intercept) is an N × b matrix that

relates β to y and is not design dependent; τ is a p × 1 vector of parameters that are the

target of inference; Xd is the N × p matrix which relates τ to y and is generated by design
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d; and e is an N ×1 vector of random errors. We assume that E(e) = 0 and Var(e) = σ2IN ,

where IN is the N ×N identity matrix. That is, the errors are taken to be uncorrelated and

have constant variance, σ2. Without loss of generality, for the work to be undertaken here,

we further assume that σ2 = 1.

Model (1.1) encompasses a broad range of experimental scenarios, including regression mod-

els (τ is a vector of slopes) and ANOVA setups like for completely randomized designs and

blocked designs (τ is a vector of treatment effects, β contains intercept and block effects).

The cell means model, introduced by Hocking (1985, 2003), is a specific case of model (1.1)

in which τ is the vector of mean responses for each experimental setting, Xd is a 0/1 matrix

where each row has exactly one 1 that indicates which experimental setting is applied to

the corresponding experimental unit, and b = 0. This model is one of several common,

equivalent options when the experimental settings are comprised of m different factors each

having some set number of levels and there are no nuisance factors.

Under model (1.1) and some design d, a least-squares estimator for τ , say τ̂ , is a solution

to the system of linear equations Cd τ̂ = XT
d (I − PL)y where Cd = XT

d (I − PL)Xd,

PL = L(LTL)−LT is the orthogonal projector onto the column space of L, and (LTL)−

denotes any generalized inverse of LTL. We say that Cd is the information matrix for τ

adjusted for β. When the rank of Cd, r(Cd), equals p there is a unique solution for τ̂ and

thus for every linear combination ĥTτ = hT τ̂ . When r(Cd) < p, there are many possible

solutions τ̂ , which are of the form τ̂ = C−d X
T
d (I − PL)y. It can be shown that if h, called

a coefficient vector, is in the row space of Cd, denoted R(Cd), then the best linear unbiased

estimator for hTτ is ĥTτ , which is invariant to the chosen solution τ̂ . So long as h ∈ E, the

variance of the estimator ĥTτ under design d is

Vard(ĥTτ ) = hTC−d h ,
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which is also invariant to choice of solution τ̂ . Due to this invariance, we call such hTτ

estimable functions and so refer to R(Cd) as the estimation space, E.

Any estimation space is clearly a subset of Rp, with equality when the assumed model

allows us to estimate all linear combinations of τ . Let E∗ be the estimation space with

maximal dimension, which equals the row space across all possible information matrices

having maximal rank, say k∗ ≤ p. Typically only those designs having information matrices

with this estimation space are considered, thus allowing the experimenter to estimate the

largest possible number of estimable functions. However, further assumptions that reduce

the set of estimable functions of interest may be made (see Chapter 5). For example, while

for factorial experiments (see Section 1.2.2) there exist designs that can estimate all the

factorial effects, we may often assume that high-order interactions are insignificant. If this

assumption is justified, we should only consider designs that can estimate all and only the

potentially significant estimable functions, lest we waste valuable resources. Hence, for the

desired estimation space, E ⊂ E∗, which has some dimension k ≤ k∗ ≤ p, we only consider

those designs that are capable of estimating all and only functions generated by E. That

is, we only consider a design, d, if it has an information matrix where R(Cd) = E, and so

r(Cd) = k. Denote the class of designs meeting this estimation space requirement by D.

Let Pτ be the orthogonal projector onto E so that PτCd = CdPτ = Cd (as R(Cd) = E

for all d ∈ D) and let F1 = (f11| . . . |f1k) be any p × k matrix satisfying F T
1 F1 = Ik and

Pτ = F1F
T
1 . Obviously (I − Pτ ) is the orthogonal projector onto the space orthogonal

to E. Let F0 = (f01| . . . |f0,p−k) be any p × (p − k) matrix satisfying F T
0 F0 = Ip−k and

(I − Pτ ) = F0F
T
0 . Then F T

1 F0 = 0 and CdF0 = 0 so that the vectors in F0 are a set of

orthonormal eigenvectors with zero eigenvalues for all Cd.

To demonstrate the above terminology, we turn to the commonly employed block design

ANOVA model with p treatments and h blocks each of size k ≤ p. If yuj is the response for

3



the u-th unit in block j, then the statistical model relating yuj to the treatment and block

effects may be written in scalar form is

yuj = µ+ τd[u,j] + βj + euj ,

where d[u, j] denotes the treatment assigned to unit u in block j. In matrix form, β will

have h+ 1 parameters corresponding to the h block parameters β1, . . . , βh and the intercept

µ. This model is often used in practice because it is justifiable by randomization alone in

special cases, as shown by Hinkelmann and Kempthorne (2005) and Caliński and Kageyama

(2000).

The maximal estimation space, E∗, for τ under this model contains all coefficient vectors

satisfying hT1 = 0 and has dimension p−1. Such estimable functions are called contrasts and

such block designs are called connected. Connected designs allow estimation of all pairwise

treatment comparisons, which is often the goal for comparative experiments. This estimation

space has projector Pτ = I − 1
p
J where J is the p × p matrix of all 1’s. Any set of v − 1

orthonormal contrasts may be used to make up the matrix F1, and F0 = 1√
p
1. The general

form of information matrices for τ for such designs is

Cd = Rd −
1

k
NdN

T
d

where, if rdi is the replication of treatment i under d, Rd = Diag(rd1, . . . , rdp) and Nd is

the p × h treatment/block incidence matrix. That is, the element in the i-th row and j-th

column of Nd is non-zero if and only if treatment i appears in block j, otherwise it is 0.

4



1.1.1 The Moore-Penrose inverse and square-root decompositions

One generalized inverse for Cd is the Moore-Penrose inverse which has appealing mathemat-

ical properties that will be used throughout this dissertation. We define such generalized

inverses here only for symmetric, nonnegative definite (nnd) matrices.

Definition 1.1.1. Let C be a p × p symmetric, nnd matrix having k ≤ p eigenvalues,

λ1, . . . , λk. If the spectral decomposition of C = EDλE
T , where Dλ = Diag(λ1, . . . , λk),

then the Moore-Penrose inverse (or MP inverse) of C, denoted C+, is

C+ = ED−1
λ E

T .

If C has full rank then C+ = C−1 and we elect to use the latter notation. For information

matrices, note that C+
d Cd = CdC

+
d = F1F

T
1 = Pτ .

A symmetric, nnd matrix, C, has a square-root decomposition C = C1/2C1/2 for some C1/2,

called a square-root matrix of C. Letting D
1/2
λ = Diag(

√
λ1, . . . ,

√
λk), it is easily shown

that ED
1/2
λ ET is a square-root matrix of C. Throughout this dissertation we assume all

square-root matrices are constructed in this way. We choose to denote the MP inverse of a

square root matrixC1/2 asC+1/2 = ED
−1/2
λ ET rather thanC1/2+. IfC has full rank, we use

the conventional C−1/2 instead of C+1/2. Finally, it is easily shown that C+ = C+1/2C+1/2.

1.2 Standard optimality

The “best” experimental design will maximize information that can be obtained on estimable

functions of τ , the target of inference. Every Cd is symmetric and nonnegative definite (nnd)

so that it has k positive eigenvalues which may be ordered as 0 < zd1 ≤ zd2 ≤ · · · ≤ zdk. It can
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be shown that the variance of any normalized estimable function is a convex combination of

the inverse eigenvalues of Cd, hence we call 1
zdi

the canonical variances for design d. It follows

that a design whose Cd has relatively small positive inverse eigenvalues will minimize the

variance of estimable functions in some overall sense, and hence a design’s overall effectiveness

can be evaluated through a measure of the size of those eigenvalues. The three commonly

used optimality criteria defined next are just such measures; there are many others.

Definition 1.2.1. A design d∗ ∈ D is E-optimal if it minimizes the maximal canonical

variance, that is, if 1
zd∗1

= mind∈D
1
zd1

, or zd∗1 = maxd∈D zd1.

Definition 1.2.2. A design d∗ ∈ D is D-optimal if it minimizes the product of the canonical

variances, that is, if
∏k

i=1
1
zd∗i

= mind∈D
∏k

i=1
1
zdi

.

Definition 1.2.3. A design d∗ ∈ D is A-optimal if it minimizes the average canonical

variance, that is, if 1
k

∑k
i=1

1
zd∗i

= 1
k

mind∈D
∑k

i=1
1
zdi

.

The E-criterion is straightforward in its interpretation: it seeks to minimize the largest

possible variance across all normalized estimable functions. Assuming e ∼ N(0N , IN), the

D-criterion aims to minimize the volume of the confidence ellipsoid of any k orthonormal es-

timable functions. Finally, the A-criterion measures the average variance of any k orthonor-

mal estimable functions. In the case of the one-way ANOVA model where all treatment

contrasts are estimable, it is also proportional to the average variance of all
(
p
2

)
pairwise

treatment contrasts. Morgan and Stallings (2013) give a necessary and sufficient condition

for the average variance of a set of estimable functions to be proportional to the A-value for

any design, showing that an A-optimal design accomplishes much more than may be initially

apparent.

With many optimality criteria to choose from, a natural question to ask is whether there

exist designs that are simultaneously optimal for multiple criteria, not just one criterion.
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Kiefer (1975) approached this question within a broad class of criteria possessing three

simple mathematical properties; his original framework is slightly generalized here. Given

estimation space E, let CE denote the class of symmetric, nnd matrices with row space E.

Note that CE contains all information matrices for designs in D but is generally a much

larger class. Let C,C1, and C2 be any matrices in CE and let ΠE be the class of permutation

matrices such that R(ΠCΠT ) = E. The criteria in Definition 1.2.4 may be used with many

classes of statistical models, including the general linear model (1.1).

Definition 1.2.4. The function Φ : CE → R is a conventional (or standard) optimality

criterion if

(i) Φ is permutation invariant with respect to ΠE: Φ(ΠCΠT ) = Φ(C) for any permutation

matrix, Π ∈ ΠE,

(ii) Φ respects the nnd ordering: C1 −C2 is nnd ⇒ Φ(C1) ≤ Φ(C2),

(iii) Φ is convex: Φ(αC1 + (1− α)C2) ≤ αΦ(C1) + (1− α)Φ(C2), 0 ≤ α ≤ 1 .

Although Φ has CE as its domain of definition, we may assume that Φ is defined for all

symmetric, nnd matrices having any row space of dimension k. For example, for p > 0, the

family of eigenvalue-based criteria

Φp(C) =

[
k−1

k∑
i=1

z−pdi

]1/p

is comprised of standard optimality criteria that are clearly well-defined for all such matrices.

The E-, D-, andA-criterion are special cases of such criteria, corresponding to p→∞, p→ 0,

and p = 1, respectively.

Properties (i) and (iii) of Definition 1.2.4, permutation invariance and convexity, allow

matrix averaging to establish a lower bound for a given Φ(Cd). Define the averaged form

7



of an information matrix as C̄d =
∑

Π∈ΠE
ΠCdΠ

T/|ΠE|. Restricting our attention to those

Π ∈ ΠE is necessary to guarantee that C̄d ∈ CE. It then follows that

Φ(Cd) =
∑
Π∈ΠE

Φ(ΠCdΠ
T )/|ΠE| ≥ Φ

(∑
Π∈ΠE

ΠCdΠ
T/|ΠE|

)
= Φ(C̄d) . (1.2)

A given d may or may not achieve the lower bound Φ(C̄d), which we emphasize applies only

to d. That is, even if d does achieve the lower bound this in no way implies that d is optimal.

There may exist another design, d̃, such that Φ(Cd̃) < Φ(C̄d).

Consider the case where ΠE contains all permutation matrices. A design d is said to be

symmetric if it has an information matrix of the form Cd = aI + bJ . Such matrices, which

include C̄d, are said to be completely symmetric and are invariant to all permutation matrices,

and so cannot be improved by matrix averaging. Kiefer (1975) proved that when working

with the estimation space having projector Pτ = I − 1
p
J , which has the ΠE considered

here, if there exists a design, d∗, having a completely symmetric information matrix Cd∗

with maximal trace across all d ∈ D, then that design is optimal for all Φ meeting the

conditions of Definition 1.2.4. He called designs that are optimal with respect to all standard

criteria universally optimal, presumably because the class of optimality criteria is quite broad.

Note these are sufficient conditions (although the maximal trace condition is necessary for a

universally optimal design), that is, there may exist a universally optimal design that is not

symmetric. Kiefer’s result is most useful when one already has a design in mind and wants

to show that design is universally optimal.

The property of permutation invariance implicitly states that standard criteria do not advo-

cate greater precision in estimating some estimable functions over others; it is the mathemat-

ical expression of equal interest in all estimable functions. This is not a desirable property

if we are more interested in estimating some functions more precisely than others, which
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has been mentioned by Glonek and Solomon (2004) and Gupta (2006). As will be seen, a

technical foundation of this dissertation is the relaxation of permutation invariance in a way

that is statistically meaningful for a design problem at hand.

It should be emphasized that the criteria considered throughout this dissertation are mea-

sures of variances alone. The statistical models are assumed to be correct (usually this is

not in question) and thus there is no bias in the analysis. The “universal” part of Kiefer’s

nomenclature is in reference to the standard criteria Φ, and not to all possible analysis goals.

See Chapters 6 and 10 in Atkinson, Donev, and Tobias (2007) for a survey of other popu-

lar design criteria that focus estimation on a specific set of estimable functions or seek to

minimize the average prediction variance across some regression range.

We now look at specific experimental scenarios where efficient estimation of a selected set of

estimable functions, potentially at the expense of others, may be preferred. These will serve

as examples throughout this dissertation.

1.2.1 Treatment-versus-control experiments

Under the framework of a comparative experiment with p treatments, let τ0 be a control

treatment and τ1, . . . , τp−1 be test treatments. Suppose we are primarily interested in efficient

estimation of the elementary treatment-versus-control (TvC) contrasts, τ0−τi, i = 1, . . . , p−

1. If we could show that some standard optimality criterion was equivalent to measuring the

variances for this set of contrasts alone then we would pursue optimality with respect to that

criterion, but this is not the case. Instead, define H = (1p−1| − Ip−1), the (p− 1)× p matrix

where each row of Hτ is an elementary TvC contrast. The covariance matrix for these

contrasts for a design d is easily shown to be HC−d H
T , and we call (HC−d H

T )−1 the TvC

information matrix. Applying standard optimality criteria to the TvC information matrix,
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we may find non-symmetric designs that are optimal; see Majumdar and Notz (1983), Cheng,

Majumdar, Stufken, and Ture (1988), Jacroux (1993), Hedayat and Yang (2005), Yang and

Stufken (2008), Hedayat, Jacroux, and Majumdar (1988), and Majumdar (1996) for optimal

plans for TvC experiments.

One should take care in choosing a criterion for design comparison and be sure to understand

the implications of what it measures, which is the underlying theme of this dissertation. For

example, the E-criterion seeks to minimize the maximal variance across all orthonormal

contrasts. This eigenvalue criterion can be applied to the TvC information matrix since it

is an eigenvalue optimization problem, but this will not necessarily minimize the maximal

variance of the elementary TvC contrasts, which is a more reasonable goal.

1.2.2 Factorial experiments

In many experiments, treatments are comprised of a combination of factors each having a

certain number of settings, or levels. Much of the following notation is based on that from

Hedayat, Sloane, and Stufken (1999). Let F1, F2, . . . , Fm denote the m factors of interest

and let s1, s2, . . . , sm be their respective number of levels, so the total number of treatment

combinations is
∏m

l=1 sl. We code the levels of factor Fl as 0, 1, . . . , sl−1. A specific treatment

combination is indexed using the m-tuples (j1, j2, . . . , jm), where 0 ≤ jl ≤ sl−1, l = 1, . . . ,m.

For convenience, we will often write the m-tuple as j1j2 . . . jm, which should not be confused

with their product. In the factorial literature when sl = 2 for all l, typically the number

of jl = 1 in the treatment index is called the weight of the treatment combination. This

conflicts with our forthcoming use of the word, so we refer to this as the heft of the treatment

combination.

Definition 1.2.5. For a factorial experiment with m factors each with 2 levels, the heft of

a treatment combination with index j1 . . . jm is
∑m

l=1 jl. That is, the heft is the number of

10



jl = 1.

Let τj1j2...jm denote the mean response for treatment combination j1j2 . . . jm, and let τ be

the vector of τj1j2...jm written in standard order, or reverse lexicographic (revlex) ordering,

defined next for sl = 2 for all l. The ordinary lexicographic (lex) ordering of treatment

means in τ for m ≥ 1 factors is defined as a 2m ×m array, denoted A∗m, and is constructed

recursively as follows. For m = 1, A∗1 = (0, 1)T , which implies τ T = (τ0, τ1). For m = 2, the

lex order is the ordering of the rows in A∗2 given by

A∗2 =



0 0

0 1

1 0

1 1


=

 02 A∗1

12 A∗1



so the ordering of these 22 treatment means will be τ T = (τ00, τ01, τ10, τ11). The above is the

first step in a recursion that gives, for any m ≥ 2, the lex ordering as the rows of A∗m found

by

A∗m =

 02m−1 A∗m−1

12m−1 A∗m−1

 .

The revlex ordering is found in the same way, except that the pasting of columns shown

above is done in the reverse order. So the revlex ordering for m-vectors on 2 symbols is

given by the ordering of the rows of the 2m ×m array, Am, where

Am =

 Am−1 02m−1

Am−1 12m−1



11



with A1 = A∗1. Examples of the revlex order for m = 2 and m = 3 factors are:

A2 =



0 0

1 0

0 1

1 1


and A3 =



0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1



.

When we have a factorial treatment structure, interest typically lies in treatment contrasts

that measure the change in response with respect to changes in the levels of a subset of the

factors. Those contrasts can be specified by adapting the approach taken for optimization

of TvC contrasts via a properly defined transformation matrix H . The commonly employed

set of contrasts for factorial experiments are called orthogonal factorial effects, comprised

of main effects and interactions. A simple effect of factor Fl is a contrast of treatment

means with indices that differ only in index jl. That is, it is a comparison of the treatment

means for different levels of Fl but with the levels of the other m − 1 factors fixed. Main

effect and interaction contrasts, which are linear combinations of simple effect contrasts, are

well-known to all who work with factorial models and so will not be re-defined here; see for

example Hedayat et al. (1999) or Hinkelmann and Kempthorne (2008).

The factorial contrasts for simple, main, and interaction effects in general depend on the levels

of the factors involved. We now focus on the case of m factors each having sl = 2 levels, so 2m

total treatment combinations. In this case there is a unique (up to sign change) main effect

contrast for each factor, and likewise for the interaction of any g factors (g = 2, 3, . . . ,m).
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Moreover, these unique contrasts are mutually orthogonal and each involves all treatment

combinations. It is also common to normalize such contrasts so that the coefficient vectors all

have a length of 1. As there is a total of 2m of these orthonormal contrasts, they provide an

alternative parameterization of τ . Henceforth we refer to this orthogonal parameterization

as OP and to these orthogonal factorial effects as OP effects.

Writing τ in revlex order based on the treatment indices allows construction of the H

transformation matrix for the OP effects as a series of Kronecker products. For m factors

each with 2 levels, define HOP to be the matrix whose rows consist of the coefficient vectors

for the OP effects along with the normalized vector 1√
2m

12m . Then we may write HOP as

HOP = Zm ⊗Zm−1 ⊗ · · · ⊗Z1, Zl =
1√
2

 1 1

−1 1

 for l = 1, 2, . . . ,m , (1.3)

where ⊗ indicates the Kronecker product. The ordering of the Zl in the Kronecker product in

(1.3) allows us to index the OP effects in HOPτ using the revlex ordering. To demonstrate,

let θ = HOPτ , a 2m × 1 vector. Then the OP intercept, which we may denote as θ00...0

appears first in θ, as does τ00...0 in τ . The OP main effect for F1, which we may denote as

θ10...0, appears second in θ, as does τ10...0 in τ .

Invoking the effect hierarchy principle, higher-order interactions are often assumed to be

negligible. That is, we assume prior to any data collection that some of the factorial ef-

fects HOPτ equal 0, or are sufficiently close to 0 to be of no concern. This can be a useful

assumption, since estimation of all 2m factorial effects and the intercept would require at

least 2m runs, a number which can get large very quickly with increasing m. If higher-order

effects are negligible, then a fractional factorial experiment may be more appropriate, where

fractional means we need only to estimate a fraction of the total factorial effects, and fewer

runs are required. The literature on fractional factorial designs is rich, and we point the
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uninformed reader to the texts Box and Draper (1987), Hedayat et al. (1999), Hinkelmann

and Kempthorne (2008), Hinkelmann and Kempthorne (2005), and Myers, Montgomery,

and Anderson-Cook (2009) which introduce both applications and theory of factorial exper-

iments.

When there are no blocks to consider, it is well-known that an orthogonal array (OA) of

appropriate strength is universally optimal for the estimation of the factorial effects included

in the model. Existence of these designs requires, at the very least, that the number of EUs

is a multiple of 4. Chakravarti (1956) generalized the structure of OA’s with the concept of

balanced arrays (although he called them partially balanced arrays at the time) which exist

for all run sizes. While the concept generalizes to factors with more than two levels, we

provide a definition for this specific case.

Definition 1.2.6. Let V be an N ×m array where each column has symbols 0 and 1, and

let Vt be any N× t subarray of V . By Definition 1.2.5, each row of Vt has some heft between

0 and t. Suppose that for each g = 0, . . . , t, every possible row of heft g appears ng times in

Vt. If the numbers ng do not depend on the particular subarray Vt, then we say that V is a

balanced array (BA) of strength t with index set (n0, n1, . . . , nt).

If a strength t BA has an index set where n0 = n1 = · · · = nt then V is a strength t OA. It is

straightforward to show that a strength t BA is also a strength t−1 BA. Much of the theory

on the optimality and construction of balanced arrays for fractional factorials, may be found

in Chopra (1967), Srivastava (1961, 1965, 1972), and Srivastava and Chopra (1971a,b). Many

of these results have been summarized in Rafter and Seiden (1974). These papers refer to

fractional factorials derived from balanced arrays of appropriate strength as balanced designs

since the covariance matrix for the factorial effects is invariant to factor permutations. Much

of the work by Srivastava and Chopra establishes optimal designs within the class of balanced

designs. Even though balanced arrays can sometimes be efficient with respect to all designs,

14



there are cases when they are very inefficient so that optimization within a class of strength

t balanced arrays may yield poor overall designs.

1.2.3 Baseline parameterization of factorials

Mukerjee and Tang (2012) focus on a different set of factorial contrasts, corresponding to

the baseline parametrization for factorial treatment effects. These contrasts, referred to as

baseline effects or BP effects, define main effects and interactions relative to the baseline

treatment effect τ00...0. A major class of applications for BP effects is to the analysis of

cDNA microarray experiments; see Mukerjee and Tang (2012) for other applications.

The baseline main effect for F1 is defined to be

θ10···0 = τ10···0 − τ00···0 ,

which is the simple effect of F1 with all other factors set at baseline. The BP 2 factor

interaction (2-f.i.) between factors F1 and F2 is

θ110···0 = τ110···0 − τ100···0 − τ010···0 + τ00···0 .

Our use of the parameters θj1...jm in this section should not be confused with the parameters

shown in the previous section after (1.3). Note that the j1j2 components of the mean

responses have the same form as an OP 2-f.i. for a 22 factorial. Proceeding in this way,

define a BP g-f.i., g = 2, 3, . . . ,m, as a non-normalized, OP g-f.i. for just those g factors,

while holding the remaining m − g factors at their baseline level (the OP g-f.i. averages

over the levels of the remaining m− g factors). It follows that the BP m-f.i. is equal to its

non-normalized OP counterpart, since there are no factors left to hold at their baseline level.
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The issue of normalizing BP effects will be taken up later.

A Kronecker product representation for the BP transformation matrix, say HBP , exists that

is similar to that for HOP . Just as is done for τ , the BP parameters in θ are indexed by

m-tuples of 0’s and 1’s. The heft of a BP parameter index indicates the order of the BP

interaction and those jl = 1 correspond to the factors involved in that interaction. The BP

intercept has heft 0, a BP main effect has heft 1, and all BP interactions have heft greater

than or equal to 2. Equation (1) of Mukerjee and Tang (2012) says that any treatment mean

can be written as the sum of θ00···0 and all those BP parameters whose indices have 1’s only

in a subset of the positions having 1’s in the subscript vector of that treatment mean. This

is of sufficient usefulness that we state it, along with two related results, as a lemma.

Lemma 1.2.1. The following relationships hold among the treatment means τj1j2···jm and

the BP parameters θj∗1 j∗2 ···j∗m.

(i) Let J be the set of positions in the index j1j2 · · · jm of τj1j2···jm containing non-zeros.

Then τj1j2···jm is the sum of exactly those θj∗1 j∗2 ···j∗m’s whose indices have non-zeros in

any subset of the positions J .

(ii) Let the BP parameter θj∗1 j∗2 ···j∗m have heft h (that is, its index contains exactly h ones).

Then there are exactly 2m−h treatment means τj1j2···jm that are a function of θj∗1 j∗2 ···j∗m.

(iii) Let τj1j2···jm have heft h. Then for each j = 0, 1, . . . ,m−h, there are exactly
(
m−h
j

)
BP

parameters θj∗1 j∗2 ···j∗m of heft h+ j that are a function of τj1j2···jm.

Inverting the relationship in Lemma 1.2.1(i) gives the required BP transformation matrix,

HBP .

Lemma 1.2.2. For a 2m factorial treatment structure under baseline parameterization, τ =
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H−1
BPθ, where

H−1
BP = Z−1

m ⊗Z−1
m−1 ⊗ · · · ⊗Z−1

1 , Z−1
l =

1 0

1 1

 , l = 1, 2, . . . ,m ,

and where τ and θ have revlex ordering. Furthermore, HBP = Zm ⊗Zm−1 ⊗ · · · ⊗Z1 for

Zl =

 1 0

−1 1

 , l = 1, 2, . . . ,m.

Proof. Write both τ and θ so that the indices are in revlex order. The result is clear for

m = 1. For m = 2 we have



τ00

τ10

τ01

τ11


=



1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1





θ00

θ10

θ01

θ11


and clearly the inverse transformation matrix is the claimed Kronecker product. Now as-

sume the result holds for m = t (with parameters in revlex order) and denote its inverse

transformation matrix by H−1
BPt

. Add a new factor and assign it to position t + 1 in the

parameter index. There are now 2t+1 parameters, and when placed in revlex order, the first

2t have factor t+ 1 at level 0, and the remaining 2t have factor t+ 1 at level 1.

The inverse transformation matrix H−1
BPt+1

is defined to be Z−1
t+1 ⊗H−1

BPt
and

Z−1
t+1 ⊗H−1

BPt
=

H−1
BPt

0

H−1
BPt

H−1
BPt

 .
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By the induction hypotheses, the first 2t rows of the displayed matrix produce the treatment

means having factor t+1 at level 0. The other rows must be shown to produce the treatment

means with factor t+1 at level 1. Select any one of the rows and consider the index vector s

(say) of the corresponding treatment mean. We know from the induction hypothesis that

the first 2t elements of the row are adding in exactly those θ’s having 1’s only in positions

corresponding to 1’s in the first t positions of s (all have 0 in position t+1). The remaining 2t

elements of that row are adding θ’s with exactly the same subscript vectors except they also

all have 1 in position t. By Lemma 1.2.1, this is the selected treatment mean.

Again, the ordering of the Zl in the Kronecker product in Lemma 1.2.2 allows us to index

the BP effects using the revlex order as was shown for the OP effects after (1.3). It is

evident from Lemma 1.2.2 that HBP and H−1
BP , both being Kronecker products of m lower

triangular matrices, have zeros in exactly the same positions. Combining this observation

with Lemma 1.2.1(i) gives the following corollary.

Corollary 1.2.1. Let the BP effect θj∗1 j∗2 ···j∗m have heft h. Then it is a linear combination of

exactly those τj1j2···jm whose subscript vectors have non-zeros in any subset of the positions J∗.

Moreover, the coefficients in this linear combination are all 1’s and −1’s.

The following terminology will be useful in proofs throughout the dissertation. We say a

BP effect with index j1 . . . jm involves factor l if jl = 1. If h is the heft of index j1 . . . jm,

clearly the effect involves h factors. For an effect, define its factor set to be the set of factors

involved in that effect. Hence the factor set has h elements. The overlap set between BP

effects is the intersection of their factor sets. If the overlap set is nonempty, we say those

effects overlap. We say two effects overlap at factor l if the overlap set includes factor l.

Finally, two BP effects are said to overlap by n factors if the cardinality of the overlap set

is n. The above definitions may also be used for factorial effects in the OP setup. For large

m, it is more convenient to reference each BP effect by its factor set, lest we work with
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cumbersome m-tuples. For example, for any m the BP main effect for F1 could be indexed

as either θ10...0 or θ1, and the BP 2-f.i. for F1 and F2 could be indexed as θ110...0 or θ12. This

more compact indexing was used in Mukerjee and Tang (2012).

It is interesting to note that overlapping defines an association scheme on BP effects. Such an

association scheme may be called a multi-dimensional partially balanced association scheme,

as described in Bose and Srivastava (1964).

Mukerjee and Tang (2012) found that if no BP 2-f.i.’s or higher are present, then the BP

main effects are directly proportional to the OP main effects, so that orthogonal arrays

are universally optimal designs for estimation of the BP main effects. Most of their work

then looked at minimizing bias in the estimates if interactions were truly present, much like

was done in Deng and Tang (1999) for OP effects. Once interactions are included in the

estimation, we no longer have proportionality and the optimal designs for some criterion

are likely different from OA’s. At the end of their paper, they conjecture that certain

balanced arrays may be A-optimal when 2-f.i.’s are included in the model, which we verify

in Section 5.2.

Approximate A-optimal designs for Hτ

TvC and factorial experiments are specific applications of a general estimation problem for

a set of estimable functions that span the estimation space. Rather than focusing optimality

criteria on efficient estimation of all estimable functions, we instead want to find a design

that best estimates Hτ , where Hτ is some subset of estimable functions. It is required that

r(H) = h ≤ k and R(H) is a subset of the maximal estimation space. Just like for TvC,

the covariance matrix for these contrasts is HC−d H
T and the A-criterion measures the trace

of this matrix. Kao, Yates, Lewis, and Dean (1995) derived a general result for A-optimal

block designs for estimating contrasts Hτ . Rather than searching for Cd corresponding to
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exact designs, they searched for an optimal approximate information matrix. Let DH be the

class of designs such that H is estimable, i.e. d ∈ DH ⇒HC−d Cd = H . Note that if h < k

then DH is a larger class than the class of connected designs, hence disconnected designs

may become A-optimal.

Define CH = {Cd : d ∈ DH} and let cmax denote the maximal trace of those Cd ∈ CH . The

authors call M an approximate information matrix if it lies in the set

M = {M : M is a p× p symmetric, nnd matrix, with R(M ) ⊇ R(H),

M1p = 0p, and tr(M) ≤ cmax} . (1.4)

The conditions R(M ) ⊇ R(H) and M1v = 0v imply h ≤ r(M) ≤ p − 1. Optimizing over

this larger set of matrices (which contains CH) allowed the authors to derive a form of an

approximate information matrix to be A-optimal for Hτ .

Theorem 1.2.1. Let M be defined as in (1.4) and let Hτ be a vector of contrasts where

r(H) = h ≤ p − 1. Let u1, . . . ,up be a set of orthonormal eigenvectors of HTH and let

θ1, . . . , θp be the corresponding eigenvalues. Then tr(HM ∗−HT ) = min{tr(HM−HT ) :

M ∈ M} if and only if M ∗ = α
∑p

i=1

√
θiuiu

T
i , where α is a constant such that tr(M ∗) =

cmax.

It is unlikely that M ∗ is in CH , but Theorem 1.2.1 can be used to find a lower bound for

the A-value, and we may assess efficiency of designs in CH with respect to this bound. As

approximate information matrices are much more flexible than Cd in CH , this bound may

at times be unrealistic. Note well that the eigenspaces of M ∗ and HTH are equivalent,

implying that if a Cd ∈ CH also has eigenspaces in common with HTH it may be effi-

cient, although its trace must be large as well to guarantee this. Kao et al. (1995) refer

to information matrices with some subset of eigenspaces in common with HTH as aligned
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designs.

1.3 General weighted optimality

This dissertation introduces a flexible class of design criteria that both extend and unify

standard optimality criteria by allowing an experimenter to assign relative importance to all

estimable functions through a concise weighting system. Research on weighted optimality

had been sparse leading up to the paper by Morgan and Wang (2010) and primarily fo-

cused on weighting of the A-criterion, see Gupta, Ramana, and Parsad (1999) and Shirakura

and Tong (1996). In their paper, Morgan and Wang (2010) create “weighted variances” by

multiplying the variance of an estimable function by a weight determined by a quadratic

form of a positive definite, diagonal weight matrix W . They then define the correspond-

ing weighted optimality criteria as functions that seek to find designs that minimize these

weighted variances in some overall sense. Their weight matrix is used to assign large weight

to functions of greater importance and the weighted optimality criteria focus attention on

designs that efficiently estimate these functions. Their weighted optimality criteria, which

are constructed by applying standard optimality criteria to weighted information matrices,

are shown to be summary measures of weighted variances.

The weighted optimality approach taken by Morgan and Wang (2010) was primarily explored

in the context of comparative experiments with p treatments and connected designs. In this

context, the weight wi in the diagonal W , while corresponding to a treatment effect τi, is

not assigning weight to that effect since τi is not estimable (the model is overparameterized).

Instead, the weight wi is distributed to the contrasts involving the treatment τi. Hence

larger wi puts greater emphasis on contrasts involving τi and a weighted optimal design will

typically estimate these contrasts with smaller variance than a universally optimal design
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would. Indeed, the weighted optimal design will likely accomplish this by assigning more

replicates to treatment i than a universally optimal design would.

1.4 Outline

The main aim of this dissertation is to generalize weighted optimality as developed by Morgan

and Wang (2010), allowing all symmetric, positive definite matrices as candidates for weight

matrices. The dissertation is organized as follows. Chapter 2 provides the preliminary

results that generalize the theoretical foundation of weighted optimality to all symmetric,

positive definite weight matrices. The chapter also introduces the concept of estimation

equivalence, in which many weight matrices are shown to assign the same weights to every

estimable function. Having the fundamental theory established, Chapter 3 applies the theory

to show that eigenvalue-based optimization of information matrices for a set of estimable

functions, like that shown in Section 1.2.1, is equivalent to a weighted optimality criteria.

We then present a class of weight matrices that are able to directly assign weights to a set

of estimable functions and a weighted criterion is shown to measure the average weighted

variance of a large number of estimable functions with any chosen weights. Due to the

complexity involved in finding analytical solutions to the design problem, Chapter 4 looks

at implementing weighted optimality in SAS PROC OPTEX and an important theorem is

presented that brings a new perspective to adjusted information. Finally, Chapter 5 details

a linear model theory for reduced estimation spaces which we use to find A-optimal plans to

estimate baseline factorial effects including up to 2-f.i.’s. We conclude the dissertation with

a discussion of future work and open problems.
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Chapter 2

Preliminary Results

This chapter motivates and develops the theory of general weighted optimality, beginning

with the introduction of fundamental concepts like weighted variances and weighted infor-

mation matrices. Establishment of the relationship between these two concepts is crucial to

creating a statistically meaningful set of optimality criteria. Eigenvalue-based weighted op-

timality criteria are investigated first, and then shown to exist in a larger class of weighted

optimality criteria. Conditions are given for any two weight matrices to assign the same

weight (up to proportionality) to all estimable functions, a property that is used to establish

which permutations the general weighted optimality criteria are invariant to. In seeking

designs that are optimal under all weighted optimality criteria for some weight matrix W ,

we conclude the chapter with a discussion on weight balanced designs and matrix averaging.

2.1 Weight matrices and weighted variances

Suppose that we wish to assign a weight w > 0 to some estimable function hTτ in order

to reflect its importance relative to other estimable functions. For this weight to impact
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variance-based design criteria with a useful statistical interpretation, it is combined with the

variance of the estimator ĥTτ to create a “weighted variance”: w × Vard(ĥTτ ). We then

seek to create a broad class of weighted optimality criteria that measure a design’s ability to

minimize these weighted variances in some overall sense, implying that larger weight should

be applied to those functions of greater interest.

In order to assign weights to all estimable functions, we will need a concise, yet flexible,

weighting system. Take any p× p symmetric, positive definite matrix W that also satisfies

1TW1 = 1. Such a matrix is called a weight matrix. The restriction on 1TW1 is a simple

scaling condition which, while unnecessary to the overall theory, imposes no loss of generality

and is invoked for convenience. If 1TW1 6= 1 then we need only multiply W by [1TW1]−1

to achieve this. Given W , weights are assigned to variances in the following way:

Definition 2.1.1. The weighted variance for the estimable function hTτ for design d is

VardW (ĥTτ ) = [hTW−1h]−1Vard(ĥTτ ). (2.1)

We call [hTW−1h]−1 the weight assigned to hTτ .

It is obvious from (2.1) that any ordering of designs based on weighted variances is invariant

to the choice of positive scaling of W . Let h∗ = h/
√
hTh be the normalized version of h.

Then we can decompose the weight assigned to hTτ as

[hTW−1h]−1 = [h∗TW−1h∗]−1 × 1

hTh
. (2.2)

Hence assigned weights in general are made up of a normalization constant for h and the

weight assigned to the normalized version of h. Even though weights depend on the length

of the coefficient vector, weighted variances do not.
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Lemma 2.1.1. The weighted variance for hTτ is invariant to the length of h.

Proof. Take any contrast hTτ and define h∗ = h/
√
hTh so that h∗Th∗ = 1 and h∗Tτ is a

normalized estimable function. The weighted variance for h∗Tτ is

VardW (ĥ∗Tτ ) = [h∗TW−1h∗]−1Vard(ĥ∗Tτ )

= hTh[hTW−1h]−1 1

hTh
Vard(ĥTτ )

= [hTW−1h]−1Vard(ĥTτ ) = VardW (ĥTτ ) ,

the weighted variance for the non-normalized estimable function.

In light of Lemma 2.1.1, it is clear that the assigned weights and weighted variance may

always be viewed in terms of the normalized estimable function. Further discussion of nor-

malization may be found in Section 3.2.4.

Requiring W to be positive definite, i.e. [xTW−1x]−1 > 0 for all p×1 vectors x 6= 0, is done

primarily for mathematical convenience. Weights are only assigned to estimable functions

so that we truly only need W to satisfy [hTW−1h]−1 > 0 for all h ∈ E. Consequences of

this will be the main topic in Section 2.4.

2.2 Weighted information matrices

Assigning weights as defined in Definition 2.1.1 appears awkward at first, but serves to

generate statistically meaningful weighted optimality criteria based on the standard criteria

of Definition 1.2.4. Writing W in spectral form as W = EDλE
T allows us to define W−1/2

(see Section 1.1.1), which is used the following definition.
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Definition 2.2.1. For a weight matrix W and design d ∈ D with information matrix Cd,

the weighted information matrix for τ is

CdW = W−1/2CdW
−1/2 .

Clearly all CdW are symmetric, nnd, and, because all competing designs are assumed to have

information matrices with the same estimation space E of dimension k, r(CdW ) = r(Cd) = k.

The eigenvectors ofCdW corresponding to the p−k zero eigenvalues are not design dependent

and are generated by FW0 = W 1/2F0, where F0 was introduced in Section 1.1. Hence

R(CdW ) does not necessarily equal E, although it is the same for all CdW . Write the spectral

decomposition of CdW as

CdW =
k∑
i=1

θdifdWif
T
dWi = FdW1DθF

T
dW1 (2.3)

where the p× k matrix FdW1 = (fdW1|fdW2| · · · |fdWk) satisfies F T
dW1FdW1 = Ik, F

T
dW1FW0 =

0, and 0 < θd1 ≤ θd2 ≤ · · · ≤ θdk are the positive eigenvalues of CdW . We do note that, in

general, F T
W0FW0 6= Ip−k. The next theorem relates the weighted variance of any estimable

function to the eigenvalues of CdW .

Lemma 2.2.1. The weighted variance for any estimable function hTτ is a convex combina-

tion of θ−1
d1 , . . . , θ

−1
dk .

Proof. Consider for 1 ≤ i ≤ k the vectors ldi = W 1/2fdWi. They satisfy F T
0 ldi = F T

0 W
1/2fdWi =

F T
W0fdWi = 0, that is, they are estimable functions. Let Ld = W 1/2FdW1, which should not

be confused with L in (1.1), be the p×k matrix whose columns are ld1, . . . , ldk. The columns

of Ld are linearly independent (because the columns of FdW1 are) and so are a basis for E.

This says that given any estimable function hTτ there must be a k × 1 vector q such that
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h = Ldq. With this the variance for ĥTτ may be written as

Vard(ĥTτ ) = hTC−d h = qTLTdC
−
d Ldq = qTF T

dW1W
1/2C−dW

1/2FdW1q . (2.4)

SinceW−1/2CdW
−1/2fdWi = θdifdWi, the matrix F T

dW1W
1/2C−dW

1/2FdW1 in the last quadratic

form has (i, j) element

fTdWiW
1/2C−dW

1/2fdWj =
1

θdiθdj

[
fTdWiW

−1/2CdW
−1/2

]
W 1/2C−dW

1/2
[
W−1/2CdW

−1/2fdWj

]

=
1

θdiθdj
fTdWiW

−1/2CdW
−1/2fdWj =


1/θdi if i = j

0 otherwise

.

It follows that

Vard(ĥTτ ) =
k∑
i=1

q2
i

θdi
,

where qi is the i-th element of q. Now qTq = qTF T
dW1W

1/2W−1W 1/2FdW1q = hTW−1h.

Putting this in (2.1) with the variance expression just derived gives

VardW (ĥTτ ) = [hTW−1h]−1Vard(ĥTτ ) =
1

qTq

k∑
i=1

q2
i

θdi
(2.5)

which is a convex combination of the 1/θdi, as claimed.

Since every weighted variance is a convex combination of the θ−1
di , minimizing a relevant,

summary function of the θ−1
di is minimizing weighted variance in some overall sense. It shows

that any optimality criterion, that in the unweighted case seeks to minimize variances as

measured by a function of inverses of eigenvalues of Cd, is minimizing weighted variance

when used to evaluate the weighted information matrices CdW . The inverse eigenvalues

θ−1
di are canonical weighted variances, termed simply canonical variances in the unweighted
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(W = 1
p
I) case. IfW ∝ I thenCdW ∝ Cd and the design ordering for any weighted criterion

is equivalent to that for the standard criterion. Hence a standard optimality criterion is a

special case of a weighted criterion.

We now investigate weighted analogues of standard eigenvalue criteria and discuss how they

evaluate weighted variances. The following lemma, which is straightforward to show, is useful

in providing meaningful interpretations of weighted eigenvalue criteria.

Lemma 2.2.2. Let C−d and C−dW be arbitrary generalized inverses of Cd and CdW , re-

spectively. Then W−1/2C−dWW
−1/2 is a generalized inverse of Cd, and W 1/2C−dW

1/2 is a

generalized inverse of CdW .

2.3 Weighted eigenvalue criteria

We now define the weighted versions of the E-, A-, and D-criterion.

2.3.1 Weighted-E criterion

Definition 2.3.1. The weighted E-value for design d, or EdW , is the inverse of the smallest

positive eigenvalue of the weighted information matrix CdW :

EdW =
1

θd1

.

A design d∗ is EW -optimal in a design class D if it minimizes the largest canonical weighted

variance, that is, if Ed∗W = mind∈DEdW .

Lemma 2.3.1 provides an interpretation for EdW analogous to that for the unweighted E-

criterion.
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Lemma 2.3.1. For a design d, EdW is the largest weighted variance over all estimable

functions.

Proof. The maximal weighted variance is

max
h∈E

(
hTC−d h

hTW−1h

)
= max

h∈E

(
hTW−1/2C−dWW

−1/2h

hTW−1h

)
= max
yTFW0=0

(
yTC−dWy

yTy

)

where y = W−1/2h is an eigenvector for CdW having a positive eigenvalue as y is orthogonal

to FW0. It follows that the maximal weighted variance is equal to the largest eigenvalue of

C−dW , being 1/θd1.

2.3.2 Weighted-A criterion

Definition 2.3.2. The weighted A-value for design d, or AdW , is the average of the inverse

of the positive eigenvalues of the weighted information matrix CdW :

AdW =
1

k

k∑
i=1

1

θdi
.

A design d∗ is AW -optimal in a design class D if it minimizes the average (or equivalently

the sum) of the canonical weighted variances, that is, if Ad∗W = mind∈DAdW .

In providing additional interpretations for AdW , we say two estimable functions hTi τ and

hTj τ are weighted orthogonal if hTi W
−1hj = 0. A set of contrasts are mutually weighted

orthogonal if any pair of contrasts in the set are weighted orthogonal.

Lemma 2.3.2. For a design d, AdW is proportional to the average weighted variance for any

k weighted orthogonal contrasts.
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Proof. Let l̃1, l̃2, . . . , l̃k be the coefficient vectors for any set of weighted orthogonal estimable

functions with assigned weights [l̃Ti W
−1l̃i]

−1 = wi. Further let Dw be the k × k diagonal

matrix of these weights. Writing L̃ for the p × k matrix whose columns are the l̃i, then

L̃TW−1L̃ = D−1
w ⇔ D

1/2
w L̃TW−1L̃D

1/2
w = Ik which further shows that the columns of

L̃ are linearly independent. Consequently L̃D
1/2
w = LdA for Ld = W 1/2FdW1 and some

nonsingular Ak×k. Since also LTdW
−1Ld = Ik, we have D

1/2
w L̃TW−1L̃D

1/2
w = Ik ⇔

ATLTdW
−1LdA = Ik ⇔ ATA = Ik ⇔ A is orthogonal. This implies that L̃DwL̃

T =

LdAA
TLTd = LdL

T
d so

W−1/2L̃DwL̃
TW−1/2 = FdW1F

T
dW1 .

k∑
i=1

wiV ar(
̂̃lTi τ) = tr(D1/2

w L̃TC−d L̃D
1/2
w ) = tr(D1/2

w L̃TW−1/2C+
dWW

−1/2L̃D1/2
w )

= tr(C+
dWW

−1/2L̃DwL̃
TW−1/2)

= tr(C+
dWFdW1F

T
dW1)

= tr(C+
dW ) =

k∑
i=1

1

θdi
= kAdW .

30



2.3.3 Weighted-D criterion

Definition 2.3.3. The weighted D-value for design d, or DdW , is the product of the inverse

of the positive eigenvalues of the weighted information matrix CdW :

DdW =
k∏
i=1

1

θdi
.

A design d∗ is DW -optimal in a design class D if it minimizes the product of the canonical

weighted variances, that is, if Dd∗W = mind∈DDdW .

Interestingly, this weighted criterion does not respond to weights.

Lemma 2.3.3. For any design d ∈ D and weight matrix W , DdW is proportional to Dd.

Proof. Recall that Pτ is the orthogonal projector onto E. As is well-known, BBT and BTB

have the same positive eigenvalues for any matrix B, so the positive eigenvalues of CdW

are equal to those of C
1/2
d W−1C

1/2
d = C

1/2
d PτW

−1PτC
1/2
d . Note that PτW

−1Pτ is sym-

metric and nnd (with column space equal to E), and so admits a square root decomposition

PτW
−1Pτ = [PτW

−1Pτ ]1/2. Hence the positive eigenvalues of CdW are equal to those of

the following matrices:

C
1/2
d [PτW

−1Pτ ]
1/2[PτW

−1Pτ ]
1/2C

1/2
d ⇔ [PτW

−1Pτ ]
1/2Cd[PτW

−1Pτ ]
1/2 ⇔W 1/2

∗ CdW
1/2
∗

where W
1/2
∗ = [PτW

−1Pτ ]
1/2 + (I − Pτ ), a symmetric, positive definite matrix. Note that
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R(W
1/2
∗ CdW

1/2
∗ ) = E so that we may finally write

DdW = |W 1/2
∗ CdW

1/2
∗ + (I − Pτ )|−1

∝ |W 1/2
∗ | |W 1/2

∗ CdW
1/2
∗ + (I − Pτ )|−1 |W 1/2

∗ |

= |Cd +W−1/2
∗ (I − Pτ )W−1/2

∗ |−1

= |Cd + (I − Pτ )|−1 = Dd .

Lemma 2.3.3 is related to the well-known fact that the D-criterion is invariant to full-

rank, linear transformations. Proportionality to the standard D-criterion implies that the

standard design ordering is equivalent to that for DdW , which is important enough to state

as a corollary.

Corollary 2.3.1. If Dd1 ≤ Dd2, then Dd1W ≤ Dd2W for all weight matrices. Furthermore,

the relative DW -efficiencies equal those for the standard D-criterion.

Lemma 2.3.3 and Corollary 2.3.1 are why there is no D-optimality work for design problems

such as those discussed in sections 1.2.1 and 1.2.3. The D-criterion is unable to account for

selected functions having greater importance and so is an inappropriate criterion to use when

there is differential interest of estimable functions. The most enlightening part of the proof

for Lemma 2.3.3 is that the eigenvalues of CdW for any weight matrix W are equivalent to

the eigenvalues of CdW ∗ where W∗ = [PτW
−1Pτ + (I − Pτ )]−1

. This suggests that there

may exist multiple weight matrices that assign the same weights to every estimable function.

We explore the existence of non-unique weight matrices in Section 2.4.
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2.4 Estimation equivalence

A statistically meaningful weighted criterion generates a design ordering based on weighted

variances, comprised of variances Vard(ĥTτ ) multiplied by weights [hTW−1h]−1. The ques-

tion taken up here is uniqueness, or lack thereof, ofW : can different weight matrices generate

the same weights for all estimable functions? Consider, for example, comparative experi-

ments where all treatment contrasts are estimable and Cd1 = 0 for all information matrices.

For a given W form another weight matrix W∗ = W + qJ , q > 0. This matrix is clearly not

equal to W , even if we do scale both matrices, but both of these weight matrices assign (up

to a constant multiple) the same weights for all contrasts. Although this is a simple example,

it demonstrates that a weight matrix can be contained in a family of weight matrices, each of

which produces the same design ordering. This leads to what we call estimation equivalence.

Definition 2.4.1. Two weight matrices W1 and W2 are estimation equivalent with respect

to E with projection matrix Pτ if for some q > 0 and all h ∈ E

hTW−1
1 h = q hTW−1

2 h .

If W1 and W2 are estimation equivalent, then clearly their corresponding design criteria,

assuming they measure weighted variances, will produce the same design orderings. Hence

working with weighted information matrices based on W1 would be equivalent to working

with those based on W2. The following are some results that can be used to characterize

the family of estimation equivalent weight matrices for a given W , starting with a general

matrix result.

Lemma 2.4.1. Let A be any p× p symmetric matrix and let PV be the orthogonal projector

onto a subspace V of Rp. Then hTAh = 0 for all h ∈ V if and only if PVAPV = 0.
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Furthermore, A must be of the form

A = (I − PV )A1(I − PV ) +A2(I − PV ) + (I − PV )AT
2 (2.6)

where A1 is symmetric.

Proof. Assume PVAPV = 0 and rewrite A as

A = (PV + (I − PV ))A(PV + (I − PV ))

= PVAPV + (I − PV )A(I − PV ) + PVA(I − PV ) + (I − PV )APV

= (I − PV )A(I − PV ) + PVA(I − PV ) + (I − PV )APV ,

so hTAh = 0 for all h ∈ V . Here A1 = A and A2 = PVA.

Now assume hTAh = 0 for all h ∈ V . Take any row, say hT1 , of PV and we have hT1Ah1 = 0

so the diagonal elements of PVAPV are 0. Now take any two rows, hT1 and hT2 , of PV and

let cT0 = cT1 + cT2 . Then c0 ∈ V and

0 = cT0Ac0

= cT1Ac1 + cT2Ac2 + 2cT1Ac2

= 2cT1Ac2

= 2cT2Ac1 ,

since A is symmetric. Hence cT1Ac2 = cT2Ac1 = 0 and all off-diagonals of PVAPV are 0.

The form of A follows from the previous argument.

The following corollary to Lemma 2.4.1 is proven by setting A = W−1
1 − 1

q
W−1

2 for two
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estimation equivalent weight matrices and taking V = E so that PV = Pτ .

Corollary 2.4.1. The weight matrices W1 and W2 are estimation equivalent if and only if

PτW
−1
1 Pτ = 1

q
PτW

−1
2 Pτ for some q > 0.

Using this corollary and the required form ofA in Lemma 2.4.1, we have the following lemma

characterizing all weight matrices that are estimation-equivalent to a given W .

Lemma 2.4.2. The weight matrices that are estimation equivalent to W are all matrices

with inverses

W−1
∗ = qPτW

−1Pτ +A (2.7)

for q > 0 and any A of the form

A = (I − Pτ )A1(I − Pτ ) +A2(I − Pτ ) + (I − Pτ )AT
2 (2.8)

where A1 is symmetric and

qcTPτW
−1Pτc > −cTAc

for all c 6= 0.

Proof. All suchW∗ having inverses of form (2.7) are clearly symmetric and estimation equiv-

alent to W . Next we need to show that all W∗ are positive definite. That is, for any p× 1

c 6= 0 we must show cTW−1
∗ c > 0. In general, the quadratic form may be written as

cTW−1
∗ c = qcTPτW

−1Pτc+ cTAc .
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The first summand is non-negative so to be positive definite

qcTPτW
−1Pτc > −cTAc .

Now we want to show that all estimation equivalent matrices may be written in the same

form as W−1
∗ . If W0 is an estimation equivalent weight matrix to W then there is some

q > 0 such that PτW
−1
0 Pτ = qPτW

−1Pτ . We may rewrite W−1
0 as

W−1
0 = PτW

−1
0 Pτ + (I − Pτ )W−1

0 (I − Pτ ) + (I − Pτ )W−1
0 Pτ + PτW

−1
0 (I − Pτ )

= PτW
−1
0 Pτ +A∗

= qPτW
−1Pτ +A∗

where A∗ is of form (2.8) with A1 = W−1
0 , and A2 = PτW

−1
0 .

One of the most useful applications of these results was seen in Lemma 2.3.3 and is of

sufficient use to state as a corollary.

Corollary 2.4.2. For a given weight matrix W , the weight matrix, W∗, having inverse and

inverse square root matrix

W−1
∗ = PτW

−1Pτ + (I − Pτ ) (2.9)

W−1/2
∗ = [PτW

−1Pτ ]1/2 + (I − Pτ ) , (2.10)

is estimation equivalent to W . Furthermore, weighted information matrices under W∗ have

row space E.

As will be seen in the following section, estimation equivalence will often be relied on for

mathematical results. Given a family of estimation equivalent weight matrices one should
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choose a form that either makes analytical results straightforward or is clearer in how it

assigns weight to functions. For example, a diagonal weight matrix is easy to construct and

the resulting weights are straightforward. Some may even choose to pick a W−1 rather than

a W , which is acceptable. One has the option to start with an easily constructed weight

matrix and may then use the flexibility afforded by estimation equivalence to derive a weight

matrix that may make analytical results more straightforward.

2.5 General weighted optimality criteria

Weighted eigenvalue criteria are a rich class of design measures that clearly focus attention

on designs that minimize weighted variances in some overall sense. There are many other

weighted criteria, other than those considered to now, that have practical relevance. For

example, with comparative experiments and connected designs, the standard MV -criterion

measures the maximal variance of all pairwise comparisons. The weighted analogue of this

criterion is presented in Definition 2.5.1.

Definition 2.5.1. The weighted MV -value for design d, or MVdW , is the largest weighted

variance among all pairwise comparisons:

MVdW = max
i 6=j

VardW

(
τ̂i − τj√

2

)
.

A design d∗ is MVW -optimal in a design class D if it minimizes the largest weighted variance

of all pairwise comparisons, that is, if MVd∗W = mind∈DMVdW .

The importance of the MVW -criterion motivates the need to define a broad class of weighted

optimality criteria in the same vein as Definition 1.2.4. In that definition, conventional

optimality functions were required to be convex, to preserve nonnegative definite ordering,
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and to be permutation invariant. These properties allowed matrix averaging to establish

lower bounds on Φ(Cd) and led to sufficient conditions for universally optimal designs. Recall

that these criteria were also defined as functions of all symmetric, nnd matrices with the

same row space (E), this being the class of all possible information matrices. Here we want

to evaluate weighted information through CdW , so we generate weighted optimality criteria

by applying standard optimality criteria to the CdW .

Definition 2.5.2. For given weight matrix W , the weighted version of a standard criteria

Φ, denoted ΦW , is the mapping ΦW : CE → R given by

ΦW (C) = Φ(CW ) , (2.11)

for all C ∈ CE, where CW = W−1/2CW−1/2.

We note that weighted optimality criteria are well-defined for any weight matrix W , as

all standard optimality criteria are well-defined for all symmetric, nnd matrices having any

row space of dimension k. It also follows that all valid weighted criteria must further satisfy

ΦW1(C) ∝ ΦW2(C) for allC ∈ CE whenW1 andW2 are estimation equivalent. Furthermore,

we emphasize that weighted optimality criteria are a function ofC ∈ CE notCW . That is, the

design optimization problem is to find an information matrix, not a weighted information

matrix, that minimizes all or some ΦW . When looking for an optimal design, however,

it may be worthwhile to think of the design optimization problem in terms of finding an

optimal weighted information matrix, CdW ∗ , and then taking the transformation Cd∗ =

W 1/2CdW ∗W
1/2 to find the optimal form of the information matrix. Although, there is no

guarantee that the resulting Cd∗ will correspond to an information matrix.

Theorem 2.5.1 details the properties of ΦW induced from Φ in terms of comparingC,C1,C2 ∈

CE. The only modification to the three basic properties of standard criteria as given in Defi-
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nition 1.2.4 is to the class of permutations preserving criteria values: ΦW (ΠCΠT ) = ΦW (C)

for all ΦW . This permutation class, denoted ΠW , is shown to be those permutations in ΠE

satisfying

ΠPτW
−1PτΠ

T = PτW
−1Pτ ,

which is closely related to the concept of estimation equivalence.

The proof of Theorem 2.5.1 requires the following result concerning permutations of a sym-

metric matrix. First, we provide an equivalent expression of a symmetric, nnd matrix A

related to its spectral decomposition. Suppose A has m ≤ k distinct positive eigenvalues,

denoted λj. The eigenspace corresponding to λj is the set of all vectors satisfying Ae = λje.

Let Pj be the orthogonal projector onto this subspace, that is Pje = e if and only if e is in

the eigenspace of λj and Pe = 0 for e in any other eigenspace. It is well-known that if the

Pj are chosen to be symmetric and idempotent then are unique. We may then write

A =
m∑
j=1

λjPj .

Lemma 2.5.1. Let A be a symmetric, nnd matrix described above. Then ΠAΠT = A if

and only if ΠPjΠ
T = Pj for all orthogonal projectors onto the n eigenspaces.

Proof. Assume ΠPjΠ
T = Pj for j = 1, . . . ,m, so

ΠAΠT =
m∑
j=1

λjΠPjΠ
T =

m∑
j=1

λjPj = A .

If e is in the eigenspace of A corresponding to λj then Ae = λje and clearly ΠAΠT (Πe) =

λjΠe. If ΠAΠT = A then A(Πe) = λj(Πe) so Πe must also lie in the eigenspace of A

corresponding to λj. For any j, we have a unique Pj that projects onto the eigenspace cor-

responding to λj. If λj has multiplicity nj then any set of nj orthonormal vectors e1, . . . , enj
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lying in the eigenspace of λj satisfy Pj =
∑nj

l=1 ele
T
l . Clearly Πel and Πel′ , l 6= l′, are also

orthonormal and lie in the eigenspace of λj so Pj =
∑nj

l=1 Πele
T
l ΠT = Π

(∑nj

l=1 ele
T
l

)
ΠT =

ΠPjΠ
T .

Theorem 2.5.1. Let W be a chosen weight matrix. For every C, C1, C2 in CE, any

weighted criterion ΦW under W satisfies

(i) ΦW is invariant to all Π ∈ ΠW : ΦW (ΠCΠT ) = ΦW (C) for all Π ∈ ΠW ,

(ii) ΦW preserves the nnd ordering: C1 −C2 is nnd ⇒ ΦW (C1) ≤ ΦW (C2),

(iii) ΦW is convex: ΦW (αC1 + (1− α)C2) ≤ αΦW (C1) + (1− α)ΦW (C2), 0 ≤ α ≤ 1 .

Proof. A weighted criterion, ΦW , for the chosen W is generated by a standard optimality

criterion, Φ, which is defined on, and properties (1)-(3) of Definition 1.2.4 hold for, all

symmetric, nnd matrices having any row space of dimension k. We first show (ii) and (iii).

If C1 − C2 is nnd then so is C1W − C2W so Φ(C1W ) ≤ Φ(C2W ), or ΦW (C1) ≤ ΦW (C2),

proving (ii). Next, ΦW (αC1 + (1 − α)C2) = Φ(αC1W + (1 − α)C2W ) ≤ αΦ(C1W ) + (1 −

α)Φ(C2W ) = αΦW (C1) + (1− α)ΦW (C2), proving (iii).

Let W∗ be the estimation equivalent weight matrix for W as described in Corollary 2.4.2.

These matrices assign identical weights to all estimable functions, so ΦW (C) = ΦW∗(C) for

allC ∈ CE. Clearly the permutation class ΠW = {Π : ΠPτW
−1PτΠ

T = PτW
−1Pτ} equals

that for W∗. Also, if Π ∈ ΠW then it is easily shown that ΠTPτW
−1PτΠ = PτW

−1Pτ

and because PτW
−1Pτ and [PτW

−1Pτ ]1/2 share the same eigenspaces, Lemma 2.5.1 says
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ΠT [PτW
−1Pτ ]1/2Π = [PτW

−1Pτ ]1/2. Hence if Π ∈ ΠW then

ΦW (ΠCΠT ) = ΦW∗(ΠCΠT ) = Φ([PτW
−1Pτ ]1/2ΠCΠT [PτW

−1Pτ ]1/2)

= Φ
(
ΠT [PτW

−1Pτ ]1/2ΠCΠT [PτW
−1Pτ ]1/2Π

)
= Φ([PτW

−1Pτ ]1/2C[PτW
−1Pτ ]1/2)

= ΦW∗(C) = ΦW (C) .

It remains to be shown that if ΦW (ΠCΠT ) = ΦW (C) for all Π ∈ ΠE, C ∈ CE, and ΦW

under W , then Π ∈ ΠW . Assume on the contrary that the result holds for some Π in ΠE

but not in ΠW , and consider C∗ = [PτW
−1Pτ ]+, the MP inverse (see Defintion 1.1.1) of

PτW
−1Pτ . It follows that

[PτW
−1Pτ ]1/2C∗[PτW

−1Pτ ]1/2 = Pτ ,

as the eigenspaces of C∗ = [PτW
−1Pτ ]+ corresponding to its positive eigenvalues equal

those of [PτW
−1Pτ ]1/2 and are orthogonal to (I − Pτ ). Hence

ΦW (C∗) = ΦW∗(C
∗) = Φ([PτW

−1Pτ ]1/2C∗[PτW
−1Pτ ]1/2)

= Φ(Pτ ) .

The matrix Pτ is symmetric and idempotent so its k positive eigenvalues equal 1 and it

follows that the AW - and EW -criterion values for C∗ equal 1. By assumption, the AW -

and EW -criterion values for ΠC∗ΠT must also equal 1, which happens if and only if all

the positive eigenvalues of [PτW
−1Pτ ]1/2ΠC∗ΠT [PτW

−1Pτ ]1/2 equal 1. The row space

of [PτW
−1Pτ ]1/2ΠC∗ΠT [PτW

−1Pτ ]1/2 equals E, so the eigenvectors of this matrix corre-

sponding to its positive eigenvalues make up an orthonormal basis for Pτ . Hence if all the
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positive eigenvalues equal 1 the spectral decomposition of [PτW
−1Pτ ]1/2ΠC∗ΠT [PτW

−1Pτ ]1/2

says

[PτW
−1Pτ ]1/2ΠC∗ΠT [PτW

−1Pτ ]1/2 = Pτ

⇒ PτΠC
∗ΠTPτ = [PτW

−1Pτ ]+1/2[PτW
−1Pτ ]+1/2 = [PτW

−1Pτ ]+ = C∗ .

As Π ∈ ΠE, PτΠC
∗ΠTPτ = ΠC∗ΠT so ΠC∗ΠT = C∗ and Π /∈ ΠW ⇒ ΠPτW

−1PτΠ
T 6=

PτW
−1Pτ . By Lemma 2.5.1, this implies ΠC∗ΠT 6= C∗, a contradiction.

As seen in the proof of Theorem 2.5.1, the permutation class ΠW is a minimal class of

permutation matrices that all ΦW are invariant to. We cannot rule out the possibility of a

particular weighted criterion to be permutation invariant to more than those permutations

in ΠW . A trivial example of such a criterion is ΦW (C) = 1 for all C. However, based on the

proof, ΠW is likely complete for all eigenvalue-based criteria.

Depending on the estimation space and chosen weight matrix, the condition for Π to be in

ΠW may be simplified to something more intuitive. For example, in regression models and

the cell means model, Pτ = Ip and the condition reduces to ΠW−1ΠT = W−1. Morgan

and Wang (2010), who worked with diagonal weight matrices and Pτ = I− 1
p
J , claimed ΠW

consists of those permutation matrices satisfying Πw = w, the vector of diagonal elements

in the diagonal W . While intuitive, they did not provide a necessary and sufficient condition

like that in Theorem 2.5.1, which we provide in the following section.

2.5.1 Permutation invariance for connected designs

The goal of this section is to explore whether we can simplify the permutation invari-

ance condition established in the previous section when Pτ = I − 1
p
J , for instance with
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connected designs for comparative experiments. Note that in this cue, ΠE contains all

permutation matrices, which is the class that Kiefer (1975) worked with. This matrix

is completely symmetric and J = ΠJ = JΠ which shows that if ΠW−1ΠT = W−1

then ΠPτW
−1PτΠ

T = ΠΠTPτΠW
−1ΠTPτΠΠT = PτΠW

−1ΠTPτ = PτW
−1Pτ , so

such permutations are in ΠW . We now investigate whether ΠPτW
−1PτΠ

T = PτW
−1Pτ

implies ΠW−1ΠT = W−1. If ΠPτW
−1PτΠ

T = PτW
−1Pτ then, multiplying this out for

Pτ = I − 1
p
J ,

ΠW−1ΠT − 1

p
[ΠW−1J + JW−1ΠT ] +

1

p2
ΠJW−1JΠT

= W−1 − 1

p
[W−1J + JW−1] +

1

p2
JW−1J

⇔ ΠW−1ΠT − 1

p
[ΠW−1J + JW−1ΠT ] = W−1 − 1

p
[W−1J + JW−1] .

A sufficient condition for ΠPτW
−1PτΠ

T = PτW
−1Pτ ⇒ ΠW−1ΠT = W−1 is if ΠW−1J+

JW−1ΠT = W−1J + JW−1.

Lemma 2.5.2. For Pτ = I − 1
p
J and weight matrix W satisfying W1 = λ1, ΠW are those

weight matrices satisfying ΠW−1ΠT = W−1.

Proof. Follows immediately from the fact that W−1J + JW−1 = 2
λ
J which is invariant to

all permutations.

Such weight matrices in Lemma 2.5.2 will be thoroughly discussed in chapter 3. Corol-

lary 2.4.2 states that every weight matrix W has an estimation equivalent weight matrix

W∗ that satisfies the eigenvector condition in Lemma 2.5.2, so there exists an estimation

equivalent weight matrix for which we can simplify the condition.

Let W−1 = (wij), and denote W−11 = w−1 = (wi.) and w.. = 1TW−11. Similarly let

PτW
−1Pτ = (pij) and p∗ = (pii), the p × 1 vector of the diagonal elements of PτW

−1Pτ .
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It is easy to show that

pii = wii −
2

p
wi. +

w..
p2

.

Now if PτW
−1Pτ is invariant to a permutation Π then clearly Πp∗ = p∗. Hence

Πp∗ = p∗ ⇒ Π

(
p∗ − w..

p2
1

)
= p∗ − w..

p2
1 ,

since Π1 = 1 for any permutation matrix.

Lemma 2.5.3. For Pτ = I − 1
p
J and a diagonal weight matrix W , ΠW is comprised of

those weight matrices satisfying Πw = w where w is the p× 1 vector of diagonal elements.

Proof. Because W−1 is diagonal we have that wii = wi., which implies that the ith element

of p∗− w..

v2
1 is equal to wii− 2

v
wi. = (1− 2

v
)wi. and so p∗− w..

v2
1 is proportional tow−1 = W−11.

Hence

ΠW−1J + JW−1ΠT = Πw−11T + 1w−1′ΠT

= w−11T + 1w−1T

= W−1J + JW−1 .

Clearly permutation invariance also holds for w, which simply inverts the elements in w−1.
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2.6 Matrix averaging, weight balance, and permuta-

tion invariance

A crucial piece to Kiefer’s theorem of universal optimality was complete symmetry of Cd∗ ,

which resulted from matrix averaging with respect to all permutation matrices. As pointed

out in the previous section, matrix averaging for a weighted optimality criterion is done with

respect to ΠW , a potentially smaller subset of all possible permutations. An information

matrix then need not be completely symmetric in order to reach its lower bound for some

weighted optimality criterion attained by matrix averaging.

The positive eigenvalues for completely symmetric information matrices are all equal, so

every normalized estimable function has equal variance. Such designs are thus called variance

balanced. If a design, d∗, has a completely symmetric weighted information matrix then the

positive eigenvalues of Cd∗W are all equal and so every weighted variance, which is a convex

combination of the inverse eigenvalues of Cd∗W , must be the same and we call d∗weight

balanced.

Definition 2.6.1. A design d is said to be weight balanced for W if VardW (ĥTτ ) does not

depend on the h ∈ E selected.

The following lemma characterizes the form of all Cd for weight balanced designs for a given

W .

Lemma 2.6.1. A design d is weight balanced for W if and only if, for some ε > 0, Cd may

be written as

Cd = εLdDwL
T
d ,

where columns of Ld are k weighted orthogonal functions satisfying LTdW
−1Ld = D−1

w ,

a k × k diagonal matrix whose diagonal elements are the inverse weights assigned to the
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corresponding estimable functions.

Proof. Assume d is weight balanced for W so all the eigenvalues of CdW equal (say) ε > 0.

It follows that the spectral decomposition for CdW is CdW = εFdW1F
T
dW1 where FdW1 has k

orthonormal p× 1 vectors that are also orthogonal to FW0. Hence Cd = W 1/2CdWW
1/2 =

εW 1/2FdW1FdW1W
1/2 = εLdL

T
d . Now LTdF0 = F T

dW1W
1/2F0 = F T

dW1F0 and so the columns

ofLd make up k linearly independent estimable functions. The functions satisfyLTdW
−1Ld =

F T
dW1FdW1 = Ik and hence are weighted orthogonal with assigned weight 1.

Now assume that Cd = εLdDwL
T
d where LTdW

−1Ld = D−1
w . It then follows that CdW =

εW−1/2LdDwL
T
dW

−1/2 and W−1/2LdD
1/2
w make up a set of k linearly independent eigen-

vectors for CdW , each having positive eigenvalue ε. Hence all the positive eigenvalues of CdW

are equal and so d is weight balanced.

The impact a weight balanced design has on the unweighted variances is best understood

by looking at the ratio of any two weighted variances under that design, which equals 1 by

definition. Let w1 = [hT1W
−1h1]−1 and w2 = [hT2W

−1h2]−1 denote the weights assigned to

the estimable functions hT1 τ and hT2 τ . The ratio of these weighted variances is

w1Vard(ĥT1 τ )

w2Vard(ĥT2 τ )
= 1⇔ Vard(ĥT1 τ )

Vard(ĥT2 τ )
=
w2

w1

.

If the weights are equal, then the variances must be equal and so the estimable functions are

estimated with equal efficacy. If w2 > w1 then d will estimate hT2 τ with smaller variance

than hT1 τ . Hence weight balanced designs estimate those estimable functions assigned the

largest weight with the smallest, and equal, variance. This does not immediately say that the

design will be optimal for all, or any, ΦW , but it is behaving like we would want a weighted

optimal design to behave.

46



Matrix averaging with respect to ΠW and the convexity property of weighted criteria can

be used to create lower bounds for ΦW (Cd) just as in the standard approach. It then be-

comes desirable to identify which information matrices are invariant to all such permutations.

Clearly completely symmetric matrices fall in this group, but other “less symmetric” matri-

ces become candidates for weighted optimality due to the potentially smaller permutation

group, ΠW . Indeed, it is this reduction in symmetry that allows such designs to place greater

emphasis on some estimable functions.

Now we show that all weight balanced designs have information matrices that are invariant to

all permutations in ΠW , further implicating their likelihood of containing a weighted optimal

design for some weighted criterion.

Lemma 2.6.2. Let d∗ ∈ D be a weight balanced design for W . Then Cd∗ is invariant to all

simultaneous row and column permutations in ΠW .

Proof. As shown in the proof of Lemma 2.3.3, the positive eigenvalues of Cd∗W equal those of

W
1/2
∗ Cd∗W

1/2
∗ where W

1/2
∗ = [PτW

−1Pτ ]1/2 + (I −Pτ ). Because PτW
−1Pτ and (I −Pτ )

are orthogonal and [PτW
−1Pτ ]1/2 is a square-root decomposition based on the spectral

decomposition of PτW
−1Pτ , W

−1/2
∗ = [PτW

−1Pτ ]+1/2 + (I − Pτ ). That d∗ is weight

balanced for W implies that the positive eigenvalues of CdW , and hence W
1/2
∗ Cd∗W

1/2
∗ , are

all equal to (say) ε > 0. Note that R(W
1/2
∗ CdW

1/2
∗ ) = E for all d and so

W 1/2
∗ Cd∗W

1/2
∗ = εPτ ⇒ Cd = εW−1/2

∗ PτW
−1/2
∗ = ε[PτW

−1Pτ ]+1/2[PτW
−1Pτ ]+1/2

= ε[PτW
−1Pτ ]+ ,

the MP inverse of PτW
−1Pτ . This matrix has the same eigenspaces as PτW

−1Pτ and so

permutation invariance over ΠW of PτW
−1Pτ implies that for Cd = ε[PτW

−1Pτ ]+.
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The second condition in Kiefer’s result required Cd∗ to have maximal trace across all designs.

In a weighted optimality context, however, a design, d, having CdW that has maximal trace

across all weighted information matrices may be far from desirable.

Example 2.6.1. For the cell means model the information matrix is Cd = Rd where Rd =

Diag(rd1, . . . , rdp), a diagonal matrix of the number of replications assigned to each treatment.

Assume we use a diagonal weight matrix W = Diag(w1, . . . , wp) to declare relative interest in

estimating the treatment means. Clearly to achieve complete symmetry of CdW the replication

numbers must be inversely proportional to their assigned weights. For the sake of argument,

we allow the number of replication to be non-integers, but still greater than 0, so such a CdW

exists. Such designs are called approximate or continuous designs (see Section 3.3.1).

The trace of any CdW will be
p∑
i=1

rdi
wi

which we seek to maximize with respect to the replications subject to the constraint
∑

i rdi = N

and rdi > 0. This is a linear programming problem but the vertices, where the maximum

solution(s) typically lie, are not included due to the non-negative constraints on the rdi. If

we could include the vertices, the obvious maximal trace would occur with a design that

assigns rdi = N for the treatment having the smallest weight assigned to it, say w(1). There

are approximate designs that can approach this value so we may consider N/w(1) as a tight

upper bound on the maximal trace. It seems highly unlikely that for general diagonal W

there would exist even an approximate design that achieves both complete symmetry of CdW

and also maximal trace.

As seen in the above example, once we introduce a desired weighting, maximizing trace and

balancing weighted information matrices can often lead to very different designs. Balance

of CdW is a superior property than maximal trace, which can direct attention to nearly
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singular designs, as seen in Example 2.6.1. A Kiefer-like result for universally weighted

optimal designs seems in terms of weighted information matrices seems unlikely as the two

components of that result cannot be simultaneously achieved.

Weighted optimality for a given W and criterion ΦW will need to be treated on a case-by-

case basis, both in terms of the chosen estimation space and weight matrix. We now turn our

attention to developing a class of weight matrices that allow direct assignment of weights to

a set of estimable functions and finding their corresponding weighted optimal designs. The

theory is demonstrated for a blocked treatment-versus-control experiment and completely

randomized designs that efficiently estimate all OP and BP effects.
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Chapter 3

Weighted optimality for a set of

estimable functions

The main motivation behind weighted optimality criteria is that experimental goals sometime

imply differential interest among the estimable functions. Diagonal weight matrices are most

useful when the weighting is motivated solely based on the parameters τi involved. For

comparative experiments with treatment effects, τ , this is appealing when the treatments

may be partitioned into g groups of varying importance, which was an important application

in Morgan and Wang (2010). This chapter focuses on a class of weight matrices that allows

a researcher to directly assign weight to a chosen set of estimable functions.

We begin with an equivalence lemma that relates the standard approach to design opti-

mization for a set of estimable functions and a class of weighted optimality criteria, demon-

strating how weighted optimality brings new insight to a broad class of design problems.

Then we develop a class of weight matrices that allow direct assignment of weights to a set

of estimable function. One of the most interesting and useful incorporations of weighting

presented in this chapter is through the AW -criterion, which is shown to be able to measure
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the average weighted variance for a large set of estimable functions with any desired weight-

ing. Applications for treatment-versus-control experiments and factorial experiments serve

to demonstrate the theory.

3.1 Model transformations and weighted optimality

Let H be an s × p matrix satisfying R(H) = E, so r(H) = k and each row, say hTj ,

is a coefficient vector for an estimable function of interest. In Section 1.2.1 we presented

the information matrix for the TvC contrasts in the form (HC−d H
T )−1. For a general H

described in this section, this matrix is invertible if and only if H is k × p. For s > k

estimable functions, Hτ , transform model (1.1) as follows

y = Xdτ +Lβ + e = Xd(H
TH)+HTHτ +Lβ + e

= XdHτH +Lβ + e (3.1)

for XdH = Xd(H
TH)+HT and τH = Hτ . This transformation produces an equivalent

model since Pτ = (HTH)+(HTH) and estimable functions of τ ∗ = Pττ are exactly those

of τ . The information matrix for τH in (3.1), denoted CdH , is

CdH = XT
dH(I − PL)XdH = H(HTH)+Cd(H

TH)+HT . (3.2)

One may then apply standard optimality criteria toCdH , which lies in CE, to evaluate designs

in terms of the estimable functions of interest.

Letting B = H(HTH)+C
1/2
d , and using the fact that BBT (= CdH) and BTB have the
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same nonzero eigenvalues, any positive eigenvalue λ of CdH satisfies

| CdH − λI |= 0⇔| BTB − λI |= 0 ⇔ | C1/2
d (HTH)+C

1/2
d − λI |= 0

⇔ | (HTH)+1/2Cd(H
TH)+1/2 − λI |= 0. (3.3)

In light of (3.3), define the (unscaled) weight matrix WH to be

WH = HTH + (I − Pτ ) (3.4)

which has inverse W−1
H = (HTH)+ + (I − Pτ ) and W

−1/2
H = (HTH)+1/2 + (I − Pτ ). It

follows that CdH , and CdW for W = WH , have the same positive eigenvalues, giving us the

following lemma.

Lemma 3.1.1. For optimality criteria that depend only on the eigenvalues of CdH ,

Φ(CdH) = ΦW (Cd) ,

where W = WH is defined in (3.4). Hence design optimization for τH in model (3.1) is a

weighted optimality problem for τ in model (1.1) with weight matrix WH .

We encountered an important result involving the general form HTH in Section 1.2.3.

Denote the k positive eigenvalues ofHTH as λ1, . . . , λk and their corresponding eigenvectors

as e1, . . . , ek. Theorem 1.2.1 states that the approximate information matrix of the form

M ∗ = α
∑k

i=1

√
λieie

T
i , where α is chosen to give M ∗ maximal trace across all possible

Cd ∈ CH , is A-optimal for Hτ . The eigenvectors of PτW
−1
H Pτ corresponding to positive

eigenvalues clearly coincide with e1, . . . , ek so the eigenspaces of M ∗ corresponding to its

distinct positive eigenvalues equal those of PτW
−1
H Pτ . Hence M ∗ is permutation invariant

to all Π ∈ ΠWH
. We see that the concept of aligned designs is related to invariance to
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weight-preserving permutations, and hence AW -optimality with respect to WH . Moreover,

Lemma 3.1.1 and the balance of aligned designs with respect to ΠW says that such designs

(if they exist) are potentially optimal for many eigenvalue criteria, not just the AW -criterion.

There are two common transformations used with ANOVA models arising from comparative

experiments, not for the purpose of targeting specific parametric functions, but simply to

make all treatment effects identifiable: the baseline transform and the sum-to-zero constraint.

Evidently these transformation have the potential to impact the design optimization problem.

We now examine the effects of performing such transformation from the weighted optimality

point of view.

3.1.1 The baseline and sum-to-zero transform

Assume E contains all treatment contrasts so Pτ = I − 1
p
J . Let τp in τ be the baseline

treatment and transform τ to θ = Hτ where H = (Ip−1 | −1p−1). Note that θ has p − 1

parameters. Here

HTH =

 Ip−1 −1p−1

1Tp−1 p


which has MP-inverse

(HTH)+ =

 Ip−1 − 1
p−1
Jp−1 0

0T 0

+
1

p

 1
p(p−1)

Jp−1 −1
p
1

−1
p
1T p−1

p

 .

The weight assigned to any contrast, cTτ is then [cT (HTH)+c]−1. If cTτ is a normalized

contrast involving only the first p−1 treatments then clearly this weight will be 1. However,

this is not the case for contrasts that involve the baseline treatment. For example, the

contrasts τi−τp√
2

for i = 1, . . . , p − 1 are assigned weight 2, implying that the comparisons
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involving the baseline treatment are of greater interest. In fact, the ratio of these weights is

exactly that produced in the limit as w1 → 1 by a diagonal weight matrix Diag(w) where

wT = (w2, w2, . . . , w2, w1) and w2 = (1 − w1)/(p − 1). This limit, as shown in Morgan and

Wang (2010), produces the standard treatment-versus-control optimality setup. As is well

known, optimality results for this setup are much different from that of the untransformed

model.

The sum-to-zero transformation replaces τi by τi− τ̄., where τ̄. = (
∑p

i=1 τi)/p. The necessary

transformation matrix H is then

H = Ip −
1

p
Jp = Pτ .

Hence HTH = Pτ and W = I so optimization for the sum-to-zero parameters is equivalent

to the standard approach for optimization for all estimable functions.

3.2 Assigning weights to estimable functions

The goal of this section is to construct weight matrices that assign any chosen weights to

any specified set of estimable functions. As will be shown, how this is done depends on how

many estimable functions we want to directly assign weights to. When assigning weights

to functions, we must also contemplate whether to assign them to the normalized or non-

normalized versions, even though the resulting weighted variances will be equivalent. We

begin by looking at assigning weights to a set of k orthonormal estimable functions.
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3.2.1 Assigning weights to k orthonormal estimable functions

Weight matrices satisfying W (I − Pτ ) = q(I − Pτ ) have k orthonormal eigenvectors that

make up an orthonormal basis of all estimable functions. Let H∗ be the k× p matrix whose

rows are these eigenvectors so that H∗τ are k orthonormal estimable functions. Consider

the weight matrix

WH∗ = H∗TDwH
∗ + (I − Pτ ) , (3.5)

where Dw is the k × k diagonal matrix of the eigenvalues corresponding to the rows of H∗.

These eigenvalues may be freely chosen by the experimenter and are easily shown to be

the weights assigned to the H∗τ . The H∗τ are also clearly weighted orthogonal, and by

Lemma 2.3.2, an AW -optimal design for this weight matrix minimizes the average weighted

variance of these k functions.

3.2.2 An admissibility criterion

Every information matrix with estimation space E admits a spectral decomposition of the

form Cd = HT
dDdwHd where the rows of Hd are k orthonormal eigenvectors of Cd and

Ddw is a k × k diagonal matrix of the positive eigenvalues of Cd corresponding to the

eigenvectors. We may then create a weight matrix of the form (3.5) from a chosen design,

say d’s, information matrix, Wd = Cd + (I − Pτ ). Hence W
−1/2
d = C

+1/2
d + (I − Pτ ) and

the weighted information matrix for design d is

CdW = C
+1/2
d CdC

+1/2
d = Pτ ,
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making d weight balanced forWd. We now explore the EW -criterion for such weight matrices

generated by a specific type of design.

For given design class D, a design d ∈ D is admissible if there is no d̃ ∈ D for which Cd̃ 6=

ΠCdΠ
T for all permutation matrices Π and Vard̃(ĥ

Tτ ) ≤ Vard(ĥTτ ) for every estimable

function hTτ . Let C∗ be the subclass of information matrices corresponding to all admissible

designs. Lemma 3.2.1 supplies a weighted criterion that takes admissible designs from design

contender to optimum, showing that every admissible design maximizes information in some

way.

Lemma 3.2.1. For a given d ∈ D where Cd ∈ C∗, d is EW -optimal for Wd.

Proof. As shown earlier, CdW = Pτ under Wd and so the positive eigenvalues of CdW

all equal 1, which is also equal to 1/EdW . If a competing design d̃ is EW -better than d

then all the eigenvalues for Cd̃W are greater than 1. It follows from Lemma 2.2.1 that

Vard̃W (ĥTτ ) < VardW (ĥTτ ) for every estimable function hTτ . But the weight applied to a

particular hTτ is constant for all designs, implying that Vard̃(ĥ
Tτ ) < Vard(ĥTτ ) for every

contrast and that d is inadmissible, a contradiction.

Recall that EdW equals the largest weighted variance across all estimable functions for a

design d. It is tempting to assume that for Wd, d minimizes the maximal weighted variance

across all the k orthonormal estimable functions that make up the spectral decomposition

of Cd. However, the following counterexample shows that is not always the case.
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Counterexample 3.2.1. Take a completely randomized design for p = 3 treatments with

N = 7 EU’s. There are only 15 possible connected designs, being all permutations of the

following replication vectors:

Design Replication Vector Permutations
d1 (1, 2, 4) 6
d2 (1, 3, 3) 3
d3 (1, 1, 5) 3
d4 (2, 2, 3) 3

We first show that design d1 is admissible in order to apply Lemma 3.2.1. Consider the

normalized eigenvector h2 corresponding to the maximum eigenvalue of Cd1 . The variance of

ĥT2 τ under d1 is 0.3628. Only design d2 estimates hT2 τ with smaller variance (Vard2(ĥ
T
2 τ ) =

0.3456), which can be checked manually across the other 14 designs. As d1 estimates the

pairwise contrast τ1−τ3√
2

with smaller variance than d2 (0.625 versus 0.667, respectively), d1

is admissible.

It is straightforward to check that d2 also estimates hT1 τ given by the other (orthonormal)

eigenvector of Cd1 with smaller variance than d1, so for i = 1 and 2,

Vard2(ĥ
T
i τ )

Vard1(ĥ
T
i τ )

=
Vard2W (ĥTi τ )

Vard1W (ĥTi τ )
< 1

and d2 has smaller weighted variances than d1 for the two estimable functions corresponding

to the eigenvectors of Cd1 even though d1 is EW -optimal with respect to Wd1 .

3.2.3 Assigning weights to k estimable functions

The weight matrices constructed in (3.5) are straightforward in their derivation, but are less

likely to be used in practice. Only in specific cases, such as factorial experiments, would a set
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of k orthonormal contrasts be the main focus of estimation. In this section we derive weight

matrices that can directly assign contrast weights to a set of at least k linearly independent,

normalized estimable functions. These weight matrices will have a form similar to those in

Section 3.2.1. Why these functions are normalized will be discussed later.

LetH be a k×pmatrix whereHτ are k normalized, linearly independent estimable functions

and choose w1, . . . , wk to be the k weights that are to be assigned to these k functions. Let

Dw be the diagonal matrix of these weights and write Hw = D
1/2
w H .

Lemma 3.2.2. For Hw described above, the weight matrix WHw = HTDwH + (I − Pτ )

assigns weight wj to the contrast hTj τ where hTj is the j-th row of H.

Proof. The assigned weight is the inverse of the j-th diagonal element of HW−1
HwH

T . Now

HwW
−1
HwH

T
w = Hw(HT

wHw)+HT
w is symmetric, idempotent, and has full rank and so equals

Ik. This gives

Hw(HT
wHw)+HT

w = Ik ⇔ H(HT
wHw)+HT = D−1

w ⇔ HW−1
HwH

T = D−1
w

showing that the j-th diagonal element of HW−1
HwH

T is 1/wj, as required.

It is clear from the proof of Lemma 3.2.2 that the weight matrix WHw makes the chosen k

estimable functions Hτ weighted orthogonal, which we now state as a corollary.

Corollary 3.2.1. For the weight matrix WHw described in Lemma 3.2.2, the chosen k es-

timable functions are weighted orthogonal. Furthermore, AdW measures the average weighted

variance of these k functions with weights specified in Dw:

AdW =
1

k

k∑
j=1

wjVard(ĥTj τ ) .
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One must take care not to read too much into Lemma 3.2.2. As an example, consider

Dw = Ik to place equal weight on the k normalized estimable functions. This gives the

weight matrix WH = HTH + (I + Pτ ). An arbitrary estimable function may be written

as hTτ = mTHτ for some k × 1 vector m, so the weight assigned to hTτ is the inverse

of hTW−1
H h = mTH(HTH)+HTm = mTm. This weight is 1 for any normalized m,

the same weight for the functions Hτ . But consider for p = 4 and Pτ = I − 1
4
J the

three contrasts (τ1 − τ3)/
√

2, (τ1 − τ4)/
√

2, and (τ2 − τ3)/
√

2, and their corresponding H .

Then mT = (0,−1, 1, 1) assigns (τ2 − τ4)/
√

2 the weight (mTm)−1 = 1/3, which would be

disconcerting if one preferred that all four of these contrasts be assigned the same weight.

The non-orthogonal H has allowed the non-normalized m to produce a normalized contrast.

The proof of Lemma 3.2.2 still holds even if the rows of H are non-normalized. It is then

necessary to investigate the impact of normalizing, or not normalizing, the rows of H on the

weights for other estimable functions and resulting weighted criteria.

3.2.4 Normalization

For simplicity, here we work with full rank information matrices so that all hTτ are estimable.

We take H to be full rank, with rows hT1 , . . . ,h
T
p , at least one of which is not normalized.

Let DH be the diagonal matrix with diagonal entries hTj hj. Then the rows of H̃ = D
−1/2
H H ,

denoted h̃Tj = 1√
hT
j hj
hTj , are normalized and at least one row of H is not normalized. These

two options correspond to two weight matrices W = HTH and W̃ = H̃ TH̃ = HTD−1
H H

that are not estimation equivalent, which should generally lead to different assignment of

weights to all estimable functions (they are not estimation equivalent). Hence normalization

of the rows of H will likely impact design ordering.

Lemma 3.2.3. The weighted variance of ĥTj τ with respect to W̃ is the variance of ̂̃hTj τ ,
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that is

VardW̃ (ĥTj τ ) = [hTj hj]
−1Vard(ĥTj τ ) = Vard(

̂̃hTj τ ) .

The weighted variance of ̂̃hTj τ with respect to W is the variance of hTj τ , that is

VardW (̂̃hTj τ ) = [hTj hj]Vard(
̂̃hTj τ ) = Vard(ĥTj τ ) .

Proof. The weights for the p estimable functions hTj τ with respect to W̃ are the inverse

diagonal elements of

HW̃ −1HT = H(HTD−1
H H)−1HT = DH

and so are just the inverses of the squared lengths hTj hj of the coefficient vectors hj, giving

the first result.

The weights for the p estimable functions h̃Tj τ with respect to W are the inverses of the

diagonal of

H̃W−1H̃ T = D
−1/2
H H(HTH)−1HTD

−1/2
H = D−1

H ,

that is, they are the squared lengths hTj hj.

Lemma 3.2.3 says that if the rows of H are normalized, then weighted evaluation of the

non-normalized hTj τ is nevertheless based on its normalized version. On the other hand, if

one does not normalize the rows of H , then weighted evaluation of the normalized h̃Tj τ is

equivalent to unweighted evaluation of the non-normalized hTj τ . That is, the weight assigned

to h̃Tj τ equals the length of the non-normalized coefficient vector hj.

The purpose of using a transformation H is to directly target estimation on the transformed

parameters θ = Hτ . What has just been shown is that if the rows of H are normalized,
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then the optimality problem is in terms of normalized functions of the original parameters. If

the rows of H are not normalized, then the optimality problem is in terms of non-normalized

functions of the original parameters. In the latter case, the fact that weighted optimality

automatically incorporates normalization (see (2.2)) does not “carry over” to the original

parameters underlying transformed models, unless the rows of the transformation matrix

were themselves normalized. Indeed, if the rows of H are not normalized then the induced

weighting W = HTH “un-normalizes” the h̃Tj τ when evaluating their weighted variances.

That is, W assigns weight equal to the length of the vector to the normalized functions h̃Tj

so that longer vectors will be deemed more important.

Our arguments up to this point have been focused on the weighted variances of Hτ and

H̃ τ induced from the two corresponding weight matrices. In particular, non-normalizing

was shown to induce weights based on the length of the vector, which may or may not be

indicative of the importance of that function. These arguments do not immediately tell us

anything about whether the design ordering changes with the weight matrices. In fact, the

answer likely depends on many conditions such as how different the lengths of the rows are

and the criterion chosen.

It is thus sufficient, and of greater clarity, to develop a general theory when the rows of H

are normalized. In this way, the weights we want to assign to the estimable functions are

made explicit (they are not “tainted” by the length of the contrast). If estimation is desired

specifically to the non-normalized version, we may introduce the length back by modifying

the diagonal elements of the matrix DH in W̃ .
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3.2.5 Assigning weights to s > k estimable functions

Focusing weighted estimation on a set of k linearly independent estimable functions is cer-

tainly an important step in generating a flexible class of weighted criteria, but we have seen

cases where this restriction may induce undesirable weights for other functions. To remedy

this, we would like a weight matrix that allows us to assign weights to a larger set of es-

timable functions, say s > k. One may try to accomplish this through a weight matrix of

the form in Lemma 3.2.2 with Hτ being s estimable functions specified by H (now an s×p

matrix) and Dw an s× s diagonal matrix of desired weights. This weight matrix will not in

general give [hTjW
−1
Hwhj]

−1 = wj for all j = 1, . . . , s, as seen in the following example.

Example 3.2.1. Suppose we partition 5 treatments in a comparative experiment into two

groups: V1 = {1, 2, 3} and V2 = {4, 5}. The estimation space is taken to be all contrasts, and

so k = 5− 1 = 4. Let Hτ be the normalized pairwise contrasts so s =
(

5
2

)
> 4. We hope to

assign weight w0 to the within-group contrasts, and weight 1 to the between-group contrasts,

using the appropriate Dw. Then HT
w = HTD1/2 can be written as

HT
w =

1√
2



√
w0

√
w0 0 0 1 1 0 0 0 0

−√w0 0
√
w0 0 0 0 1 1 0 0

0 −√w0 −
√
w0 0 0 0 0 0 1 1

0 0 0
√
w0 −1 0 −1 0 −1 0

0 0 0 −√w0 0 −1 0 −1 0 −1


so that WHw = HT

wHw + 1
2
J (the 1

2
is chosen to get a nice form for WHw but does not affect

the weights) is equal to

WHw =
1

2

 (3w0 + 2)I3 + (1− w0)J3 0

0 (2w0 + 3)I2 + (1− w0)J2


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and thus

W−1
Hw = 2

 1
3w0+2

[I3 − 1−w0

5
J3] 0

0 1
2w0+3

[I2 − 1−w0

5
J2]

 . (3.6)

Using (3.6) shows that WHw assigns weight (3w0 + 2)/2 to normalized pairwise contrasts

within V1 and weight (2w0 + 3)/2 to normalized pairwise contrasts within V2. Not only is

this not w0, but the two values are not even the same for w0 6= 1.

Suppose we choose s > k normalized, estimable functions that we want to assign equal weight

to that also satisfy HTH = αPτ . Then the weight matrix WH = HTH + α(I −Pτ ) = αI

assigns equal weight to those functions. In fact, it assigns equal weight to all normalized

estimable functions, reducing weighted optimality to standard optimality. This is the case

for w0 = 1 in Example 3.2.1. On the other hand, suppose HTH 6= Pτ but there exists a

diagonal matrix of unequal weights Dw for which HTDwH = Pτ . Then the weight matrix

WHw clearly won’t assign the desired weights, rather it will assign equal weights!

From what we have seen, the constructed weight matrix WHw will not in general assign the

desired weights to the chosen s > k estimable functions. Finding such a weight matrix for a

freely chosen set of weights is a very difficult problem, and may be impossible. Even though

the desired weights are not necessarily assigned to the s > k functions, we now show that

the weights are always preserved in the AdW expression.

3.3 AW -optimality for s ≥ k estimable functions

Section 3.2.3 focused on constructing weight matrices that assign selected weights to k es-

timable functions. Corollary 3.2.1 showed that such weight matrices make the k functions

weighted orthogonal, implying by Lemma 2.3.2 that the AW -criterion measures the average

weighted variance of those functions with weights specified in Dw. The following theorem
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shows that regardless of the weights WHw assigns to the s ≥ k chosen estimable functions,

the WHw-weighted A-criterion nonetheless measures the average weighted variance of the s

functions with the assigned weights as specified in Dw.

Theorem 3.3.1. Let WHw = HT
wHw + (I − Pτ ) with Hw = D

1/2
w H where Hτ are s ≥ k

normalized estimable functions with R(H) = E and Dw are the desired weights for Hτ .

Then AdW with respect to WHw is proportional to the average weighted variance for the s

estimable functions where the diagonal elements of Dw are the weights assigned to Hτ .

Proof. RewriteWHw using its spectral decomposition asWHw = EDλE
T where the columns

ofE are eigenvectors satisfyingETE = Ip. DefineM = ED
1/2
λ and letM1 be the k columns

of M orthogonal to (I −Pτ ). It is easily checked that MT
1 W

−1
HwM1 = Ik so the columns of

M1 make up a set of weighted orthogonal contrasts.

Applying Lemma 2.3.2, we have

AdW ∝ tr(MT
1 C

−
dM1)

= tr(MTC−dM ) since Cd(I − Pτ ) = 0

= tr(ETEMTC−dM )

= tr(EMTC−dMET )

= tr(W 1/2C−dW
1/2)

= tr(HTDwHC
−
d )

= tr(DwHC
−
d H

T ) =
s∑
j=1

wjVard(ĥTj τ ) .

The last expression is proportional to the average weighted variance of the s functions Ĥτ

with corresponding weights specified in Dw.
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Theorem 3.3.1 provides a very powerful optimality criterion that measures a design’s ability

to estimate a large set of estimable functions given expressed differential interest among

those functions. When applied to the weight matrix in Example 3.2.1, we have averaged

weighted variance proportional to

w0

∑
i,j∈V1
i 6=j

Vard

(
τ̂i − τj√

2

)
+ w0Vard

(
τ̂4 − τ5√

2

)
+
∑
i∈V1
j∈V2

Vard

(
τ̂i − τj√

2

)

even though this weight matrix does not in general assign weight w0 to the within-group

contrasts.

Suppose we use the weighting scheme in Example 3.2.1 for a block design with 5 blocks

each of size 4, in which case a balanced incomplete block design, say d1, exists and is shown

below. When w0 = 20, that is, larger weight is to be set to the within-group comparisons,

then Ad1W = 2.293. The incomplete block design, d2, displayed below has Ad2W = 2.285

and so is AW -better than d1. The designs below have blocks as columns and treatments are

labeled by 1, . . . , 5:

d1 =

1 1 1 1 2

2 2 2 3 3

3 3 4 4 4

4 5 5 5 5

d2 =

1 1 1 1 1

2 2 2 2 3

3 3 3 4 4

4 4 5 5 5

.

Note that d2 is nearly identical to the BIBD, except one of the replications for treatment 5

was replaced with one for treatment 1.

To see the impact of choosing d2 over d1, we focus on the within and between-group variances

rather than comparing the AW -values. The BIBD is known to estimate all normalized

pairwise comparisons with equal variance, which in this case is Vard1

(
τ̂i−τj√

2

)
= 0.267. For
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d2 the average variance for the normalized pairwise contrasts of the treatments in V1 is 0.243

and Var
(
τ̂4−τ5√

2

)
= 0.327, while the average variances for the between-group comparisons is

0.284.

We emphasize that the desired weights in Dw are maintained in the AdW expression, but are

not necessarily the weights individually assigned to the functions by WHw. Table 3.1 shows

the actual weights assigned to the within- and between-group contrasts. As anticipated, in

light of the variances discussed above, the largest weight among these comparisons is for the

within-group comparisons of V1 and the next is for the comparison of treatments 4 and 5.

The smallest weight is placed on the between-group contrasts. Perhaps most surprising is

that larger weights than the desired w0 = 20 are assigned to the within-group comparisons.

Table 3.1: Weights assigned byWHw in Example 3.2.1 to pairwise comparisons for treatments
between and within treatment groups V1 and V2 with w0 = 20.

Comparison group Weight
Within V1 31.0
Within V2 21.5

Between V1 and V2 5.3

There are ways other than through the user-specified estimable functions Hτ and chosen

weightsDw in Lemma 3.3.1 to interpret the AW -criterion as shown by the following corollary.

Corollary 3.3.1. For given weight matrix WHw = HTDwH + (I −Pτ ) consider any other

factorization WHw = H̃ TD̃wH̃ + (I −Pτ ) in which D̃w is a s̃× s̃ positive diagonal matrix

and H̃ τ are s̃ ≥ k estimable functions with r(H̃ ) = k. Then AdW is proportional to the

average weighted variance of the s̃ estimable functions H̃ τ , with weights specified by the

corresponding diagonal elements of D̃w.

Apparently AdW can measure average weighted variance for many different sets of functions.

We now extend Lemma 3.3.1 and Corollary 3.3.1 to a fully general result.
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Fix any weight matrix W . Let Ms×p be a matrix whose rows are coefficient vectors for

estimable functions of interest. Let the rows of Mw be those of M except that each is

multiplied by the square root of its weight. That is, if mT is a row of M then mTτ is an

estimable function of interest and the corresponding row of Mw is (mTW−1m)−1/2mT . Let

PτW be the orthogonal projector onto the column space of CdW , which is the same for all d.

Lemma 3.3.1. Suppose for some scalar α the matrix M described above satisfies

W−1/2MT
wMwW

−1/2 = αPτW .

Then the AdW value is proportional to the average weighted variance of the s contrasts

in Mτ .

Proof. The average weighted variance of the s contrasts is proportional to

tr(MwC
−
dM

T
w ) = tr(MwW

−1/2C+
dWW

−1/2MT
w )

= tr(C+
dWW

−1/2MT
wMwW

−1/2)

= α× tr(C+
dWPτW )

= α× tr(C+
dW ) .

Incidentally, there is no restriction that the rows of M be unique; repeats are allowed and

some may even be the zero vector. Standard optimality coincides with W = I and the

condition in Lemma 3.3.1 reduces to MTM = αPτ where the rows of M are normalized, a

result reported in Morgan and Stallings (2013).
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3.3.1 Approximate and exact AW -optimal CRDs

Having demonstrated the wide applicability of the AW -criterion, we now focus on deriving

optimal designs with general W and WHw described in the previous section. Assume the

one-way ANOVA model for a completely randomized design

y = Xdτ + 1µ+ e . (3.7)

It is known that regardless of the CRD d, the variance for a contrast ĥTτ is of the form∑p
i=1

h2i
rdi

, where rdi > 0 is the replication for treatment i. We first focus on finding ap-

proximate AW -optimal CRDs, meaning the replications are allowed to be any positive real

number, not just integers. The following result resembles the corollary in Section 8.8 in

Pukelsheim (2006).

Theorem 3.3.2. For any weight matrix with a factorization WHw = HTDwH + 1
p
J de-

scribed previously, denote the i-th element of the j-th row of H as hij. Then the approximate

CRD d∗ with replications

rd∗i = N

√
w∗i∑√
w∗i

(3.8)

where w∗i =
∑s

j=1wjh
2
ij is AW -optimal. Moreover, this design is optimal regardless of the

chosen factorization.

Proof. By assumption, W admits a factorization as in Corollary 3.3.1 so AdW is proportional

to the sum of the weighted variances of the s contrastsHτ with weights equal to the elements
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of Dw,

AdW ∝
s∑
j=1

wjVard(ĥTj τ ) =
s∑
j=1

wj

p∑
i=1

h2
ij

rdi

=

p∑
i=1

∑s
j=1wjh

2
ij

rdi

=

p∑
i=1

w∗i
rdi

,

where w∗i =
∑s

j=1wjh
2
ij. A straightforward application of Lagrange multipliers gives the

minimum solution

rdi = N

√
w∗i∑

i

√
w∗i

= N

√∑s
j=1 wjh

2
ij∑

i

√∑s
j=1wjh

2
ij

.

We have chosen one factorization that gives us an equivalent expression to AdW . Corol-

lary 3.3.1 says that choosing another factorization gives another equivalent expression to

AdW . Hence the AW -optimal approximate design is invariant to the factorization chosen.

The invariance property in Theorem 3.3.2 is not surprising; all factorizations come from the

same weight matrix W , which determines the design ordering. Notice that the weights in

(3.8) are comprised of the weights assigned, wj, and the squared coefficients in the corre-

sponding estimable function. If a treatment is not involved in hTj τ , then h2
ij = 0 so that

the corresponding wj does not apply to that treatment. Hence the weight, w∗i , for a given

treatment balances both the desired wj and the relative involvement of that treatment in

that contrast, hij. The following corollaries show that equally-replicated CRDs can be AW -

optimal designs for some W .
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Corollary 3.3.2. For the conditions in Theorem 3.3.2, if the diagonal elements of WHw are

equal then an equally-replicated CRD is AW -optimal.

Proof. If the diagonal elements of WHw are equal then the diagonal elements of HTDwH

are equal. But these are w∗i =
∑s

j=1 wjh
2
ij and so AdW ∝ Ad.

We now offer the following corollary to Theorem 3.3.2 for when a cell means model may

be preferred. Under this model, all linear combinations hTτ are estimable and also have

variance
∑p

i=1
h2i
rdi

.

Corollary 3.3.3. Suppose we have a CRD scenario with p treatments and assume the cell

means model. For any weight matrix W with diagonal elements wii the approximate design

with replications

rdi = N

√
wii∑√
wii

is AW -optimal.

We call
√
wii/

∑√
wii the replication proportion for treatment i. Approximate designs are

only applicable when their replications are integers. However they can be very informative

by hinting at what the exact optimal design should be. For example, they can identify

groups of treatments that should be equally replicated and provide an overall picture of

relative treatment replication. This will be demonstrated for the baseline parameterization

in Section 3.4.

The following theorem demonstrates how exact AW -optimal CRDs, assuming either the one-

way ANOVA model (3.7) or cell means model, can be built up from an existing AW -optimal

design with less N .

Theorem 3.3.3. Let r∗i,N be the replication numbers for an exact AW -optimal CRD for p

treatments with N runs and consider optimizing a CRD for p treatments with N + 1 runs.
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Suppose the optimization target is to minimize

AW =

p∑
i=1

wi
ri,N+1

for some fixed weights wi and replication ri,N+1 for treatment i. Then there is a treatment ĩ

for which

r∗i,N+1 =


r∗i,N + 1 if i = ĩ,

r∗i,N if i 6= ĩ

are the replications for an AW -optimal exact CRD for p treatment with N + 1 runs. That

is, an AW -optimal exact CRD for N + 1 adds one replication to one of the treatments in an

AW -optimal CRD for N runs.

Proof. The proof is done by induction. The smallest possible number of runs is p, and

obviously the result is true for N = p + 1. Provided the result is true for given N > p + 1,

we need to show it also holds for N + 1. Let d∗N be an AW -optimal design for N runs.

Clearly an AW -optimal design for N + 1 runs, d∗N+1, must for some treatment, call it ĩ, have

r∗
ĩ,N+1

≥ r∗
ĩ,N

+ 1. The argument proceeds in two cases.

Case 1. Suppose r∗
ĩ,N+1

= r∗
ĩ,N

+ 1. Then
∑

i 6=ĩ r
∗
i,N =

∑
i 6=ĩ r

∗
i,N+1. Given this sum, both d∗N

and d∗N+1 must achieve the minimal value of
∑

i 6=ĩwi/ri. Thus (up to permutation among

replication numbers for treatments assigned the same weight) the two designs assign the

same replication numbers to all treatments except ĩ. This is the claim of the theorem.

Case 2. Suppose r∗
ĩ,N+1

= r∗
ĩ,N

+ x for some integer x ≥ 2. Then
∑

i 6=ĩ r
∗
i,N+1 =

∑
i 6=ĩ r

∗
i,N −

(x − 1) and relative to d∗N , the design d∗N+1 has been found by increasing the replication of

treatment ĩ by x, and decreasing the total replication for all other treatments by x− 1. This

implies that adding x replicates to ĩ and removing a total of (x−1) replicates from the other

treatments decreases AW more than adding one replicate to treatment ĩ and maintaining
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the same replication sum for the other p − 1 treatments. Now removing one replicate of ĩ

from each of these two possible modifications of d∗N , this in turn implies that adding x − 1

replicates to ĩ and removing a total of (x− 1) replicates from the other treatments decreases

AW more than adding no replicates to treatment ĩ and maintaining the same replication

sum for the other p − 1 treatments. That is, d∗N is improved by adding x − 1 replicates to

treatment ĩ and, in some fashion, removing x − 1 replicates from among the other p − 1

treatments. This contradicts the fact that d∗N is AW -optimal.

Given d∗N , the exact design d∗N+1 is found as follows. For each treatment i calculate

wi
r∗i,N
− wi
r∗i,N + 1

=
wi

r∗i,N(r∗i,N + 1)
(3.9)

which is the decrease in AW for d∗N by increasing replication of treatment i by one unit.

The optimal replication increase is for the treatment ĩ which maximizes expression (3.9).

For the cell means model and any weight matrix W , wi in Theorem 3.3.3 equals the i-th

diagonal element of W . For the one-way ANOVA model and weight matrix WHw, the wi in

the theorem equals
∑s

j=1wjh
2
ij.

3.4 AW -optimal CRDs for two-level OP and BP effects

For treatments comprised of m factors each at 2 levels, we defined HOP and HBP in Sec-

tion 1.2.2 using a series of Kronecker products of 2×2 matrices, which are reparameterizations

performed on τ in the cell means model. The weight matrix corresponding to the 2m OP

effects is HT
OPHOP = I2m and so the OP transformation places identity weights on the

treatment means. Hence optimality for all OP effects is equivalent to standard optimality

for estimation of all treatment means.
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A natural additional weighting for the OP effects would be to assign more weight to the main

effects than the interactions through the weight matrix WOPw = HT
OPDwHOP which has di-

agonal elements wii =
∑2m

j=1wjh
2
ij. ForHOP , h2

ij = 2−m for all hij so wii = 2−m
∑2m

j=1wj is the

same for all treatments. By Corollary 3.3.2 an equally-replicated CRD will be AW -optimal

for WOPw with any chosen diagonal weight matrix Dw. While an interesting observation,

this result assumes we are interested in estimating all orthogonal factorial effects, includ-

ing the intercept. This does not coincide with most applications of factorial effects where

higher order interactions are assumed negligible, a scenario that falls under the theory to be

established in Chapter 5.

Finding AW -optimal CRDs for efficient estimation of all 2m BP effects is a much more

interesting problem. The Kronecker product representation for HBP makes finding the

corresponding weight matrix and its inverse straightforward. Let A⊗m = A ⊗ · · · ⊗A, the

Kronecker product of m copies of A. Then we have

WBP = HT
BPHBP =

1 −1

0 1


⊗m 1 0

−1 1


⊗m

=

 2 −1

−1 1


⊗m

W−1
BP = H−1

BPH
−1T
BP =

1 0

1 1


⊗m1 1

0 1


⊗m

=

1 1

1 2


⊗m

.

Recall that the Hadamard product of two column vectors v1 = (v1i) and v2 = (v2i), denoted

v1�v2, is the column vector having the i-th row element (v1iv2i). The matrix H−1
BP is easily
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shown to have columns equal to 12m , Am, and all possible Hadamard products of at least

two columns of Am. This is clear when one thinks of H−1
BP as the transformation matrix

of the BP effect parameter vector θ back into the treatment parameter vector τ , which is

discussed in Lemma 1.2.1. Finally, let Am;h, h = 2, . . . ,m, denote the 2m ×
(
m
h

)
matrix of

all Hadamard products involving h columns of Am. The order of the columns in Am;h is

not important for the work that follows. Being comprised of Hadamard products of columns

with either 0 or 1 elements, each matrix Am;h has elements equal to 0 or 1.

There clearly exists a column permutation ofH−1
BP givingH−1

BPΠ = (12m |Am |Am;2 | · · · |Am;m).

We may then write W−1
BP = H−1

BPH
−1T
BP = H−1

BPΠΠTH−1T
BP as

W−1
BP = 11T +AmA

T
m +Am;2A

T
m;2 + · · ·+Am;m−1A

T
m;m−1 +Am;mA

T
m;m , (3.10)

which will be a useful representation when finding the permutation class of ΠW corresponding

to WBP .

With the cell means model, the inverse of the diagonal elements of W−1
BP are the weights

assigned to the treatment means. It is straightforward to show that if a treatment mean

has heft h then the corresponding weight for that treatment mean is 2−h. The intercept,

which has heft 0, has the largest weight with 1, and the treatment with all factors not set

at baseline has the smallest weight of 2−m.

A similar Kronecker representation exists for the normalized BP effects by multiplying the

bottom row of ZBP by 2−1/2. It is easily shown that the corresponding weight matrix for the

normalized BP effects, say WBP ∗ , assigns weight 3−h to treatments of heft h, which is
(

2
3

)h
less than for those under the original BP model. One should then anticipate that optimal

CRDs for all BP effects will depend on whether we normalize the effects or not.

We now focus on finding AW -optimal approximate CRDs for estimation of non-normalized
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and normalized BP effects for the cell means model. We begin by deriving general forms for

the diagonal elements of WBP and WBP ∗ , which are needed to find the optimal replications

given by Corollary 3.3.3. It is easily shown that the diagonal element corresponding to a

treatment of heft h is 2m−h and 3m−h

2m
for WBP and WBP ∗ , respectively. Note these are not

the same weights assigned to the treatments by the weight matrix.

In order to calculate the optimal replications in Corollary 3.3.3 we need to find the sum of the

square roots of the diagonal elements. There are
(
m
h

)
different treatment means with heft h,

each having diagonal element either 2m−h or 3m−h

2m
, depending on whether we are interested in

estimating the non-normalized or normalized BP effects. For the non-normalized BP effects,

the sum of the square roots of the diagonal elements will then be

m∑
h=0

(
m

h

)√
2m−h = (1 +

√
2)m ,

which may be verified using the binomial expansion theorem. It follows that the replication

proportion for a treatment of heft h equals
√

2m−h/(1+
√

2)m. For the normalized BP effects,

the replication proportion for a treatment of heft h are similarly shown to be
√

3m−h/(1 +
√

3)m. It follows that the approximateAW -optimal design will replicate the baseline mean the

most and the treatment mean with all factors not set at baseline the least. The replication

proportions for estimation of the non-normalized BP effects are broken down by heft for

m = 3 to m = 8 in Table 3.2. The replication proportions for estimation of the normalized

BP effects are similar, and so not shown here, although slightly greater emphasis is placed

on replication of treatments of lower heft.

As the replication proportions are irrational there can never be an N such that the ap-

proximate design yields an exact design. However, the approximate theory sheds light onto

the optimal forms of exact designs, such as the observation that the baseline treatment will

likely be replicated the most. We also see that treatments having the same heft should be
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Table 3.2: Replication proportions for treatments of a given heft for A-optimal approximate
CRD with respect to estimation of all non-normalized BP effects.

m
Heft 3 4 5 6 7 8

0 0.201 0.118 0.069 0.040 0.024 0.014
1 0.142 0.083 0.049 0.029 0.017 0.010
2 0.101 0.059 0.034 0.020 0.012 0.007
3 0.071 0.042 0.024 0.014 0.008 0.005
4 – 0.029 0.017 0.010 0.006 0.003
5 – – 0.012 0.007 0.004 0.002
6 – – – 0.005 0.003 0.002
7 – – – – 0.002 0.001
8 – – – – – 0.001

replicated as equally as possible. We may think of the design in terms of the N × m ma-

trix Vd = XdAm where Am, which was defined in Section 1.2.2, has rows organized under

the revlex order. Then equal replication of treatments of similar heft in the approximate

AW -optimal CRD implies that an exact AW -optimal CRD Vd will likely be an N ×m BA

of strength m or at least “close” to one.

We now identify the class of permutations that satisfy ΠWBPΠT = WBP and ΠWBP ∗Π
T =

WBP ∗ and show that the information matrix of the BP effects under a BA of strength m is

invariant to such permutations. We begin by first proving the following lemma, which will

be needed later.

Lemma 3.4.1. For a given m, the columns of W−1
BP indexed by {2h+1 : h = 0, 1, . . . ,m−1}

make up a 2m ×m array equal to

Ãm = Am + J

where Am is the array of treatment indices under the revlex ordering.
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Proof. The proof is done by induction. For m = 1 we have

W−1
BP1

=

1 1

1 2

 = (12 | Ã1) ,

and clearly column 2 gives the result. For any m > 1, Ãm may be written as

Ãm = Am + J =

 Am−1 0m−1

Am−1 1m−1

+ J =

 Ãm−1 1m−1

Ãm−1 21m−1

 .

For m = 2 we have

W−1
BP2

=

1 1

1 2

⊗ (12 | Ã1)

=

 12 Ã1 12 Ã1

12 Ã1 212 2Ã1

 ,

and columns 2 and 3 clearly give the required Ã2. Now assume the result holds for m = t

factors. It follows then that for m = t+ 1 factors

W−1
BPt+1

=

1 1

1 2

⊗W−1
BPt

=

 W−1
BPt

W−1
BPt

W−1
BPt

2W−1
BPt

 .

By the induction hypothesis, the set of columns {2, 3, 5, . . . , 2t−1 + 1} produce the first t

columns of Ãt+1 and column 2t + 1, which is the first column of (W−1
BPt
| 2W−1

BPt
)T , is clearly

equal to (1Tt | 21Tt )T , giving the result.
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We say a 2m × 2m permutation matrix Π is a factor permutation if there exists an m ×m

permutation matrix, Πm, such that ΠAm = AmΠm. That is, if the row permutation Π of

Am is equivalent to a column permutation of Am, we say Π is a factor permutation. By

definition, a factor permutation of a BA of strength m again produces a BA of strength m

with the same index set.

Lemma 3.4.2. If Pτ = Ip, the permutation class ΠW for WBP equals that for WBP ∗ and

is comprised solely of the m! factor permutations.

Proof. We are interested in finding those permutation matrices that satisfy ΠW−1
BPΠT =

W−1
BP and ΠW−1

BP ∗Π
T = W−1

BP ∗ . If two elements in W−1
BP are equal they will also be equal in

W−1
BP ∗ and if two elements are unequal in one they will also be unequal in the other. Hence

the class ΠW will be the same for both weight matrices.

Recall the representation of W−1
BP in (3.10). Let Π be any factor permutation: ΠAm =

AmΠm for some m×m permutation matrix Πm. Then Π11TΠT = 11T and ΠAmA
T
mΠT =

AmΠmΠT
mA

T
m = AmA

T
m. Each column of Am;h for h = 2, . . . ,m is comprised of some order

of Hadamard products of the columns of Am, so it follows that the columns of ΠAm;h may

be written as the same order of Hadamard products of the columns of ΠAm. But ΠAm =

AmΠm, a column permutation of Am, so ΠAm;h may be written as a column permutation

of Am;h, say Am;hΠ(m
h). Hence ΠAm;hA

T
m;hΠ

T = Am;hΠ(m
h)Π

T

(m
h)
AT
m;h = Am;hA

T
m;h for all

h = 2, . . . ,m, giving ΠW−1
BPΠT = W−1

BP .

Any permutation matrix satisfying ΠW−1
BPΠT = W−1

BP must preserve the diagonal elements

of W−1
BP . If two diagonal elements of W−1

BP are the same then the corresponding rows in Am

must have the same heft. Hence ΠAm may only permute rows that have the same heft. The

index of the m columns in Lemma 3.4.1 is easily shown to index the m heft 1 rows of Am.

Hence if W−1
BPΠT permutes a column in this index, it must do so with another column that
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makes up Ãm, as given in Lemma 3.4.1. Denote the permutation matrix of these m columns

of W−1
BP corresponding to ΠT as Πm.

If ΠW−1
BPΠT = W−1

BP then W−1
BPΠT = ΠTW−1

BP and clearly their 2m × m submatrices

composed of the columns in Lemma 3.4.1 must be equal. That is

ÃmΠm = ΠT Ãm ⇔ (Am + J)Πm = ΠT (Am + J) .

As J is invariant to any row or column permutation, we have AmΠm = ΠTAm, so Π must

be a factor permutation.

Corollary 3.4.1. For the cell means model, a design, d, has an information matrix invariant

to all permutations in ΠW for WBP and WBP ∗ if and only if Vd = XdAm is an N ×m BA

of strength m.

Proof. Information matrices under the cell means model are diagonal matrices of replications

for each treatment, Rd. For Rd to be invariant to factor permutations, the replications for

treatments of a given heft must be equal. Hence Vd must be a BA of strength m.

Lemma 3.4.2 and Corollary 3.4.1 indicate that some form of a BA of strength m may be

weighted optimal, or at least reasonably efficient, for estimation of non-normalized and

normalized BP effects. However, the best BA will likely depend on the chosen weighted

criterion. For the AW -criterion, the replication proportions in Table 3.2 give insight into the

relationship between the BA indices, assuming one is optimal. That is, we anticipate such a

design will have larger BA indices for rows of lesser heft.

Let wj1...jm denote the diagonal element of WBP corresponding to the treatment mean with

index j1 · · · jm and let rdj1...jm denote the number of replications assigned to that treatment,

so Rd = Diag(rd00...0, rd10...0, . . . , rd11...1). Recall that J is the set of all indices j1 . . . jm.
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For WBP , HBPτ make up 2m weighted orthogonal functions each assigned weight 1, so by

Lemma 2.3.2 the AdW expression is proportional to

AdW ∝ tr(HBPR
−1
d H

T
BP ) = tr(R−1

d WBP )

=
∑

j1...jm∈J

wj1...jm
rdj1...jm

. (3.11)

Applying Theorem 3.3.3 and the selection rule (3.9) explained at the end of the previous

section to (3.11) proves the optimality of BAs for estimation of BP effects, regardless of

whether they are normalized, which we now show.

Optimization for the BP effects, whether or not they are normalized, is equivalent to a

weighted optimization in which every treatment mean of the same heft is assigned the same

weight, say wh. That is, wj1...jm = wh where h =
∑
jl. Suppose the AW -optimal design for

N runs d∗N is a strength m BA, which is true for N = 2m, the saturated case. This implies

that treatments of the same heft will also be replicated the same number of times, say r∗h,N .

This assumption simplifies expression (3.11), so that in order to find the AW -optimal design

for N + 1 runs, we need only to maximize

wh
r∗h,N(r∗h,N + 1)

(3.12)

with respect to h, rather than every possible treatment combination. That is, we need only to

find the maximum of m+ 1 different values. For whatever treatment heft h that maximizes

(3.12), say h′, it does not matter which treatment of that heft we choose to increase the

replication for, it will always produce an AW -optimal design for N + 1 runs. Say we decide

to replicate treatment i′ having heft h′. Suppose this d∗N+1 is not a BA (we did not replicate

the baseline treatment or the treatment with heft m). When we want to find the AW -optimal
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design for N + 2 runs we would not replicate treatment i′ again, since

wh′

r∗i′,N+1(r∗i′,N+1 + 1)
=

wh′

(r∗i′,N + 1)(r∗i′,N + 2)
<

wh′

r∗h′,N(r∗h′,N + 1)
=

wh′

r∗h′,N+1(r∗h′,N+1 + 1)
,

which would be the decrease of AdN+1W by replicating another treatment of heft h′. In fact,

we would clearly want to replicate another treatment having heft h′ as it is already known to

produce a greater decrease than the other treatments. This continues until we have increased

replication for every treatment having heft h′ by 1, giving another BA.

To demonstrate this recursive relationship, we used Theorem 3.3.3 to find exact A-optimal

designs for estimation of non-normalized and normalized BP effects for m = 3 factors and

increasing run size. The same procedure was used to find the designs shown in Tables 3.3

and 3.4, with the necessary modification of weights. Both scenarios begin with the saturated

design where N = 8, which must replicate each treatment once in order to estimate every

BP effect. Overall we see the expected hierarchical structure of treatment replications cor-

responding to hefts proposed from the approximate design theory. We also see how designs

that are not BAs for a given N are building up to a BA by adding replications to treatments

of the same heft. The A-optimal designs for the normalized BP effects tend to replicate the

baseline treatment more than for the non-normalized designs but in some cases the designs

for a given N coincide, such as for N = 8, 9, 13, and 20 runs. As N increases, we antici-

pate the A-optimal designs for non-normalized and normalized BP effects to deviate slightly,

based on the relative replications from the approximate design theory.

Tables 3.5 and 3.6 show theA-optimal CRDs that are BAs for non-normalized and normalized

BP effects, respectively, for m = 3 to 5 factors and a given number of runs. The displayed

run order depends on the number of factors and whether the effects are normalized. The

replications are displayed as the BA index set for treatments of different hefts. Any two

adjacent designs in the tables are nearly identical except the design on the right increases
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Table 3.3: A-optimal CRDs for estimation of all non-normalized BP effects for m = 3 factors.
The last row indicates whether the design is a BA of strength 3.

Treatment N
Index 8 9 10 11 12 13 14 15 16 17 . . . 20
000 1 2 2 2 2 3 3 3 3 4 4
100 1 1 2 2 2 2 2 2 2 2 3
010 1 1 1 2 2 2 2 2 2 2 3
001 1 1 1 1 2 2 2 2 2 2 3
110 1 1 1 1 1 1 2 2 2 2 2
101 1 1 1 1 1 1 1 2 2 2 2
011 1 1 1 1 1 1 1 1 2 2 2
111 1 1 1 1 1 1 1 1 1 1 1
BA ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 3.4: A-optimal CRDs for estimation of all normalized BP effects for m = 3 factors.
The last row indicates whether the design is a BA of strength 3.

Treatment N
Index 8 9 10 11 12 13 14 15 16 17 . . . 20
000 1 2 3 3 3 3 4 4 4 4 4
100 1 1 1 2 2 2 2 3 3 3 3
010 1 1 1 1 2 2 2 2 3 3 3
001 1 1 1 1 1 2 2 2 2 3 3
110 1 1 1 1 1 1 1 1 1 1 2
101 1 1 1 1 1 1 1 1 1 1 2
011 1 1 1 1 1 1 1 1 1 1 2
111 1 1 1 1 1 1 1 1 1 1 1
BA ∗ ∗ ∗ ∗ ∗ ∗ ∗

replications for all treatments of some heft, say h′, by one. If the left design is for N∗ then

the right design is for N∗ +
(
m
h′

)
runs, where

(
m
h

)
is the number of treatments of heft h′. It

follows that an A-optimal CRD for N∗ + x runs where 1 ≤ x ≤
(
m
h′

)
adds one replicate to

each treatment in any subset of x treatments of heft h′.

Across the m and N considered, there is a consistent pattern of which heft group is replicated

with increasing N . For example, for both the non-normalized and normalized BP models,
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the indices for the A-optimal BAs for m = 3 almost always equal the A-optimal BA indices

for treatments of heft 0 to 3 for m = 4 and m = 5 factors. Furthermore, for the N considered,

the heft 4 treatment replications for m = 4 equal the heft 4 treatment replications for m = 5.

This equivalence does not hold for the N = 32 design for m = 3 factors and N = 50 design

for m = 4 factors, implying that this equivalence will likely not hold for large N . The

A-optimal CRDs are rarely the same for the non-normalized and normalized BP models,

although they are similar for small N . As expected, we clearly see greater importance being

placed on treatments of smaller heft for the normalized BP model as N increases.

Table 3.5: BA heft replications for A-optimal designs for estimation of all non-normalized
BP effects for m = 3 to 5 factors with increasing N .

Treatment N
m Heft 8 9 12 13 16 17 20 21 22 25 28 29 32

3

0 1 2 2 3 3 4 4 4 5 5 5 6 6
1 1 1 2 2 2 2 3 3 3 4 4 4 5
2 1 1 1 1 2 2 2 2 2 2 3 3 3
3 1 1 1 1 1 1 1 2 2 2 2 2 2

Treatment N
Heft 16 17 21 22 28 29 33 37 38 42 48 49 50

4

0 1 2 2 3 3 4 4 4 5 5 5 6 6
1 1 1 2 2 2 2 3 3 3 4 4 4 4
2 1 1 1 1 2 2 2 2 2 2 3 3 3
3 1 1 1 1 1 1 1 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1 1 1 1 2

Treatment N
Heft 32 33 38 39 49 50 55 65 66 71 81 82 87

5

0 1 2 2 3 3 4 4 4 5 5 5 6 6
1 1 1 2 2 2 2 3 3 3 4 4 4 4
2 1 1 1 1 2 2 2 2 2 2 3 3 3
3 1 1 1 1 1 1 1 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1 1 1 1 2
5 1 1 1 1 1 1 1 1 1 1 1 1 1

Although the examples in this section exemplify the process of creating a weight matrix
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Table 3.6: BA heft replications for A-optimal designs for estimation of all normalized BP
effects for m = 3 to 5 factors with increasing N .

Treatment N
m Heft 8 9 10 13 14 17 20 21 22 25 26 29 30

3

0 1 2 3 3 4 4 4 5 6 6 7 7 7
1 1 1 1 2 2 3 3 3 3 4 4 4 4
2 1 1 1 1 1 1 2 2 2 2 2 3 3
3 1 1 1 1 1 1 1 1 1 1 1 1 2

Treatment N
Heft 16 17 18 22 23 27 33 34 35 39 40 46 50

4

0 1 2 3 3 4 4 4 5 6 6 7 7 7
1 1 1 1 2 2 3 3 3 3 4 4 4 4
2 1 1 1 1 1 1 2 2 2 2 2 3 3
3 1 1 1 1 1 1 1 1 1 1 1 1 2
4 1 1 1 1 1 1 1 1 1 1 1 1 1

Treatment N
Heft 32 33 34 39 40 45 55 56 57 62 63 73 83

5

0 1 2 3 3 4 4 4 5 6 6 7 7 7
1 1 1 1 2 2 3 3 3 3 4 4 4 4
2 1 1 1 1 1 1 2 2 2 2 2 3 3
3 1 1 1 1 1 1 1 1 1 1 1 1 2
4 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1

and finding weighted optimal designs, they do not necessarily reflect the typical approach

for estimation of OP and BP effects. Oftentimes the intercepts in both models are not

necessarily of interest and interactions involving more than 2 factors are often assumed to

be negligible. In chapter 4 we detail approaches to searching for weighted optimal designs

in SAS PROC OPTEX and investigate the impact of setting weights arbitrarily close to

zero on weighted information matrices. In chapter 5 we investigate the effects on the linear

model when the estimation space is reduced to a smaller subset and use that theory to

find A-optimal CRDs for estimation of BP effects under the assumption that higher order

interactions are negligible.
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Chapter 4

Weighted optimality criteria and

design search algorithms

Optimal designs with respect to standard optimality criteria often appeal to our intuition

regarding desirable design properties such as equal replication and variance balance. Kiefer’s

approach to design optimization provided a mathematical justification for why well-known

designs should be preferred. However, his universal optimality theorem does not shed imme-

diate insight into how to arrive at universally optimal designs; if a design cannot be found

that satisfies his sufficient conditions, the theorem is of limited use. Even if we can identify

the desired type of design, such as a balanced incomplete block design, it does not mean

that one exists or is easily constructed. In these cases, analytical approaches to find optimal

designs are intriguing but may become quite complex. Instead, researchers often rely on de-

sign search algorithms to seek out optimal, or at least highly efficient, designs with respect

to some criterion.

We begin this chapter with a brief overview of design search algorithms, focusing on the

general procedures commonly employed for approximate and exact designs, including se-
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quential and exchange point algorithms. We will focus on algorithms that require a set of

user-specified candidate points for the design matrix and describe how optimal designs are

searched for given the candidate points and desired number of runs, N . A straightforward

modification of these candidate points is easily shown to evaluate designs in terms of their

weighted information matrices. These algorithms, however, commonly assume the informa-

tion matrix has full rank which does not hold for all designs. We show how such algorithms

may be “tricked” into evaluating rank-deficient designs through a limiting weight approach,

where small weight is placed on model parameters that are not the target of estimation.

These techniques are used to find A-optimal designs that estimate all BP effects adjusted

for the intercept, and A-optimal incomplete block designs for comparative experiments.

4.1 Overview and modification of design search algo-

rithms

Design search algorithms we consider begin with an assumed model, often linear, having a

design matrix Xd for some target parameters τ . The user specifies the total number of runs,

N , and then chooses a set of candidate points, which are possible rows of Xd. Continuous

experimental variables are usually assumed to be centered and scaled so their values range

between −1 and 1. For such variables, there are an infinite number of candidate points that

could be specified so an equally-spaced grid is often selected to represent the entire regression

range. Design search algorithms systematically run through subsets of the points of size N ,

including replicated points, in order to find a design matrix Xd that minimizes a chosen

criterion. The criteria are often standard optimality criteria described in this dissertation,

but other forms of criteria may be used as well. Standard design search algorithms assume

all parameters in the model need to be estimated, so Xd must have full column rank and
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Cd = XT
dXd. Modifications are then put in place to include block effects, but the author has

not seen an algorithm in commercial software that operates for general information matrices

of the form Cd = XT
d (I − PL)Xd.

How the search is carried out depends on whether we are interested in finding an optimal

approximate or exact design. For approximate designs, the i-th candidate point, xTi , is as-

sumed to have some replication proportion, pi, 0 ≤ pi ≤ 1 so that
∑

i pi = 1. A general

expression for the desired criteria, which is a function of Cd = XT
dXd = N

∑
i pixix

T
i , may

be derived and optimized with respect to the proportions pi under the constraint that they

must sum to 1. If there is no known closed-form expression, a steepest descent, sequential

procedure is commonly used, as detailed in Chapter 9 of Atkinson et al. (2007). An approxi-

mate design approach will be taken in Section 5.2, but here we are more interested in finding

optimal exact designs.

Finding exact optimal designs is more practical, but much harder since we are optimizing

over a discrete set of candidate points rather than continuous replications. To begin, the

user starts with an initial exact design with N0 runs which may be less than, greater than,

or equal to N . If less than N , candidate points that most improve the initial criterion value

are added to the initial design until an N run design is reached. Similarly, if N0 > N ,

candidate points that least affect the initial criterion are removed until an N run design is

reached. Once the initial design is modified so that we have an N run design, a point within

the design, says xTk , is possibly exchanged for another point, xTl . The exchange should be

made between points that leads to the largest decrease in the chosen criterion. Points are

exchanged until some stopping rule is reached, such as a maximum number of iterations or

a minimal change occurs after points are exchanged.

In general, the algorithms for finding optimal exact designs are often slow and computation-

ally inefficient. This is especially true if one must invert Cd after every point exchange in
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order to calculate the chosen criterion or if there are many possible point exchanges to con-

sider. Furthermore, there is no guarantee that a global optimal design is reached as standard

optimality criteria fail to be convex over the discrete domain of information matrices. For

some criteria, the resulting change in the criterion value by adding, removing, or exchanging

points has a straightforward expression, not requiring multiple inversions of the information

matrix. This is true of the D-criterion, which appears frequently in the design literature; see

Fedorov, Studden, and Klimko (1972), Mitchell (1974), Welch (1982), Cook and Nachtsheim

(1980, 1989), and DuMouchel and Jones (1994). It would however be unwise to choose the

D-criterion for design optimization simply because of its computational convenience. Its

scale-invariance property is often suitable for regression models, but the A- and E-criteria

can be more appropriate for categorical predictor variables. Moreover, we are not interested

in the DW -criterion in this dissertation for reasons shown earlier and so will seek a procedure

to search for either AW - or EW -optimal designs.

As weighted optimality criteria are standard optimality criteria that evaluate weighted in-

formation matrices, we need only modify standard design search algorithms so that they

optimize CdW . The necessary modification is straightforward: instead of inputting the can-

didate points, say as rows in Xc, we input the weighted candidate points XcW = XcW
−1/2.

The search algorithm then proceeds as usual until it outputs the determined set of optimal

weighted runs, Xd∗W , which we transform into the optimal design, Xd∗ = Xd∗WW
1/2.

4.2 Adjusted information matrices and limiting weights

For the cell means model, the set of candidate points is Ip, the p × p identity matrix, so

the weighted candidate points are simply the rows of W−1/2. The same would be true for

one-way ANOVA models with p treatments if the search algorithm were able to evaluate
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information matrices from general linear models, Cd = XT
d (I − PL)Xd. A simple, but

computationally intensive algorithm could easily be programmed to accomplish this, but

we are more interested in modifying existing software built on sophisticated computational

techniques that speed up design selection.

The information matrix for τ in model (1.1) adjusts for β, the nuisance parameters. That is,

we acknowledge that the parameters in β may explain variation but have no direct interest in

their estimation. This perspective can be operationalized in a weighted context by thinking

of functions of nuisance parameters as estimable effects that we assign very small weight to.

So small, in fact, that their variances play no role in how designs are evaluated. The same

idea can be employed with functions of the targeted parameters τ that are of little or no

interest, which is where we begin.

For a given general linear model and class of designs D having information matrices with

row space equal to E, suppose we desire evaluation of designs in terms of a subspace of E,

say E1, of dimension k1 < k. That is, we acknowledge that all estimable functions in E are

in the model, but are primarily concerned with weighted evaluation of functions in E1. We

focus on the case where we have k1 linearly independent estimable functions that span E1

to which we wish to assign weights w1, . . . , wk1 . Let H1 be the matrix with the coefficient

vectors of these estimable functions along with p− k orthonormal rows that span that null

space of Cd. Next let E2 be the subspace of E having dimension k2 (k1 + k2 = k) such

that E = E1 ⊕ E2 and every vector in E2 is orthogonal to those in E1. Choose any set of k2

orthonormal estimable functions H2τ that span E2, which again we have minimal interest

in estimating but are still assumed to be in the model.

IfHT = (HT
1 |HT

2 ) thenH is invertible,H1H
T
2 = 0, andH−1 = (HT

1 (H1H
T
1 )−1 |HT

2 (H2H
T
2 )−1).

The matrix H considered here is different from the general H in Chapter 3, whose rows

were made up of only coefficient vectors for estimable functions. By rewriting Xdτ =
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XdH
−1Hτ in the general model (1.1), the information matrix for Hτ is easily shown to be

CdH = H−1TCdH
−1. Note that the non-estimable functions in H will have no impact on

the evaluation of CdH , as they lie in the null space of Cd. Finally, the information matrix

for H1τ adjusted for H2τ , denoted CdH11(2), is

CdH11(2) = H1X
T
d (I − PL)[I − (I − PL)XdH

T
2 (H2CdH

T
2 )−1H2X

T
d (I − PL)](I − PL)XdH

T
1

= H1[Cd −CdH
T
2 (H2CdH

T
2 )−1H2Cd]H

T
1 . (4.1)

Suppose that we wish to further weight the k1 estimable functions in H1τ through a weight

matrix, W1. Then the weighted information matrix for which design optimization is to

be performed will be W
−1/2
1 CdH11(2)W

−1/2
1 . We now show that design optimization with

respect to the eigenvalues of this matrix is asymptotically equivalent to weighted estimation

of τ as we assign weights arbitrarily close to zero to H2τ .

Theorem 4.2.1. For the scenario described above, eigenvalue-based weighted optimization

for the subset H1τ with weight matrix W1 is asymptotically equivalent to eigenvalue-based

weighted optimization of τ with weight matrix

WH1 = HT
1 W1H1 + wHT

2 H2 , (4.2)

as w → 0.

Proof. From the discussion in Section 3.1, the positive eigenvalues ofCdW = W
−1/2
H1

CdW
−1/2
H1

equal those of C̃ dW = W̃ −1/2CdHW̃
−1/2 where CdH = H−1TCdH

−1 and

W̃ =

 W1 0

0 wIk2

 .
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This matrix may be partitioned as

C̃ dW =

 W
−1/2
1 H1CdH

T
1 W

−1/2
1

1√
w
W
−1/2
1 H1CdH

T
2

1√
w
H2CdH

T
1 W

−1/2
1

1
w
H2CdH

T
2

 =

 C̃ dW11 C̃ dW12

C̃ dW21 C̃ dW22


We investigate the behavior of C̃+

dW as we let w → 0. Note that the MP inverse of CdW

under WH1 will have the same positive eigenvalues as C̃+
dW . Hence eigenvalue-based criteria

evaluated on C̃ dW will equal that for CdW .

Let P0 be the orthogonal projector onto the null space ofCd and define P̃ 0 = W̃ 1/2HP0H
TW̃ 1/2.

Then C̃ dW and P̃ 0 are orthogonal and
[
C̃ dW + P̃ 0

]−1

= C̃+
dW + P̃ +

0 . Partition CdH as

CdH =

 E11 E12

E21 E22


where Eij = HiCdH

T
j for i, j = 1, 2. Note that E11(2) = E11−E12E

−1
22 E21 = CdH11(2) given

in(4.1).

Rewrite the matrix C̃ dW + P̃ 0 as

C̃ dW + P̃ 0 = W̃ −1/2
[
CdH +W̃ HP0H

TW̃
]
W̃ −1/2

= W̃ −1/2

 E11 +W1H1P0H
T
1 W1 E12

E21 E22

W̃ −1/2 ,

which follows because H2P0 = 0.

Denote Ē11 = E11 +W1H1P0H
T
1 W1 and Ē11(2) = Ē11 −E12E

−1
22 E21. The matrix Ē11(2) is
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easily shown to be nonsingular, which we use to derive
[
C̃ dW + P̃ 0

]−1

:

[
C̃ dW + P̃ 0

]−1

= W̃ 1/2

 Ē11 E12

E21 E22


−1

W̃ 1/2

= W̃ 1/2

 Ē−1
11(2) −Ē−1

11(2)E12E
−1
22

−E−1
22 E21Ē

−1
11(2) E−1

22 +E−1
22 E21Ē

−1
11(2)E12E

−1
22

W̃ 1/2

=

 W
1/2
1 Ē−1

11(2)W
1/2
1 −

√
wW

1/2
1 Ē−1

11(2)E12E
−1
22

−
√
wE−1

22 E21Ē
−1
11(2)W

1/2
1 w

[
E−1

22 +E−1
22 E21Ē

−1
11(2)E12E

−1
22

]
 .

Taking the limit of this matrix as w → 0 clearly gives

lim
w→0

[
C̃ dW + P̃ 0

]−1

=

 W
1/2
1 Ē−1

11(2)W
1/2
1 0

0 0

 = C̃+
dW + P̃ +

0 (4.3)

Note that w is not involved in P̃ 0 so

lim
w→0

P̃ 0 =

 W
1/2
1 H1P0H

T
1 W

1/2
1 0

0 0

⇒ lim
w→0

P̃ +
0 =


[
W

1/2
1 H1P0H

T
1 W

1/2
1

]+

0

0 0

 .

Plugging this into (4.3) and solving for C̃+
dW gives

lim
w→0

C̃+
dW =

 W
1/2
1 Ē−1

11(2)W
1/2
1 − [W 1/2H1P0H

T
1 W

1/2]+ 0

0 0

 .

Now Ē11(2) = E11(2) +W1H1P0H
T
1 W1 is a sum of two orthogonal matrices so

Ē−1
11(2) = E+

11(2) + (W1H1P0H
T
1 W1)+ = E+

11(2) +W
−1/2
1 [W

1/2
1 H1P0H

T
1 W

1/2
1 ]+W

−1/2
1 ,

92



showing thatW
1/2
1 Ē−1

11(2)W
1/2
1 −[W 1/2H1P0H

T
1 W

1/2]+ = W
1/2
1 E+

11(2)W
1/2
1 , the MP inverse

of W
−1/2
1 CdH11(2)W

−1/2
1 .

It at first seems that setting small weight onto parameters/effects in the model would imply

that they are essentially zero. One must realize though that the weights only come into play

when comparing information matrices, which are design/model dependent. Making decisions

about the important effects in the model must be done prior to deciding on how to weight

information of the target parameters. This will be the main topic in Chapter 5.

Setting W1 = Ik1 in Theorem 4.2.1 shows that unweighted estimation of H1τ is asymp-

totically equivalent to a weighted estimation problem for τ . The theorem also tells us that

adjusting information for the nuisance parameters β may be thought of as a weighted opti-

mization for the combined parameter vector (τ T |βT )T . In some cases, the theorem allows us

to arrive at the necessary adjusted information matrix for τ from a full rank matrix, CdH .

This provides a computational technique to search for optimal adjusted information matri-

ces in commonly employed design search algorithms through a modification of the candidate

points.

To demonstrate this, reparameterize the treatment effects in the one-way ANOVA model

using a (p−1)×p matrix H whose rows are coefficient vectors for p−1 orthogonal contrasts:

y = 1µ+XdH
THτ + e = X∗dθ + e

whereX∗d = (1N |XdH
T ) = Xd(1p|HT ) has full column rank and θT = (µ|(Hτ )T ). To show

that eigenvalue optimization for the information matrix of τ equals that for Hτ , we show

that the positive eigenvalues for Cd and CdH are equivalent. Let λ be a positive eigenvalue
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for Cd. Then for some vector e,

Cde = λe

⇔ CdH
THe = λe as HTH = Pτ

⇒ HCdH
T (He) = λ(He) .

Hence Theorem 4.2.1 says that eigenvalue-based optimization for τ is asymptotically equiv-

alent to a weighted optimization for θ with W1 = Ip−1 assigned to Hτ and w assigned to µ.

The set of candidate points will be all possible rows of X∗d and we must choose a sufficiently

small value of w which we use to generate the weighted candidate points X∗cw. This weight,

w, cannot be set too close to 0 lest the information matrix X∗Td X∗d becomes nearly singular.

On the other hand, w must be close enough to zero to ensure optimization is focused on

Hτ .

The following sections apply this computational approach to search for A-optimal CRDs for

BP effects, adjusted for the intercept, and A-optimal incomplete block designs. The latter

requires modification of the model as was done for the one-way ANOVA model above. In

both cases we compare the algorithm results to the theoretically derived optimal designs to

show how well the limiting approach works.

4.3 A-optimal CRDs for two-level BP effects adjusted

for θ0...0

Suppose that we are interested in estimating all BP effects, either non-normalized or normal-

ized, except for the baseline mean. The development to follow focuses on the non-normalized

case; results may be similarly shown for the normalized BP effects by incorporating an ad-
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ditional weighting into the information matrix for non-normalized effects.

As mentioned prior to (3.10), we may permute the columns of H−1
BP so that H−1

BP =

(1N |Am;1| . . . |Am;m). This permutation does not affect weighted information, as it is equiv-

alent to reordering the effects in θ = HBPτ , and does not permute τ . Let θ(0) be the vector

of BP effect parameters excluding the baseline mean. The partition of θ into the mean and

θ(0) is reflected in the model thusly:

y = Xdτ + e = XdH
−1
BPHBPτ + e

= Xd(1p|Am;1| . . . |Am;m)θ + e

= 1Nθ0...0 +Xd(Am;1| . . . |Am;m)θ(0) + e . (4.4)

The Section 4.2 computational approach to finding A-optimal designs, when applied to BP

effects adjusted for θ0, requires us to specify a set of weighted candidate points XcW . Since

we are starting from a cell means model, this will beXcW = W−1/2 for an appropriate weight

matrix, W . While we could use the weight matrixWBPw = HT
BPDwHBP that is identical to

WBP except for assigning w to the intercept portion of the matrix through Dw, a clearer and

equivalent approach is to use the weighted candidate points XcBP = (w1p|Am;1| . . . |Am;m)

where w is sufficiently small.

As there is some uncertainty about which w will achieve the required optimization, we

compare the computational approach to theoretically derived A-optimal CRDs that are

known to perform the correct optimization. From (4.4), the adjusted information matrix

95



for θ(0) is

Cdθ(0) =


AT
m;1

...

AT
m;m

XT
d

(
I − 1

N
J
)
Xd(Am;1| . . . |Am;m) .

The adjusted information matrix Cdθ(0) is the lower right 2m−1×2m−1 principal submatrix

of H−1T
BP XT

d (I − 1
N
J)XdH

−1
BP and the remaining elements of H−1T

BP XT
d (I − 1

N
J)XdH

−1
BP

are 0, since the first row of H−1T
BP is 1. Hence the positive eigenvalues of Cdθ(0) equal those

for H−1T
BP XT

d (I − 1
N
J)XdH

−1
BP . Note that XT

d (I − 1
N
J)Xd is the information matrix for

(I− 1
p
J)τ and the positive eigenvalues forCdθ(0) equal those forW

−1/2
BP XT

d (I− 1
N
J)XdW

−1/2
BP

whereWBP has been defined previously. This implies that one may think of eigenvalue-based

optimization for θ(0) as weighted optimization for contrasts of τ with weight matrix WBP .

Working now under the contrasts framework, we take Cd = XT
d (I − 1

N
J)Xd. Let HBP (0)

be the 2m − 1 rows of HBP excluding that corresponding to the baseline mean, so θ(0) =

HBP (0)τ , where τ is the vector of treatment means. Clearly HBP (0) are 2m − 1 coefficient

vectors that make up 2m−1 weighted orthogonal contrasts underWBP where each is assigned

weight 1. Using Lemma 2.3.2 leads us to a similar expression seen in (3.11) in Section 3.4

AdW ∝ tr(HBP (0)C
−
d H

T
BP (0)) = tr(HBP (0)R

−1
d H

T
BP (0))

= tr(R−1
d H

T
BP (0)HBP (0))

=
∑

j1...jm∈J

w∗j1...jm
rdj1...jm

, (4.5)

where w∗j1...jm simply counts the number of BP effects, excluding the baseline mean, that

the treatment indexed by j1 . . . jm is involved in. This is due to the fact that the squared

elements of HBP are either 0 or 1. The weights wj1...jm in (3.11) also counted the number of
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BP effects the treatment was involved in, but included the baseline mean. By Lemma 1.2.1

(ii), a treatment of heft h is involved in 2m−h BP effects when we include the baseline mean.

When we exclude the baseline mean, this only affects the count for τ0...0, since the first row

of HBP is the unit vector with 1 in the first column. Hence the w∗0...0 = w00...0 − 1 = 2m − 1

and the weight in (4.5) for a treatment with heft h > 0 is w∗j1...jm = wj1...jm = 2m−h.

Optimizing (4.5) with respect to rdj1...jm produces the same form of solution as in Theo-

rem 3.3.2, but using the weights just described. The impact of adjusting for the intercept

is first investigated for the approximate AW -optimal CRD, which requires us to calculate

the sum of the square roots of the weights w∗j1...jm . The square root weight for the baseline

treatment is w∗00...0 =
√

2m − 1 while for the unadjusted case it was w0...0 = 2m. Noting that

w∗j1...jm = wj1...jm for all other treatments, a concise expression for the sum of the square

roots of these weights may be found by adding and subtracting w∗00...0 =
√

2m:

∑
j1...jm∈J

√
w∗j1...jm =

√
w00...0 −

√
w00...0 +

∑
j1...jm∈J

√
w∗j1...jm

=
√
w∗00...0 −

√
w00...0 +

∑
j1...jm∈J

√
wj1...jm

=
√

2m − 1−
√

2m + (1 +
√

2)m . (4.6)

As m increases this sum will approximately equal (1 +
√

2)m, which was the sum of the

square roots of weights for the unadjusted case. Furthermore, only slightly smaller relative

weight is placed on the baseline mean so we anticipate that designs optimal for all the BP

effects will be similar to those that adjust for the baseline mean, and will become identical

for all N as m grows large.

When working with the normalized BP effects, we premultiply HBP (0) by D
1/2
w(0), a 2m− 1×

2m − 1 diagonal matrix having the necessary normalization constants. Now letting w∗j1...jm
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denote the diagonal elements ofHT
BP (0)Dw(0)HBP (0), we have w∗j1...jm adds the inverse squared

lengths for those BP effects that the treatment indexed by j1 . . . jm is involved in. This is

different from the non-normalized case, which simply counted the number of BP effects the

treatment was involved in. This gives the same weights under WBP ∗ for the unadjusted case,

but again we must modify the weight for the baseline treatment to be w∗0...0 =
(

3
2

)m−1. The

sum of the square roots of the weights is found similarly to that in (4.6):

∑
j1...jm∈J

√
w∗j1...jm =

√
(3/2)m − 1−

√
(3/2)m + (

√
3/2 + 1/

√
2)m ,

where (
√

3/2+1/
√

2)m equals the sum of the square roots of the diagonal elements of WBP ∗ .

As is apparent from a comparison of the adjusted and unadjusted weights, the A-optimal

approximate CRDs for both the non-normalized and normalized BP effects adjusted for the

intercept are nearly identical to those without adjustment. Again, because treatments of the

same heft have the same weight we anticipate BAs are optimal or highly efficient exact CRDs.

Theorem 3.3.3 was used to construct the A-optimal designs for m = 3 factors displayed in

Tables 4.1 and 4.2. Compared to Tables 3.3 and 3.4 we see that most designs are similar,

although replication of the baseline is less emphasized in the new tables. Greater emphasis

is placed on replicating treatments having heft 1. For example, for N = 17 runs for the

non-normalized BP effects, the number of replications is higher by 1 on a heft 1 treatment

and lower by 1 on the baseline treatment, as compared to the N = 17 design in Table 3.3.

For N = 10 runs the A-optimal CRD for the normalized BP effects shows the same shift of

replication relative to its Table 3.4 counterpart.

Tables 4.3 and 4.4 show the A-optimal designs that are BAs of strength m when we adjust

for the intercept for both the non-normalized and normalized BP effects. These tables are

presented in a similar fashion to Tables 3.5 and 3.6. Not surprisingly many of the designs
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Table 4.1: A-optimal CRDs for estimation of non-normalized BP effects, adjusted for the
intercept, for m = 3 factors. The last row indicates whether the design is a BA of strength
3.

Treatment N
Index 8 9 10 11 12 13 14 15 16 17 . . . 20
000 1 2 2 2 2 3 3 3 3 3 4
100 1 1 2 2 2 2 2 2 2 3 3
010 1 1 1 2 2 2 2 2 2 2 3
001 1 1 1 1 2 2 2 2 2 2 3
110 1 1 1 1 1 1 2 2 2 2 2
101 1 1 1 1 1 1 1 2 2 2 2
011 1 1 1 1 1 1 1 1 2 2 2
111 1 1 1 1 1 1 1 1 1 1 1
BA ∗ ∗ ∗ ∗ ∗ ∗

Table 4.2: A-optimal CRDs for estimation of normalized BP effects, adjusted for the in-
tercept, for m = 3 factors. The last row indicates whether the design is a BA of strength
3.

Treatment N
Index 8 9 10 11 12 13 14 15 16 17 . . . 20
000 1 2 2 2 2 3 4 4 4 4 4
100 1 1 2 2 2 2 2 3 3 3 3
010 1 1 1 2 2 2 2 2 3 3 3
001 1 1 1 1 2 2 2 2 2 3 3
110 1 1 1 1 1 1 1 1 1 1 2
101 1 1 1 1 1 1 1 1 1 1 2
011 1 1 1 1 1 1 1 1 1 1 2
111 1 1 1 1 1 1 1 1 1 1 1
BA ∗ ∗ ∗ ∗ ∗ ∗ ∗

are exactly the same as those for unadjusted estimation of the BP effects. For m = 5 factors

all designs are exactly the same exact for N = 50 and N = 54.

The goal now is to determine whether the algorithm described in the previous section can

produce the same designs for the A-criterion and, if so, what weight w needs to be placed on
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Table 4.3: BA heft replications for A-optimal CRDs for estimation of all non-normalized BP
effects, adjusted for the intercept, for m = 3 to 5 factors with increasing N .

Treatment N
m Heft 8 9 12 13 16 19 20 21 22 25 28 29 32

3

0 1 2 2 3 3 3 4 4 5 5 5 6 6
1 1 1 2 2 2 3 3 3 3 4 4 4 5
2 1 1 1 1 2 2 2 2 2 2 3 3 3
3 1 1 1 1 1 1 1 2 2 2 2 2 2

Treatment N
Heft 16 17 21 22 28 32 33 37 38 42 48 49 50

4

0 1 2 2 3 3 3 4 4 5 5 5 6 6
1 1 1 2 2 2 3 3 3 3 4 4 4 4
2 1 1 1 1 2 2 2 2 2 2 3 3 3
3 1 1 1 1 1 1 1 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1 1 1 1 2

Treatment N
Heft 32 33 38 39 49 54 55 65 66 71 81 82 87

5

0 1 2 2 3 3 3 4 4 5 5 5 6 6
1 1 1 2 2 2 3 3 3 3 4 4 4 4
2 1 1 1 1 2 2 2 2 2 2 3 3 3
3 1 1 1 1 1 1 1 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1 1 1 1 2
5 1 1 1 1 1 1 1 1 1 1 1 1 1

the intercept to achieve this goal. To implement the algorithm for non-normalized BP effects,

we modified the candidate points by post-multiplying Xd with H−1
BP instead of W

−1/2
BP ,

yielding an information matrix with the same eigenvalues as if using W
−1/2
BP . Because Xd =

Ip, this means the candidate points are simply the rows of H−1
BP . It is unnecessary to input

the entire matrix H−1
BP as the set of candidate points, since all columns corresponding to

BP 2-f.i.’s or higher can be generated as Hadamard products of Am, defined previously.

The input to generate candidate points, prior to additional weighting of the intercept or

normalization, is thus simply (1|Am).

We construct Am using SAS PROC FACTEX by generating a saturated main effects plan

100



Table 4.4: BA heft replications for A-optimal CRDs for estimation of all normalized BP
effects, adjusted for the intercept, for m = 3 to 5 factors with increasing N .

Treatment N
m Heft 8 9 12 13 14 17 20 21 24 25 28 29 30

3

0 1 2 2 3 4 4 4 5 5 6 6 6 7
1 1 1 2 2 2 3 3 3 4 4 4 4 4
2 1 1 1 1 1 1 2 2 2 2 3 3 3
3 1 1 1 1 1 1 1 1 1 1 1 2 2

Treatment N
Heft 16 17 21 22 23 27 33 34 38 39 40 46 50

4

0 1 2 2 3 4 4 4 5 5 6 7 7 7
1 1 1 2 2 2 3 3 3 4 4 4 4 4
2 1 1 1 1 1 1 2 2 2 2 2 3 3
3 1 1 1 1 1 1 1 1 1 1 1 1 2
4 1 1 1 1 1 1 1 1 1 1 1 1 1

Treatment N
Heft 32 33 38 39 40 45 55 56 57 62 63 73 83

5

0 1 2 2 3 4 4 4 5 6 6 7 7 7
1 1 1 2 2 2 3 3 3 3 4 4 4 4
2 1 1 1 1 1 1 2 2 2 2 2 3 3
3 1 1 1 1 1 1 1 1 1 1 1 1 2
4 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1

and then recoding the variables to be 0 and 1 instead of ±1. We then append 12m to this

matrix, additionally weighting the intercept column with the inverse weight 1/
√
w, where

w is close to zero in order to adjust for the intercept. Based on our approximate results,

we anticipated that w may not need to be too much smaller than 1 to produce the designs

in the above tables, although the theory dictates that w should be close to zero in order to

guarantee we are evaluating adjusted information matrices.

The intercept term must be included in the SAS PROC OPTEX model statement, along

with every possible product of the columns in Am, in order to specify the full BP model.

SAS PROC OPTEX includes an intercept in the model by default, so the “noint” model
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option must be specified to prevent SAS from including an additional intercept in the model.

To achieve optimization for the normalized BP effects, we need only multiply each column

of Am with
√

2, the inverse normalization constant for the BP main effects. Given this

“normalized” Am, the procedure described above is otherwise unchanged.

Experimental results employing the above approach will now be described. The modified

Fedorov algorithm based on the A-criterion with 500 iterations was run and the A-best design

was output. Due to the large number of required runs we only performed the experiment

for up to m = 5 factors. We initially started by setting w = 0.99, and when that did not

produce the known A-optimal design then we searched for the largest w < 0.99 that would

give the optimal design. In general, the weight w = 0.99 was able to find the designs listed

in the tables above, but usually failed for large N . Some of these cases are listed in Table 4.5

along with the first weight found to produce the known A-optimal design. When the SAS

PROC OPTEX design did not match the known A-optimal design, it often put replicates

that belonged on the treatments with heft 1 on the baseline treatment. The weight w = 0.99

always gave the known A-optimal design for the non-normalized BP effects for m = 5 up to

N = 350 runs.

Table 4.5: Cases where w < 0.99 was required for SAS PROC OPTEX to find known
A-optimal design for adjusted BP effects.

Normalized BP A-optimal BA index set
m N (Y/N) (n0, n1, . . . , nm) Required w
3 60 N (11, 9, 6, 4) 0.25
3 44 Y (9, 7, 4, 2) 0.01
4 151 N (17, 13, 9, 6, 4) 0.50
4 38 Y (5, 4, 2, 1, 1) 0.15
4 93 Y (13, 9, 5, 3, 2) 0.10
5 88 Y (7, 5, 3, 2, 1, 1) 0.45

Although we see that our limiting weights approach does in fact lead us to the correct A-
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optimal design for the adjusted BP effects, these examples are rather tame. Evaluating

adjusted information is more interesting for blocked designs, which we now explore.

4.4 A-optimal incomplete block designs

SAS PROC OPTEX is capable of implementing blocking with fixed block sizes for the D-

criterion only, using the algorithm by Cook and Nachtsheim (1989). For the A-criterion,

there is no clear option in SAS PROC OPTEX for optimizing treatment estimation in the

presence of blocks. We will return to this difficulty shortly. To be clear, the goal of this

section is to use weighting to force OPTEX to find optimal block designs for the unweighted

A-criterion.

We can implement Theorem 4.2.1 for the block design problem in SAS PROC OPTEX by

including blocking factors in the candidate set and weighting them appropriately. We begin

by generating p+h columns for the treatments and blocks, where each column is an indicator

variable for whether the unit is assigned treatment i or lies in block j, producing ph total

candidate points. The model statement, which includes treatment and block effects, must

give a full-rank information matrix. Let µ be the intercept parameter, τ be the p× 1 vector

of treatment parameters, and β be the h×1 vector of block parameters. Instead of specifying

the overparameterized model

E(y) = µ1N +Xdτ +Lβ,
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in SAS PROC OPTEX, we use

E(y) = XdH
THτ +Lβ

= XdHτH +Lβ ,

where τH = Hτ is a vector of p − 1 orthonormal contrasts and XdH = XdH
T is now the

N × (p− 1) design matrix. We maintain the indicator columns for the block effects to make

weighting them straightforward. It follows that XdHL = (XdH |L) has full column rank

and hence XT
dHLXdHL is invertible. Once an optimal design is found in terms of XdHL and

output to a new data set, we perform this transformation to get back the original treatment

design matrix: Xd;XdHH + 1
p
J .

The sample size must also be specified in the procedure, which we take to be N = hk, where

k is the proposed block size, not the dimension of the estimation space. Even though we

attempt to specify a block size, there is no guarantee that this will be reflected in the most

efficient design given. This is because when minimizing the trace of (XT
dHLXdHL)−1, all

potential candidate points are considered and it is possible that unequal block sizes will be

found optimal. One strategy for maintaining equal block sizes, the opposite of setting block

weights close to zero, is to increase the block weight. This encourages “equal replication”

of the block effects and hence equal block sizes. The concern though is whether the design

is focusing too much attention on equal block sizes, and not on efficient estimation of the

treatment effects.

A variety of incomplete block design scenarios were implemented in SAS PROC OPTEX

for which an A-optimal IBD is known. Runs were carried out on both the unweighted and

weighted candidate points to explore the efficacy of the weighted approach. Due to the

previously mentioned computational issues, different block weights were used to get an A-
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efficient design with equal block sizes and efficient estimation of the treatment effects. We

performed 100 iterations of the modified Fedorov algorithm and recorded the number of

times the unweighted and weighted results gave the known A-optimal IBD. The results are

given in Table 4.6, which also includes the block weight which most often found the known

A-optimal IBD.

Overall we see the weighted approach performed just as well as the unweighted approach

and often outperformed it. The weighted approach worked particularly well when we had

6 and 7 treatments, often finding the A-optimal design twice as often as the unweighted

approach. When the A-best design had unequal block sizes we considered every iteration

a failure. For nearly saturated cases, we avoided this by setting large block weight, which

shifted the algorithm’s focus to having equal block sizes, leading to quick identification of the

A-optimal design. Placing larger weight works well in these cases because there are relatively

few saturated designs to consider and the algorithm is quickly able to find the one that is

A-optimal.

In practice, when the A-optimal design is unknown, it is only when the block weight is

“small”, and the best design gives equal block sizes, that we can be confident the design

is A-efficient for treatment estimation. That is, when large weight must be placed on the

blocks to achieve equal block sizes, the best design found may not be the most efficient for

estimation of all contrasts. In this case, efficiency of the found design can be compared to

known efficiency bounds to assess if it is reasonably good. Even though the unweighted

approach was capable of finding the A-optimal design, introducing weights, either large or

small, into the search proves to be a useful tool.
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Table 4.6: Number of A-optimal designs found of 100 modified Fedorov iterations for p
treatments in h blocks of size k. Missing block weight indicates unweighted approach found
the A-optimal design for all 100 iterations.

p h k Unweighted Weighted Block Weight
3 8 2 100 100 –
3 10 2 100 100 –
4 4 2 100 100 –
4 6 3 100 100 –
4 9 2 0 100 0.5
5 4 2 0 100 5
5 5 4 100 100 –
5 8 3 100 100 –
6 2 4 0 100 5
6 5 2 0 100 5
6 12 2 48 83 0.1
6 12 3 77 72 0.05
7 7 2 0 100 5
7 7 3 40 88 0.05
7 9 5 1 3 0.5
8 2 5 0 100 5
8 5 3 0 85 10
8 8 6 98 96 0.05
9 2 5 0 100 5
9 3 6 100 100 –
9 6 6 11 12 0.05
10 2 6 0 100 5
10 10 6 1 27 0.05
11 4 4 0 100 10
11 5 3 0 100 10
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Chapter 5

Weighted optimality of reduced

models

In Chapter 4 we showed that vanishing weights do not cause certain parameters to be

dropped from the model. Rather, it leads to weighted estimation of non-vanishing parameters

adjusted for those receiving vanishing weights. This chapter outlines work on the linear model

theory of what we call reduced models resulting from constraints of the form H2τ = 0, where

the rows of H2 are coefficient vectors for estimable functions. We call these reduced models

as they assume only some functions of the potentially larger estimation space have nonzero

effect sizes. Such models have also been referred to as affine linear models by Hinkelmann

and Kempthorne (2008). We then demonstrate the theory using BP fractional designs and

show that some form of strength 4 BAs are good candidates for A-optimality for reduced

models including all the BP 2-f.i.’s.
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5.1 Reduced cell means model and weighting

Consider the cell means model for some design d and any nonsingular transformation, H :

y = Xdτ + e

= XdH
−1Hτ + e .

where the elements of τ are the p treatment means, and Xd is an N × p 0/1 unit/treatment

incidence matrix. Suppose we partition H and τ this way

H =

 H1

H2

 =

 H11 H12

H21 H22

 τ =

 τ1

τ2

 , (5.1)

where τ1 is p1 × 1 and τ2 is p2 × 1, implying dimensions of the partitioned components of

H . Let γ = Hτ , and γ = (γ1,γ2)T , where γi = Hiτ , for i = 1 or 2. An experimenter may

want to reparameterize the model for two reasons: (1) they are more interested in estimating

γ precisely, not τ , or (2) they believe that some subset of the parameters γ, say γ2 = H2τ ,

is negligible and want to impose this constraint in the model. That is, they may want to

declare that the potentially estimable functions γ2 are all zero.

If H2τ = 0 then H21τ1 +H22τ2 = 0 or

H21τ1 = −H22τ2 ⇔ τ2 = −H−1
22 H21τ1 ,

assuming that H22 is nonsingular. That is, we can write τ2 as a linear combination of τ1,

and so

τ =

 Ip1

−H−1
22 H21

 τ1 = Qτ1 ,
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and

γ1 = H1τ = (H11 −H12H
−1
22 H21)τ1 = H̃ 11τ1 .

This says that we can estimate H1τ by estimating only τ1, even if H1 contains functions

involving the parameters in τ2.

Assume now that we have initially defined H so that H22 is not invertible. Because H has

full rank, the rows of H2 are linearly independent and there exists a p2 × p2 submatrix of

H2 that is invertible. This submatrix, which is not necessarily unique, shows that we can

always assume H22 is invertible, for we need only to permute the columns of H to make it

so. Suppose a column permutation is necessary, H∗ = HΠ, so that H∗22, the lower-right

p2 × p2 submatrix of H∗, is invertible. This does not guarantee invertibility of H̃ ∗
11, so if

there are multiple permutations that give an invertible H22, we will choose one that gives a

nonsingular H̃ ∗
11, assuming one exists.

If we must permute the columns ofH we also must permute the elements of τ sinceH2Πτ 6=

H2τ . The permutation H2Π must switch a column in H22 with one in H21, otherwise a

permutation would not be necessary. It follows that at least one element in τ1 must be

exchanged with an element in τ2 to get a new mean vector, τ ∗. If we let τ ∗ = (τ ∗T1 | τ ∗T2 )T =

ΠTτ then H2Πτ
∗ = H2ΠΠTτ = H2τ . Hence we want to define τ1 and τ2 so that H22 and

H̃ 11 are invertible. Indeed, if H̃ 11 is not invertible then our targeted parameters γ1 contain

redundancies under the reduced model and should thus be redefined.

Assume that H satisfies the necessary invertibility conditions. We may then rewrite the cell

means model as

y = XdQτ1 + e

and the information matrix for τ1 under this model is Cdτ1 = QTXT
dXdQ. Clearly Q has

full column rank so we may assume that there exist designs such that Cdτ1 is nonsingular;
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an obvious choice is the design that replicates all treatments in τ1 at least once. Hence

every linear combination of τ1 is an estimable function, which includes τ2 = −H−1
22 H21τ1.

It follows that the projector onto the estimation space for these information matrices will be

Pτ1 = Ip1 .

To find optimal designs for γ1, given γ2 = 0, transform the cell means model in the following

way

y = XdQτ1 + e

= XdQH̃
−1
11 H̃ 11τ1 + e . (5.2)

We may also represent model (5.2) using the approach found in Hedayat et al. (1999) via

a p1 × p, 0/1 matrix K that selects the rows of H corresponding to the H1 rows, giving

KH = H1, which implies KHτ = H1τ = H̃ 11τ1 under the constraint H2τ = 0. Note

that if we similarly define H̃ 22 = H22 −H21H
−1
11 H12, and assume it is also invertible, then

H−1 =

 H̃ −1
11 −H11H12H̃

−1
22

−H−1
22 H21H̃

−1
11 H̃ −1

22

 ,

and it is easily shown that H−1KT = QH̃ −1
11 . Using K, rewrite model (5.2) as

y = XdH
−1KTKHτ + e

= XdH
−1KTH̃ 11τ1 + e . (5.3)

This gives us two equivalent representations, (5.2) and (5.3), for the transformed cell means

model under the constraint H2τ = 0. We call these reduced models since the dimension of

Hτ has been reduced to the dimension of H̃ 11τ1.
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We then have two different representations for the information matrix for γ1 = H1τ =

H̃ 11τ1:

Cdγ1 = H̃ −1T
11 QTXT

dXdQH̃
−1
11

= KH−1TXT
dXdH

−1KT ,

corresponding to models (5.2) and (5.3), respectively. Upon setting W = H̃ T
11H̃ 11, we have

a weighted version of the information matrix Cdτ1

CdWτ1 = W−1/2QTXT
dXdQW

−1/2 ,

which has the same eigenvalues as Cdγ1 . Hence optimization with respect to eigenvalue crite-

ria applied toCdγ1 is equivalent to that for weighted eigenvalue criteria based on the weighted

information matrix CdWτ1 . Approaching this as a weighted optimization problem brings new

insight into forms of optimal designs through an investigation of the weight-preserving per-

mutations ΠW for which ΦW (ΠCdτ1Π
T ) = ΦW (Cdτ1). This class of permutations identifies

forms of Cdτ1 that are permutation invariant, and so cannot be improved matrix averaging.

Of course this is a preliminary step in identifying the optimal designs for γ1; we would need

to find a corresponding Xd that gives Cdτ1 , which may or may not be straightforward.

5.2 A-optimal designs for reduced BP 2-f.i. model

Suppose we have m factors each with two levels, so 2m total treatment combinations.

Throughout this section k will be used as an index parameter and should not be confused

with the dimension of the estimation space, which is always p1. Consider H = HBP , speci-

fied in Lemma 1.2.2, with corresponding τ under revlex ordering, and let θ = HBPτ . Note
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that HBP is lower triangular, since it is a Kronecker product of m lower triangular matrices.

Also, the first row of HBP is a unit vector and is the only normalized row. We first present

results for the reduced BP model where all three or higher order interactions are assumed

negligible and, given this constraint, focus estimation on the non-normalized BP effects in-

cluding up to 2-f.i.’s. We then investigate estimation of the normalized BP effects including

up to 2-f.i.’s. Normalizing the BP effects in the reduced model is a specific example of a

weighting of the non-normalized BP effects where the same weight is applied to BP effects

of the same heft. Hence we generalize our results corresponding to this type of weighting

scheme and exemplify the approach with weights equal to the normalization constants.

Let Am be the 2m×m index matrix used to define the revlex ordering of τ . The order of the

rows of Am corresponds to the order of the indices of the elements in both θ and τ . Using

Kronecker products was a convenient way to define HBP for any number of factors, but if

we assume some BP effects are negligible, and want to use the results in Section 5.1, we will

need to reorder the rows of HBP so that we can partition it to look like (5.1). In this section

we want H2 to contain the rows of HBP corresponding to the higher order BP interactions.

We must then find permutation matrices Πr and Πc, for row and column permutations, such

that H̃ BP = ΠrHBPΠc has the BP g-f.i.’s for g ≥ 3 in H2 and has invertible partitions,

H22 and H̃ 11. Note that if Πc is not the identity then we must also permute τ as τ̃ = ΠT
c τ

so H2τ = H2Πcτ̃ .

Let Πr be any row permutation matrix so that the index matrix Vm = ΠrAm has rows of

the same heft grouped together and the groups increase in heft as you go down the rows of

Vm. That is, Vm starts with the only zero heft row, next contains all of the heft one rows,
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and so on. For example, such a row permutation of A3 is

A3 =



0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1



→ V3 =



0 0 0

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1



, (5.4)

which was the order of treatment combinations in Table 3.3. Note that since the rows of

Am index the order of parameters in θ, this is equivalent to putting the intercept first, then

main effects, then two factor interactions, etc. in θ∗ = Πrθ = ΠrHBPτ . If the negligible

effects are all 3-f.i.’s and higher this will give a row permutation so that H2τ = 0 where H2

corresponds to the lower partition of ΠrHBP , not HBP .

Let Πr be the permutation matrix satisfying this heft ordering and set Πc = ΠT
r . Note that

the ordering of the elements in τ̃ = Πrτ and θ∗ = Πrθ = ΠrHBPτ = ΠrHBPΠT
r τ̃ =

H̃ BP τ̃ both correspond to the ordering of Vm. Take the row of H̃ BP corresponding to a

g-f.i. where if g = 0 we mean the BP intercept and g = 1 means a BP main effect. This

corresponds to the element θ∗ with index of heft g, say θj1...jm , where g jk’s equal 1 and the

rest are 0. By Corollary 1.2.1, the linear combination of τ̃ giving the g-f.i. includes only one

element of τ̃ of heft g, τj1...jm , which is in the same position in τ̃ as θj1...jm is in θ∗. Hence

the corresponding diagonal element of HBP will be nonzero (in fact, it is 1). All elements

in τ̃ following τj1...jm will have heft greater than or equal to g and so cannot be involved in

the linear combination. It follows that the diagonal elements of H̃ BP are all 1 and every

113



element after a diagonal element is 0, i.e. H̃ BP is lower triangular.

We use one particular Πr, giving a Vm and information matrix for the BP significant effects

that are consistent with the literature of balanced OP factorial designs. This permutation

further defines the ordering of rows with the same heft. Essentially, the ordering takes

the lex ordering of the rows of similar heft, but then reverses that order. For this reason,

we will refer to it as the contra-lexicographic ordering (contralex). Note this is not revlex

ordering, which is lex ordering from right to left. We define contralex ordering in a similar

way as lexicographic, but with a minor modification. Let (j1, . . . , jm) and (k1, . . . , km) be

two rows of Am with the same heft. Then the row (j1, . . . , jm) comes before (k1, . . . , km)

in Vm = ΠrAm if there exists a v = 1, . . . ,m where jv > kv and for all i < v, ji = ki. In

lexicographic ordering, the condition would be jv < kv.

One example of the contralex ordering is V3 in (5.4). For any m factors, the heft 1 rows in

Vm are organized into the identity Im. The heft 2 rows when m = 4 would be arranged as

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

.

Henceforth, the order of the rows of Vm will correspon to the contralex ordering of the

treatment indices. We have shown that for this Πr, H̃ BP = ΠrHBPΠT
r is lower triangular,

so the submatrix H22 of H̃ BP and H̃ 11 = H11 clearly satisfy the invertibility conditions.

The corresponding τ̃1 will first be the baseline mean, then the heft 1 treatment combinations,

and then the heft 2 treatment combinations.
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For sake of notational brevity, henceforth drop the ∼ notation so that HBP denotes the

re-ordered transformation matrix and the subscripts of the parameters in θ and τ follow the

contralex ordering. To avoid confusion about the highest order BP effects included in the

reduced model, we denote the parameter vector of the BP intercept, main effects, and 2-f.i.’s

as θ2. While this conflicts with the general notation introduced in Section 5.1 where γ2 = 0,

we feel that θ2 better reflects the fact that we are including all BP effects up to the 2-f.i.’s.

Here θ2 plays the role of γ1 = H1τ = H11τ1 in the general framework of Section 5.1.

Let Vm(h) be the rows of Vm with heft h. In light of Corollary 1.2.1 it is easy to see that

H11 =


1 Vm(0) 0T

(m
2 )

−1m Vm(1) 0m×(m
2 )

1(m
2 ) −Vm(2) I(m

2 )

 .

Note that Vm(0) = 0Tm, Vm(1) = Im, and V T
m(2)Vm(2) = (m− 2)Im + Jm, so

W = HT
11H11 =


ν −m1Tm 1T

(m
2 )

−m1m (m− 1)Im + Jm −V T
m(2)

1(m
2 ) −Vm(2) I(m

2 )

 . (5.5)

We first find the class of permutation matrices ΠW , being those permutations that satisfy

ΠWΠT = W (see Theorem 2.5.1; here Pτ1 = Ip1 . It follows from matrix averaging that

finding those Cdτ1 = QTXT
dXdQ that are invariant to such permutations may be good

candidates for optimal designs.

If Π ∈ ΠW then it must preserve the diagonal elements of W , which are ν, m, and 1. This
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implies that Π must permute within the partitions of W , or that Π has the form

Π =


1 0 0

0 Πm 0

0 0 Π(m
2 )

 ,

where Πm and Π(m
2 ) are permutation matrices of size m and

(
m
2

)
, respectively. Since

(m − 1)Im + Jm and I(m
2 ) are completely symmetric, and so invariant to all permutations,

we only need to find a Π(m
2 ) for a given Πm such that Π(m

2 )Vm(2)Π
T
m = Vm(2). Equivalently,

we must find a Π(m
2 ) such that Π(m

2 )Vm(2) = Vm(2)Πm. Note that Vm(2) is an
(
m
2

)
×m array

containing all heft two rows exactly once. Hence it is a BA of strength m with n2 = 1 and all

other indices equal to zero. Clearly Vm(2)Πm is also a BA of strength m with the same heft

index. Since the rows of Vm(2)Πm are all unique, there exists one and only one Π(m
2 ) such

that Π(m
2 )Vm(2) = Vm(2)Πm. Hence there exists m! permutation matrices Π ∈ ΠW , which

are in one-to-one correspondence with the m! permutations Πm, and they all satisfy

Π


Vm(0)

Vm(1)

Vm(2)

 =


Vm(0)

Vm(1)

Vm(2)

Πm .

We previously called such permutation matrices factor permutations, although here they are

defined only up to the heft two rows of Vm.

Eigenvalues of the weighted information matrix CdWτ1 are equivalent to those of Cdθ2 =

H−1 T

11 QTXT
dXdQH

−1
11 . As Π ∈ ΠW must permute within the partitioned submatrices of

W shown in (5.5), and the same partitioned submatrices for H−1
11 have a similar form as

those for W , it is easily shown that if Π ∈ ΠW then ΠH−1
11 ΠT = H−1

11 . This may be used

to prove the following lemma, which is offered without proof.
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Lemma 5.2.1. The matrix Cdτ1 = QTXT
dXdQ is invariant to simultaneous row and col-

umn permutations for those Π ∈ ΠW if and only if Cdθ2 = H−1T
11 QTXT

dXdQH
−1
11 is also

invariant to the same permutations.

It follows from Lemma 5.2.1 that instead of finding forms of Cdτ1 that are invariant to

permutations in ΠW , we may find forms of Cdθ2 . We choose to work with the alternate

representation of Cdθ2 = KH−1 T

BP XT
dXdH

−1
BPK

T . Write Vm = (v1 |v2 | . . . |vm) and define

the vector vij = vi � vj, the Hadamard product of vi and vj. Note that these are also 0/1

vectors, and elements of these vectors equal 0 unless the corresponding elements of vi and

vj are both 1. Finally, let

Vm;2 = (v12 |v13 | . . . |v1m |v23 | . . . |v(m−1)m) ,

which has all
(
m
2

)
Hadamard products of any two columns of Vm. This should not be confused

with Vm(2), which is the
(
m
2

)
×m array of all heft 2 rows of Vm. The ordering of the vij in

Vm;2 corresponds to the contralex ordering of the rows of Vm;2. For example, the first row

of Vm;2 is (1, 1, 0, . . . , 0) and the first column of Vm;2 is v1 � v2 = v12.

Note that H−1
BP serves to transform θ to τ . The reduced transformation matrix H−1

BPK
T is

the first ν = 1 +m+
(
m
2

)
columns of H−1

BP , and by Lemma 1.2.1 (i), it follows that

H−1
BPK

T = (12m |Vm |Vm;2) .
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Let Xd be the N × 2m, 0/1 design matrix where Xd12m = 1N , so

XdH
−1
BPK

T = Xd(12m |Vm |Vm;2)

= (1N |XdVm |XdVm;2)

= (1N |Vd |Vd2) , (5.6)

where Vd = XdVm = (vd1 |vd2 | . . . |vdm) is an N × m array of 0’s and 1’s and Vd2 =

XdVm;2 = (vd12 |vd13 | . . . |vd(m−1)m), where vdij = vdi � vdj. Finding a design in terms of

Xd is equivalent to finding a design in terms of XdVm = Vd, which tells us the necessary

treatment combinations to replicate. It follows that

Cdθ2 = KH−1T
BP XT

dXdH
−1
BPK

T =


N 1TNVd 1TNVd2

V T
d Vd V T

d Vd2

V T
d2Vd2

 , (5.7)

where the empty partitions are implied by symmetry. Let C11 = V T
d Vd, C12 = V T

d Vd2,

C21 = CT
12, and C22 = V T

d2Vd2, where we drop the d for notational brevity. This notation

will be used throughout this section and it should be understood that the submatrices pertain

to a specific design.

If Π ∈ ΠW then

XdH
−1
BPK

TΠT = (1N |Vd |Vd2)ΠT

= (1N |VdΠT
m |Vd2Π

T

(m
2 ))

= (1N |V ∗d |V ∗d2) ,

where V ∗d is a column permutation of Vd and will be written as V ∗d = (v∗d1 |v∗d2 | . . . |v∗dm).
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Even though V ∗d2 is a column permutation of Vd2, it can be constructed the same way as Vd2

but with the columns of V ∗d rather than Vd. We use this and the following lemma to derive

those designs Vd (which is equivalent to specifying an Xd) having Cdθ2 that are invariant to

Π ∈ ΠW .

Lemma 5.2.2. Let B be an N ×m BA with two symbols (say 0 and 1) of strength t < m

with index set (n0, n1, . . . , nt). Suppose that for every N × (t + 1) subarray the row 1Tt+1

appears the same number of times, say ñt+1. Then B is a BA of strength t + 1 with index

set (ñ0, ñ1, . . . , ñt+1) where ñg = ng +
∑t+1

i=g+1(−1)i−gni for g = 0, . . . , t.

Proof. Consider any N × (t + 1) subarray, Bt+1, of B. Then by assumption the row 1Tt+1

appears nt+1 times. But Bt+1 must also be a BA of at least strength t and so every N × t

subarray, say Bt, of Bt+1 has the row 1Tt appear nt times. Note that these nt 1Tt rows in Bt,

either increase in heft in Bt+1 or maintain the same heft. Hence nt+1 ≤ nt and we know that

nt+1 of these nt correspond to the 1Tt+1 rows of Bt+1. It then follows that there are nt−nt+1

rows of Bt+1 that have t ones (within the columns of Bt) and one zero. Since each heft t

run corresponds to a specific Bt, all heft t rows appear nt−nt+1 = nt + (−1)t+1−tnt+1 times

in Bt+1.

Now assume for any fixed g < t that every heft g+1 row appears ñg+1 = ng+1+
∑t+1

i=g+1(−1)i−gni

times in every N × (t + 1) subarray. For the Bt+1 array above, since g < t < t + 1, every

heft g row in Bt+1 must correspond to a heft g row for some N × t subarray Bt of Bt+1.

Conversely, any given heft g row in Bt has either heft g or heft g+ 1 in Bt+1. This of course

depends on the column of Bt+1 not included in Bt. Since B is a BA of strength t, any given

heft g < t row appears ng times in Bt. By assumption every heft g+ 1 row appears in Bt+1,

ñg+1 times, so there are ng − (ng+1 +
∑t+1

i=g+2(−1)i−(g+1)ni) rows in Bt that must have heft
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g in Bt+1. But this is equal to

ng − ñg+1 = (ng+1 +
t+1∑
i=g+2

(−1)i−(g+1)ni) = ng +
t+1∑
i=g+1

(−1)i−gni = ñg .

Hence every type of heft g < t row in Bt+1 appears ñg times. By induction we have the

result.

Theorem 5.2.1. The reduced information matrix Cdθ2 = KH−1T
BP XT

dXdH
−1
BPK

T is invari-

ant to all Π ∈ ΠW if and only if XdVm = Vd is a BA of at least strength 4.

Proof. The m diagonals of C11 (defined after (5.7)) are vTdivdi = 1TNvdi and the
(
m
2

)
off-

diagonals are vTdivdj = 1TN(vdi� vdj). If the diagonal elements are invariant to factor permu-

tations then 1TNvdi = 1TNvdi′ for some i′, which may or may not be equal to i. Hence every

column of Vd must have the same number of 1’s, so Vd must be a BA of at least strength

1. Furthermore, the off-diagonals must satisfy 1TN(vdi � vdj) = 1TN(vdi′ � vdj′) for some i′, j′.

Both of these count the number of (1, 1) in the N × 2 subarray of Vd. Since Vd is at least a

BA of strength 1, Lemma 5.2.2 implies that Vd must be a BA of at least strength 2.

Assume i < j, k < l, i ≤ k, and j ≤ l. Then any element of C22 can be written as

vTdijvdkl = (vdi � vdj)T (vdk � vdl)

= 1TN(vdi � vdj � vdk � vdl) .

There are five cases to consider:

1. i = k, j = l

2. i = k, j 6= l

3. i 6= k, j = k
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4. i 6= k, j = l

5. i 6= k, j 6= l .

Case (1) corresponds to the diagonal elements of C22, which are

vTdijvdkl = vTdijvdij

= 1TN(vdi � vdj � vdi � vdj)

= 1TN(vdi � vdi � vdj � vdj)

= 1TN(vdi � vdj) ,

since the Hadamard product is commutative and vdi � vdi = vdi for all i = 1, . . . ,m. These

are equal to the off-diagonals of C11, and so must be equal for the reduced information

matrix to be invariant to factor permutations.

Similarly, cases (2), (3), and (4) may be written as

vTdijvdil = 1TN(vdi � vdj � vdl) ,

vTdijvdjl = 1TN(vdi � vdj � vdl) ,

vTdijvdkj = 1TN(vdi � vdj � vdk) ,

respectively. Note that cases (2) and (3) are equivalent and all three cases are the sum of the

elements of the Hadamard product of three columns of Vd. It follows that C22 is invariant to

all Π(m
2 ) if and only if the sum of the elements of the Hadamard product of any three columns

of Vd is the same. Since the Hadamard product gives a vector of 0’s and 1’s, every N × 3

subarray of Vd must have the row (1, 1, 1) appear the same number of times. Lemma 5.2.2

then implies Vd must be a BA of at least strength 3.

The same argument may be applied to case (5), and we may again use Lemma 5.2.2 to prove
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that Vd must be a BA of at least strength 4. It is straightforward to show the converse.

Unless otherwise stated, we will now index the BP main effects by the factors they involve,

i = 1, . . . ,m, and BP 2-f.i.’s by the two factors they involve jk, where j = 1, . . . ,m− 1; k =

2, . . . ,m; and j < k. The concepts of factor sets and overlapping introduced in Section 1.2.3

will be needed for many proofs to follow and so will now be briefly demonstrated for a BP

2-f.i. denoted by jk. The factor set for a BP 2-f.i. denoted by jk will be {j, k}, as those are

the two factors involved in that effect. This effect overlaps by two factors with itself; overlaps

by one factor with all other 2-f.i.’s involving either factor j or k; and does not overlap with

2-f.i.’s that involve neither j nor k.

Optimality criteria are frequently based on the eigenvalues of the matrix, so it is useful to

derive a general expression for the eigenvalues of Cdθ2 for m factors and a BA of strength

4, Vd, with index set (n0, n1, n2, n3, n4). The form of such a Cdθ2 may be represented using

the following elements which are functions of the elements of the BA index set

c0 = n0 + 4n1 + 6n2 + 4n3 + n4 = N, the number of runs

c1 = n1 + 3n2 + 3n3 + n4, # 1’s per column

c2 = n2 + 2n3 + n4, # (1, 1)’s per N × 2 subarray of Vd

c3 = n3 + n4, # (1, 1, 1)’s per N × 3 subarray of Vd

c4 = n4, # (1, 1, 1, 1)’s per N × 4 subarray of Vd.

(5.8)

It is easy to see that 1TNVd = c11
T
m, 1TNVd2 = c21

T

(m
2 )

, and C11 = (c1 − c2)Im + c2Jm. The

m×
(
m
2

)
matrix C12 has rows and columns corresponding to the BP main effects and 2-f.i.’s,

respectively. The elements of C12 are

(C12)i,jk =


c2 if BP main effect i and BP 2-f.i. jk overlap

c3 otherwise

.
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Clearly the effects overlap if i = j or i = k. It follows that each row of C12 has m − 1 c2’s

and
(
m−1

2

)
c3’s. Also, each column has 2 c2’s and m− 2 c3’s, which are the rows of CT

12.

The
(
m
2

)
×
(
m
2

)
symmetric matrix C22 has rows and columns corresponding to the BP 2-f.i.’s.

For brevity, we will simply say jk rather than BP 2-f.i. jk in the following representation of

C22

(C22)jk,j′k′ =


c2 if jk and j′k′ overlap by 2 factors

c3 if jk and j′k′ overlap by 1 factor

c4 otherwise

.

Note that the c2 elements correspond to the diagonal elements of C22, since BP 2-f.i.’s

overlap if and only if jk = j′k′. Each row/column in C22 has one c2,
(
m−2

2

)
c4’s, and(

m
2

)
−
(
m−2

2

)
− 1 = 2m− 4 = 2(m− 2) c3’s.

We demonstrate the form of Cdθ2 when Vd is a BA of strength 4, for m = 4 factors:

Cdθ2 =



c0 c1 c1 c1 c1 c2 c2 c2 c2 c2 c2

c1 c2 c2 c2 c2 c2 c2 c3 c3 c3

c2 c1 c2 c2 c2 c3 c3 c2 c2 c3

c2 c2 c1 c2 c3 c2 c3 c2 c3 c2

c2 c2 c2 c1 c3 c3 c2 c3 c2 c2

c2 c3 c3 c3 c3 c4

c3 c2 c3 c3 c4 c3

c3 c3 c2 c4 c3 c3

c3 c3 c4 c2 c3 c3

c3 c4 c3 c3 c2 c3

c4 c3 c3 c3 c3 c2



, (5.9)
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5.2.1 Eigenvalues of Cdθ2 for strength 4 BAs

The information matrix Cdθ2 must be nonsingular to estimate all significant BP effects

and so has ν positive eigenvalues that we wish to calculate. The following lemmas address

this problem; their proofs rely on association schemes linked to the concept of overlapping

introduced in Section 1.2.3. Many of the results are similar to those of Srivastava and Chopra

(1971b), who worked with reduced models assuming OP 3-f.i.’s and higher were insignificant.

Lemma 5.2.3. Three eigenvectors for a nonsingular Cdθ2 where Vd is a BA of strength 4

have the form a = (a1 | a21
T
m | a31

T

(m
2 )

)T , where a1, a2, a3 are constants.

Proof. It is clear that for a given submatrix in the partitioning of Cdθ2 shown in (5.7), the

elements in each row sum to the same quantity. In light of this, consider a vector of the form

a = (a1 | a21
T
m | a31

T

(m
2 )

)T , which takes these row sums, so that

Cdθ2a =


a∗1

a∗21m

a∗31(m
2 )

 = a∗

where

a∗1 = c0 a1 + mc1 a2 +
(
m
2

)
c2 a3

a∗2 = c1 a1 + [c1 + (m− 1)c2] a2 +
[
(m− 1)c2 +

(
m−1

2

)
c3

]
a3

a∗3 = c2 a1 + [2c2 + (m− 2)c3] a2 +
[
c2 + 2(m− 2)c3 +

(
m−2

2

)
c4

]
a3

.

If a∗ = λa then a is an eigenvector of Cdθ2 . That is, we want to find a1, a2, and a3

satisfying a∗1 = λa1, a∗2 = λa2, and a∗3 = λa3. We can reduce the problem down to an
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eigenvalue-eigenvector problem of the 3× 3 matrix

M =


c0 mc1

(
m
2

)
c2

c1 c1 + (m− 1)c2 (m− 1)c2 +
(
m−1

2

)
c3

c2 2c2 + (m− 2)c3 c2 + 2(m− 2)c3 +
(
m−2

2

)
c4

 .

If λ and b = (b1, b2, b3) is an eigenvalue-eigenvector pair ofM then λ and a = (b1 | b21
T
m | b31

T

(m
2 )

)T

is an eigenvalue-eigenvector pair of Cdθ2 . Because M is square, we know there are three

eigenvalue-eigenvector pairs forM and clearly every eigenvector is of the form b ∈ R3. Hence

three of the eigenvectors of Cθ2 are of the form a.

We know that Cdθ2 is symmetric and positive definite, so its ν eigenvalues are real and

positive, which implies that the eigenvalues of M are real and positive. To find the corre-

sponding eigenvalues, we turn to the characteristic polynomial of M . Let Mij be the 2× 2

submatrix of M with rows/columns i and j removed. Then the characteristic polynomial

for M is

PM(t) = t3 − E1t
2 + E2t− E3 ,

where

E1 = tr(M )

E2 = |M11|+ |M22|+ |M33|

E3 = |M | ,

which are known as the principal minors ofM . If we focus on A-optimality, we do not need to

solve for the eigenvalues individually. Instead, all we need is the sum of the inverse eigenvalues

of M , or the sum of the inverse roots of PM(t). Let P (t) = ant
n + an−1t

n−1 + · · · + a0 be

a polynomial of degree n with no roots equal to zero and consider the polynomial Q(t) =
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a0t
n + a1t

n−1 + · · ·+ an. Then λ is a root of P (t) if and only if λ−1 is a root of Q(t).

The roots of PM(t) are positive reals, so the roots of the polynomial

QM(t) = −E3t
3 + E2t

2 − E1t+ 1

are the reciprocals of PM(t). By Vieta’s formula, the sum of the roots of QM(t) is

3∑
i=1

λ−1
i = − E2

−E3

=
E2

E3

.

It can be shown that since c0 equals the number of available runs, N , and is fixed for a given

design, the values of 2E2 and 2E3 are:

2E2 = 2Nc1 + 2mNc2 + 4(m− 2)Nc3 + (m− 2)(m− 3)Nc4 − 2m2c2
1 + 2c1c2

+ 4(m− 2)c1c3 + (m− 2)(m− 3)c1c4 − (m+ 2)(m− 1)c2
2

+ (m− 3)(m− 2)(m− 1)c2c4 − (m− 2)2(m− 1)c2
3 (5.10)

2E3 = 2Nc1c2 + 4(m− 2)Nc1c3 + (m− 3)(m− 2)Nc1c4 − 2(m− 1)Nc2
2

+ (m− 3)(m− 2)(m− 1)Nc2c4 − (m− 2)2(m− 1)Nc2
3 + 2mc2

1c2

− 4m(m− 2)c2
1c3 −m(m− 2)(m− 1)c2

1c4 + 3(m+ 1)(m− 1)c1c
2
2

+ 2m(m− 2)(m− 1)c1c2c3 −m(m− 1)2c3
2 . (5.11)

Now we must find the remaining ν−3 eigenvalues, which must have eigenvectors orthogonal

to the three eigenvectors in Lemma 5.2.3. Vectors of the general form e = (0 | eTm | eT(m
2 )

)T ,

where eTm1m = 0 and eT
(m

2 )
1(m

2 ) = 0 clearly satisfy this. We first look for potential eigenvectors
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of the form e = (0 |0Tm | eT(m
2 )

)T . Post-multiplying Cdθ2 by such an e gives

Cdθ2e =


c21

T

(m
2 )
e(m

2 )

C12e(m
2 )

C22e(m
2 )

 =


0

C12e(m
2 )

C22e(m
2 )

 .

If e is an eigenvector, then C12e(m
2 ) = 0m and C22e(m

2 ) = λe(m
2 ) for some λ, which implies

that λ and e(m
2 ) are an eigenvalue-eigenvector pair of C22. If Cdθ2 is nonsingular then it

must be positive definite, which implies that C22 = V T
d2Vd2 must also be positive definite

and hence have
(
m
2

)
positive eigenvalues. The goal now is to find eigenvectors of C22 that

also satisfy C12e(m
2 ) = 0m and 1T

(m
2 )
e(m

2 ) = 0.

Recall that the elements of C22 correspond to “products” of BP 2-f.i.’s. The diagonal ele-

ments all equal c2, and the off-diagonals equal c3 if the corresponding 2-f.i.’s overlap by one

factor, and c4 if they do not overlap. Consider the matrix C̃ 22 = 1
n3

(C22 − n4J) which is

easily shown to have elements

(C̃ 22)jk,j′k′ =



n2+2n3

n3
if jk and j′k′ overlap by 2 factors

1 if jk and j′k′ overlap by 1 factor

0 otherwise

.

Let A22 be the adjacency matrix for the BP 2-f.i.’s with elements

(A22)jk,j′k′ =


1 if jk and j′k′ overlap by 1 factor

0 otherwise

.

It then follows that C̃ 22 = n2+2n3

n3
I +A22. If e(m

2 ) is a contrast vector, and an eigenvector of
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C̃ 22 with eigenvalue λ, then

λe(m
2 ) = C̃ 22e(m

2 )

=
1

n3

C22e(m
2 ) ,

implying that n3λ and e(m
2 ) is an eigenvalue-eigenvector pair of C22. The goal then is to

find eigenvectors of C̃ 22 that are contrasts and then check to see if they further satisfy

C12e(m
2 ) = 0m.

Clearly any eigenvector of A22 is also an eigenvector of C22. If λ is an eigenvalue of A22,

it follows that n3

(
n2+2n3

n3
+ λ
)

is an eigenvalue of C22. Note that A221 = (2m− 4)1, since

every 2-f.i. overlaps by one factor with (m− 2) + (m− 2) = 2m− 4 other 2-f.i.’s. The other

eigenvectors of A22 must be orthogonal to 1 so they must be contrasts. We now derive the

form of A2
22 to show that A22 is the adjacency matrix for a strongly regular graph. The

adjacency matrices for such graphs have a known form for the eigenvalues.

Denote the 0/1 columns of A22 as ajk corresponding to the BP 2-f.i. ij. Clearly aTijakl =

(aij � akl)T1. Note that all Hadamard products will be 0/1 vectors. These products have 1

elements for those 2-f.i.’s that overlap by one factor for both ij and kl. Assume i < j and

k < l, and we again have five cases to consider for the elements of A2
22:

1. i = k, j = l

2. i = k, j 6= l

3. i 6= k, j = k

4. i 6= k, j = l

5. i 6= k, j 6= l .

128



Case (1) are the diagonal elements of A22 and clearly (aij � aij)T1 = 2m − 4, the number

of 2-f.i.’s that overlap by 1 factor for any given 2-f.i. .

Cases (2) to (4) correspond to the Hadamard product of 2-f.i.’s that overlap by one factor.

Say one of these 2-f.i.’s is ij. Of the 2m − 4 = 2(m − 2) 2-f.i.’s that overlap by one factor

with ij, only m− 2 of them also overlap by one factor with the other 2-f.i. in the product.

Hence, the off-diagonals of A2
22 corresponding to cases (2) to (4) equal m− 2.

Finally, case (5) corresponds to Hadamard products aij � akl, being 2-f.i.’s that do not

overlap. Of the 2m− 4 2-f.i.’s that overlap by one factor for ij, only 4 overlap by one factor

for kl, being the 2-f.i.’s ik, il, jk, and jl (assuming j < k and j < l, but there is no loss of

generality).

This system of overlapping may be used to develop a triangular association scheme of the

BP 2-f.i.’s which has two associate classes. Such association schemes were first introduced

by Bose and Shimamoto (1952) and results for such association schemes are well-developed.

Bose (1963) and Brouwer and van Lint (1984) established that an association scheme with

two associate classes corresponds to a strongly regular graph. A graph with v vertices is

known as a strongly regular graph if

• Each vertex has degree k

• Every two adjacent vertices have λ common neighbors

• Every two non-adjacent vertices have µ common neighbors

The eigenvalues of the adjacency matrix for a strongly regular graph are known to be

1. k with multiplicity 1

2. 1
2

[
(λ− µ) +

√
(λ− µ)2 + 4(k − µ)

]
, with multiplicity 1

2

[
(v − 1)− 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)

]
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3. 1
2

[
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

]
, with multiplicity 1

2

[
(v − 1) + 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)

]

The eigenvector for eigenvalue k is clearly 1v so the other eigenvectors must be contrast

vectors, since they must be orthogonal to 1v.

The elements of A2
22 imply that A22 is the adjacency matrix for a strongly regular graph

with v =
(
m
2

)
, k = 2m− 4, λ = m− 2, and µ = 4, where m > 2. Hence the eigenvalues for

A22 are

1. 2m− 4, with multiplicity 1

2. m− 4, with multiplicity m− 1

3. −2, with multiplicity m(m−3)
2

It follows that there are 2 distinct eigenvalues of C22 corresponding to contrast eigenvectors,

n3(n2+2n3

n3
− 2) = n2 and n3(n2+2n3

n3
+ (m− 4)) = n2 + (m− 2)n3 with multiplicity m(m−3)

2
and

m− 1, respectively.

The eigenvectors with eigenvalue m − 4 for A22 are found in the following way. Group the(
m
2

)
BP 2-f.i.’s into m groups of (m− 1), 2-f.i.’s each, where group g, g = 1, . . . ,m, consists

of those 2-f.i.’s that overlap by one factor with BP main effect g. Note that any specific 2-f.i.

will be in exactly two groups, and any two groups share exactly one 2-f.i.. Let Gl be the sum

of the BP 2-f.i.s, θij, in group l. Consider any contrast of these Gl, written as
∑m

l=1 dlGl. In

this contrast, the coefficient for the 2-f.i. θij is di + dj, since it is in Gi and Gj. Hence the
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corresponding
(
m
2

)
× 1 contrast vector for the 2-f.i.’s is

d =



d1 + d2

d1 + d3

...

dm−1 + dm


. (5.12)

It follows that each element of A22d, aTijd, may be written as

aTijd =
∑
l 6=i,j

(di + dj) +
∑
l 6=i,j

(dj + dl)

= (m− 2)di + (m− 2)dj + 2
∑
l 6=i,j

dl

= (m− 2)di + (m− 2)dj − 2(di + dj), since 0 =
m∑
l=1

dl =
∑
l 6=i,j

dl + di + dj

= (m− 4)(di + dj) .

Hence d is an eigenvector of A22 with eigenvalue m − 4 and so d is an eigenvector of C22

with eigenvalue n2 + (m− 2)n3.

Now consider C12d. Recall that the ith row of C12 has m− 1 values of c2 corresponding to

2-f.i.’s that overlap with main effect i, and
(
m−1

2

)
values of c3 corresponding to the 2-f.i.’s
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that do not overlap with main effect i. It then follows that the i-th row of C12d, (C12d)i, is

(C12d)i = c2

∑
l 6=i

(di + dl) + c3

∑∑
l<l′

l,l′ 6=i

(dl + dl′)

= c2[(m− 1)di − di] + c3(m− 2)
∑
l 6=i

dl

= c2(m− 2)di − c3(m− 2)di

= (c2 − c3)(m− 2)di .

This implies that C12d = (c2 − c3)(m − 2)d0 where d0 = (d1, d2, . . . , dm)T and so e =

(0|0Tm|dT )T is not an eigenvector of Cdθ2 for any m > 2, unless c2 = c3, or n2 = n3 = 0. But

n2 is an eigenvalue of C22, a symmetric, positive definite matrix, so n2 > 0. Hence if Cdθ2 is

positive define then C12d 6= 0m and d cannot be an eigenvector of Cdθ2 .

Recall that d was generated from a specific m× 1 contrast vector d0. The dimension of the

eigenspace for A22 corresponding to eigenvalue m−4 is m−1. There are m−1 orthogonal d0

contrast vectors that generate a d eigenvector of A22 corresponding to eigenvalue m− 4. It

can be shown that m−1 d’s generated from m−1 orthogonal d0’s are also orthogonal. Hence

the eigenspace of A22 corresponding to eigenvalue m − 4 can be generated from any such

m−1 orthogonal contrast vectors. Now consider the projection matrix onto this eigenspace,

P1 =
∑m−1

i=1 did
T
i for some orthonormal di generated from a set of (m−1), m×1 orthogonal

contrast vectors. The following lemma gives the representation for P1.

Lemma 5.2.4. The orthogonal projection matrix onto the eigenspace of A22 corresponding

to eigenvalue m− 4 is

P1 =
2

m
I +

1

m− 2
A22 −

4

m(m− 2)
(J − I) . (5.13)
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Proof. The projection matrix onto the eigenspace of A22 for eigenvalue 2m − 4 is P0 =(
m
2

)−1
J . Let ej be an eigenvector for A22 with eigenvalue −2. Note that ej is a contrast

vector orthogonal to all di and that there exists m′ = m(m−3)
2

mutually orthogonal ej.

Define P2 =
∑m′

j=1 eje
T
j for any such m′ orthonormal ej. Let P ∗1 be (5.13) and define

P1 =
∑m−1

i=1 did
T
i , for any m− 1 orthonormal di. We want to show that P ∗1 = P1. We know

I = P0 + P1 + P2 and pre-multiplying both sides by P ∗1 gives

P ∗1 =

(
m

2

)−1

P ∗1 J + P ∗1P1 + P ∗1P2 .

It is straightforward to show that P ∗1 J = 0J = 0, P ∗1P1 =
∑m−1

i=1 (P ∗1 di)d
T
i =

∑m−1
i=1 did

T
i =

P1, and P ∗1P2 =
∑m′

j=1(P ∗1 ej)e
T
j = 0. Hence P ∗1 = P1.

This gives us the following corollary

Corollary 5.2.1. The orthogonal projection matrix onto the eigenspace of A22 for eigenvalue

−2 is

P2 =
1

(m− 1)(m− 2)
[(m− 1)(m− 4)I + 2J − (m− 1)A22] .

We want to show that C12P2 = 0. Consider C12A22, which has m rows and
(
m
2

)
columns.

Given a column of A22, ajk, and row of C12, cTi , the product cTi ajk depends on whether the

i-th BP main effect and 2-f.i. jk overlap by one factor. The entry in row i and column jk is

(C12A22)i,jk =


(m− 2)c2 + (m− 2)c3 if i and jk overlap,

2c2 + 2(m− 3)c3 otherwise.

(5.14)

(5.15)

This matrix has the same form as C12 but different entries and so there are two possible
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entries to check in C12P2,

C12P2 = 1
(m−1)(m−2)

[
(m− 1)(m− 4)C12 + 2

(
(m− 1)c2 +

(
m− 1

2

)
c3

)
J − (m− 1)C12A22

]
.

Ignoring the scale factor [(m− 1)(m− 2)]−1, if the entry in C12 is c2 then the corresponding

element in C12P2 is

(m− 1)(m− 4)c2 + 2

(
(m− 1)c2 +

(
m− 1

2

)
c3

)
− (m− 1)(m− 2)(c2 + c3) = 0 .

If the entry in C12 is c3 then its corresponding element in C12P2 is

(m− 1)(m− 4)c3 + 2

(
(m− 1)c2 +

(
m− 1

2

)
c3

)
− (m− 1)(2c2 + 2(m− 3)c3) = 0 .

Hence, if e(m
2 ) is in the eigenspace of A22 with projection matrix P2, then the vectors

e = (0|0Tm|eT(m
2 )

)T are eigenvectors of Cdθ2 with eigenvalue n2 with multiplicity m(m−3)
2

, thus

proving the following lemma.

Lemma 5.2.5. A nonsingular Cdθ2 where Vd is a BA of strength 4 has eigenvalue n2 with

multiplicity m(m−3)
2

.

Now consider vectors of the form e = (0|qdT0 |dT )T where q is some constant to be determined,

and d is the vector created from d0 as in (5.12). Note that for a given q, we can generate

m − 1 of these eigenvectors which are orthogonal by choosing m − 1 orthogonal d0’s. This

vector is also clearly orthogonal to eigenvectors corresponding to eigenvalue n2. If e is an

eigenvector, then Cdθ2e = λe for some λ, or

qC11d0 +C12d = λqd0 (5.16)

qCT
12d0 +C22d = λd . (5.17)
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We have already shown thatC11 = c1I+c2(J−I) andC12d = (c2−c3)(m−2)d0. Thus (5.16)

is [
(c1 − c2) +

(c2 − c3)(m− 2)

q

]
qd0 = λqd0 ,

implying

λ = c1 − c2 +
(c2 − c3)(m− 2)

q
. (5.18)

Next consider the
(
m
2

)
×m matrix CT

12, with rows and columns corresponding to 2-f.i.’s and

main effects, respectively. Hence row ij will have c2 in columns i and j and c3 in the other

columns. Thus a given entry in CT
12d0 is equal to

c2(di + dj) + c3

∑
l 6=i,j

dl = c2(di + dj)− c3(di + dj)

= (c2 − c3)(di + dj) .

Clearly c2 − c3 > 0, otherwise n2 = 0. Thus (5.17) is

q(c2 − c3)d0 + (n2 + n3(m− 2))d = λd ,

implying the corresponding eigenvalue is

λ = q(c2 − c3) + (n2 + (m− 2)n3) . (5.19)
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Setting the RHS of (5.18) and (5.19) equal, we solve for q:

c1 − c2 +
(c2 − c3)(m− 2)

q
= q(c2 − c3) + (n2 + (m− 2)n3)

⇔ q2(c2 − c3) + q(−c1 + c2 + n2 + (m− 2)n3)− (m− 2)(c2 − c3) = 0

⇔ q2(n2 + n3) + q(−n1 − 2n2 + n2 + (m− 3)n3)− (m− 2)(n2 + n3) = 0 ,

implying there are two solutions for q,

q =
−(−n1 − n2 + (m− 3)n3)±

√
(−n1 − n2 + (m− 3)n3)2 + 4(m− 2)(n2 + n3)2

2(n2 + n3)
.

Plugging the two values of q into (5.19) we get two eigenvalues

λ =
1

2

[
n1 + 3n2 + (m− 1)n3 ±

√
(n1 + n2 − (m− 3)n3)2 + 4(m− 2)(n2 + n3)2

]
.

Hence for a given d0, we can generate two eigenvectors corresponding to the two solutions.

There are m− 1 orthogonal d0, and since the eigenvalues do not depend on the elements of

d0, the two eigenvalues each have multiplicity m− 1.

Lemma 5.2.6. A nonsingular Cdθ2 where Vd is a BA of strength 4 has the two eigenvalues

λq1 =
1

2

[
n1 + 3n2 + (m− 1)n3 +

√
(n1 + n2 − (m− 3)n3)2 + 4(m− 2)(n2 + n3)2

]
λq2 =

1

2

[
n1 + 3n2 + (m− 1)n3 −

√
(n1 + n2 − (m− 3)n3)2 + 4(m− 2)(n2 + n3)2

]
,

each with multiplicity m− 1.

The three eigenvalues corresponding to the eigenvectors in Lemma 5.2.3 are equivalent to

the eigenvalues of the matrix M defined in the proof of that lemma, but do not have a nice

form like in Lemmas 5.2.5 and 5.2.6. It is easier to derive a general expression for the sum
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of the inverse of the three eigenvalues, so we can have a general form of the A-value for

Cdθ2 . Even though this simplifies the problem, the expression is still quite involved. Taking

E2/E3 and the other ν − 3 eigenvalues in the previous lemmas, we have accounted for all

the ν eigenvalues and can derive an expression of the A-value for Cdθ2 when Vd is a BA of

strength 4.

Theorem 5.2.2. Assume Cdθ2 is the reduced information matrix for a BA of strength 4 and

is nonsingular. Then the trace of C−1
dθ2

is

tr
(
C−1
dθ2

)
=
E2

E3

+

(
m(m− 3)

2

)
1

n2

+ (m− 1)(λ−1
q1

+ λ−1
q2

) (5.20)

where E2 and E3 are specified in (5.10) and (5.11) and the values λq1 and λq2 are given in

Lemma 5.2.6.

5.2.2 A-optimal approximate BAs for reduced BP 2-f.i. model

The goal of this section is to identify the A-optimal BA index set (n0, . . . , n4) that minimizes

(5.20). Here we do not restrict the elements of the index set to integer values, which they

clearly must be in order to correspond to a design. Much like what was done previously

with approximate CRDs, design optimization in this way can often help us identify potential

structures that may lead to efficient and/or optimal designs.

Optimizing (5.20) is not a straightforward problem. It is complicated both by its nonlinearity,

especially in E2/E3, as well as the constraints on the elements of the index set. For example,

the following constraints will need to be met for the optimal solution:

• n0, n1, . . . , n4 ≥ 0

• n0 + 4n1 + 6n2 + 4n3 + n4 = N
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• λq1 , λq2 > 0

• The eigenvalues of M are all positive .

Srivastava and Chopra (1971b) derived a similar expression to (5.20) for the reduced OP

2-f.i. model and focused much of their attention on additional constraints for the BA index

set that achieve positive eigenvalues of the comparable matrix to M defined in the previous

section. They did not attempt to optimize their equivalent expression, but rather used it to

quickly calculate A-values for BAs of strength 4, finding optimal designs within this subclass.

We could try to optimize with respect to c1, . . . , c4 (c0 = N which we assume is fixed) but

the constraints are further complicated by the fact that c1 ≥ c2 ≥ c3 ≥ c4.

We now show that optimizing (5.20) with respect to certain ratios of c0, . . . , c4 simplifies the

constraints and leads to quick optimization results in Mathematica. Define the following

four ratios r0, r1, r2, and r3 as

ri =
ci
ci+1

so that we have the following equivalent representations for c1, . . . , c4

ci = c0

i−1∏
j=0

1

rj
.

These ratios will tell us the optimal relative sizes of c1, . . . , c4 to the sample size, c0, and

their linear relationship with n0, . . . , n4 may be used to find the A-optimal approximate BA

index set.

Mathematica was used to represent (5.20) in terms of these ratios and this expression was

found to be proportional to the sample size, c0. Hence minimization of this expression

with respect to the ratios does not depend on the sample size, much like how finding optimal

designs with respect to replication weight for approximate CRDs does not depend on N . This
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means that we may either remove the sample size from the expression or we can minimize it

for a specifically chosen sample size (which must be greater than or equal to ν = 1+m+
(
m
2

)
)

and those optimal values will hold for any other sample size. We elect to do the latter,

otherwise the expression becomes close to zero and our experience shows that optimization

programs may have difficulty with convergence.

We utilized the Minimize function in Mathematica to minimize the expression for a given

m and set N = ν, without restricting ourselves to integer values. Additional constraints

were placed to guarantee the eigenvalues of Cdθ2 were positive. We modified the constraints

1/n2 > 0, λ−1
q1

> 0, and λ−1
q2

> 0 by multiplying the left-hand side of each by E2. This

was done to ensure these the optimization method was sensitive to the constraints, since E2

grows larger than these other constraints with increasing m. Each ratio was also constrained

to be greater than 1, that is, ri > 1, based on the following relationships, which are easy to

show

r0 = 1 +
n0 + 3n1 + 3n2 + n3

c1

r1 = 1 +
n1 + 2n2 + n3

c2

r2 = 1 +
n2 + n3

c3

r3 = 1 +
n3

c4

.

Sometimes this set of constraints was slightly modified to ri > 1.01 to achieve convergence.

The resulting optimal ratios were then transformed back to the optimal BA index set, giving

an “approximate” BA of strength 4 and a lower bound for the A-criterion for any design, not

just BAs. This follows because this class of approximate BAs includes the matrix-averaged

versions of all designs with respect to ΠW .

Table 5.1 has the optimal ratios for m = 4, 5, . . . , 10, which hold for any given N ≥ ν, and
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the approximate optimal A-values and BA index set for saturated designs, i.e. N = ν. For

all the m shown, every ratio is close to 2 and consistently decrease as m increases. The ratio

is largest for r0 and smallest for r3, which is not surprising because c0 ≥ c1 ≥ · · · ≥ c4. There

appears to be some hierarchical structure of the BA indices in Table 5.1, with n0 greater

than all other indices, followed by n1. For m < 5, n2 > n4, but thereafter n4 becomes the

third largest element in the BA index set, so the structure depends on the number of factors.

Table 5.1: Optimal ratios for m = 4, . . . , 10 for saturated BP 2-f.i. model and optimal
A-values and BA index sets for N = ν.

m r0 r1 r2 r3 A-value n0 n1 n2 n3 n4

4 2.3819 2.2185 2.0456 1.8973 1.3066 1.4831 0.8897 0.5828 0.4813 0.5364
5 2.3630 2.1888 2.0163 1.8739 0.9875 2.1589 1.2745 0.8438 0.7155 0.8188
6 2.3459 2.1679 1.9983 1.8609 0.7617 2.9475 1.7313 1.1597 1.0014 1.1633
7 2.3306 2.1519 1.9860 1.8529 0.6009 3.8462 2.2594 1.5307 1.3402 1.5713
8 2.3168 2.1392 1.9770 1.8477 0.4840 4.8523 2.8580 1.9570 1.7324 2.0438
9 2.3045 2.1286 1.9701 1.8441 0.3970 5.9631 3.5267 2.4390 2.1788 2.5812
10 2.2933 2.1196 1.9647 1.8417 0.3309 7.1763 4.2649 2.9768 2.6798 3.1839

An orthogonal array of strength 4, which is a special case of a strength 4 BA, will have index

set (N/16, . . . , N/16) and is easily shown to have ri = 2 for i = 0, . . . , 3. This implies that

strength 4 orthogonal arrays may be A-efficient for the reduced BP 2-f.i. models, but may

not be A-optimal. BAs that are “close” to orthogonal arrays, but with larger n0 and smaller

n4, are more likely to be A-optimal, as indicated in the approximate designs in Table 5.1.

5.2.3 Saturated A-optimal exact BAs for reduced BP 2-f.i. model

We first attempt to find A-optimal exact, saturated (N = ν) BAs by searching for integer-

valued indices of possible BAs that are “close” to the decimal values in Table 5.1 and so are
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likely A-efficient. We call these possible BAs because establishing existence and construction

of BAs from a given index can be a difficult task. A program was written in R that considers

all integer-valued indices within some range of the decimal values found in Table 5.1 and

then calculates the A-value for each one, assuming that design exists. We calculated the

A-efficiency of each of these designs by dividing the optimal A-value found in Table 5.1 by

the A-value of a BA with given indices. As the optimal A-value should be smaller than the

A-value for any BA, these efficiencies will be less than 1; the closer the efficiency is to 1, the

better the BA is in terms of the A-criterion, provided it exists.

The top 3 BA index sets for saturated designs with m = 4, . . . , 10 factors are given in Ta-

ble 5.2. We also include the relative efficiencies with respect to BP effects of different orders,

which were calculated by dividing the estimator variance under the optimal, approximate BA

by the variance for the possible BA. All of these designs estimate all BP effects of the same

order with the same variance. The top designs are typically around 90% efficient (except for

m = 4 and 7). For large m the efficiency quickly approaches 1. In some cases the designs

estimate the BP main effects better than the approximate optimal design (e.g. for m = 7 the

BP main effect efficiency is 1.182). Efficiency tends to be much better for estimation of the

BP 2-f.i.’s as m increases. This focus of estimation may be attributed to the fact that the

number of 2-f.i.’s in the model grows rapidly as we increase m, hence designs that minimize

the variance of estimates for these effects tend to minimize the A-criterion. An additional

weighting approach is shown in the next section that allows us to place greater emphasis on

the BP main effects.

Establishing existence of the possible BAs in Table 5.2 is a difficult task. Much of the theory

on the existence and construction of BAs focuses on strength 2. For m = 4 there is no

issue, since the indices describe the entire design (there is only one N×4 subarray, the array

itself). The following lemma establishes that a strength t BA is also a strength t− 1 BA, a
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Table 5.2: A-efficient strength 4 BA index sets for the saturated, reduced BP 2-f.i. model
for m = 4, . . . , 10. Efficiencies are with respect to the approximate designs in Table 5.1.

m A-eff θ0-eff θi-eff θij-eff n0 n1 n2 n3 n4

4 0.580 0.215 0.511 0.696 0 1 1 0 1
4 0.555 0.550 0.393 0.696 1 0 1 1 0
4 0.436 0.550 0.568 0.387 1 1 1 0 0

5 0.916 0.497 0.741 1.067 1 1 1 1 1
5 0.595 0.497 0.463 0.686 2 1 1 0 0
5 0.501 0.319 0.596 0.480 1 2 1 0 1

6 0.948 0.765 1.027 0.929 3 2 1 1 1
6 0.898 0.454 0.904 0.932 2 2 1 1 2
6 0.842 0.695 0.689 0.932 2 1 1 2 2

7 0.821 0.729 1.182 0.741 5 3 1 1 2
7 0.816 2.771 1.133 0.725 8 2 1 1 3
7 0.816 3.132 1.132 0.723 9 2 1 1 2

8 0.882 1.971 0.693 0.956 6 2 2 2 3
8 0.879 1.608 0.690 0.957 5 2 2 2 4
8 0.879 2.292 0.689 0.952 7 2 2 2 2

9 0.928 0.733 1.179 0.873 7 4 2 2 3
9 0.908 0.529 1.108 0.873 6 4 2 2 4
9 0.903 0.767 0.984 0.883 6 3 2 3 4

10 0.993 0.782 0.949 1.014 6 4 3 3 4
10 0.991 0.905 0.939 1.010 7 4 3 3 3
10 0.973 0.892 0.999 0.968 8 5 3 2 2

well-known known result which may be found in Rafter and Seiden (1974).
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Lemma 5.2.7. Let B be an N ×m BA with two symbols (say 0 and 1) of strength t ≤ m

with index set (n0, n1, . . . , nt). Then B is also a BA of strength t − 1 with elements of the

index set

n∗t−g = nt−g+1 + nt−g ,

where g = 1, 2, . . . , t.

One way to search for the optimal BAs of strength 4 would enumerate all N × m BAs of

strength m, which are straightforward to construct, and then recursively use Lemma 5.2.7 to

find its strength 4 index set. We demonstrate how this may be done for m = 7 in Example ??.

Example 5.2.1. Take the 29× 7 BA of strength 7 with index set (1, 0, 1, 0, 0, 0, 1, 0). This

array is also of strength 4 with index set (4, 3, 1, 1, 3). By recursively applying Lemma 5.2.7

we can produce the following table of decreasing strength: This demonstrates how the

Table 5.3: Index sets for a 29× 7 BA with strength 7 for decreasing strength.

Strength Index Set
7 (1, 0, 1, 0, 0, 0, 1, 0)
6 (1, 1, 1, 0, 0, 1, 1)
5 (2, 2, 1, 0, 1, 2)
4 (4, 3, 1, 1, 3)

higher indices “trickle down” to the lower ones when we consider lower strengths.

The strength 4 index set for the 29× 7 BA in Example 5.2.1 appears “close” to the optimal

index set found in Table 5.2. The A-value for this design is 0.7821, which is 77% efficient

relative to the “optimal” approximate design found in Table 5.1 and 93% efficient relative

to the A-best design in Table 5.2.

As demonstrated by Example 5.2.1, one way to construct an A-efficient BA of strength 4 for

the saturated case is to start with a strength m BA with indices n0, n2, nm−1 = 1 and all
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other indices equal to 0. Table 5.4 contains the indices for such designs for m = 5, . . . , 10

and their relative A-efficiencies to the approximate A-optimal BA and the A-best design

in Table 5.2. We see that the BAs constructed in this way estimate BP main effects with

variances similar to the approximate, optimal BA, but estimates for the other effects become

less efficient. However, such designs may be appealing if estimation of the BP main effects

is preferred. There may be a further weighting of the BP effects for which this design would

be closer to optimality. For example, if we employ the techniques of this dissertation to

place more weight on the BP main effects, then the design may become more attractive.

The theory for additional weighting with the reduced BP model is the topic in Section 5.3.

Another property of these BAs is that the strength 4 indices always have n2 and n3 = 1,

while the approximate n2 and n3 in Table 5.1 become greater than 1 as m increases. This

may explain why the designs drop in efficiency as we increase m.

Table 5.4: Saturated designs constructed from the strength m BA with n0 = n2 = nm−1 = 1
and their A-efficiencies with respect to the A-optimal approximate BA and A-best exact BA
index sets. Efficiencies for BP effects are based on the A-optimal approximate BA.

Approximate Exact BA
m n0 n1 n2 n3 n4 θ0-eff θi-eff θij-eff A-eff A-eff
5 1 1 1 1 1 0.497 0.741 1.067 0.9159 1.0000
6 2 2 1 1 2 0.454 0.904 0.932 0.8984 0.9473
7 4 3 1 1 3 0.420 0.960 0.735 0.7683 0.9353
8 7 4 1 1 4 0.391 0.962 0.577 0.6337 0.7187
9 11 5 1 1 5 0.366 0.936 0.459 0.5205 0.5609
10 16 6 1 1 6 0.344 0.896 0.373 0.4304 0.4334

There are many other ways to construct BAs of strength 4 from larger and smaller arrays.

Chakravarti (1961) details a construction method based on taking subarrays (both in terms

of removing rows and columns) of OAs of some strength that produce BAs of the same

strength. It may also be worthwhile to investigate necessary constraints on a BA index set

to determine whether such a BA could exist. This may allow us to pare down the list in
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Table 5.2 and get a better idea of the efficiency of the designs in Table 5.4.

We must be careful though in assuming a strength 4 BA is the A-optimal design. Certainly

these designs are candidates for A-optimal designs, but there may exist designs that are

“almost BAs” and that are truly A-optimal. For example, this was seen in Section 3.4 where

for some N a strength m BA was not A-optimal, but arrays built up from certain BAs were

optimal until they formed a new BA.

An ad hoc approach to finding optimal designs without restricting attention to only BAs is

to use the design search capabilities of SAS PROC OPTEX. A modification of the model

and candidate points with the procedure described in Section 4.3 allowed us to search for

A-efficient saturated designs under the BP 2-f.i. model for m = 4, . . . , 10. We performed

5, 000 iterations of the modified Fedorov algorithm for m = 4 to 6 and 10, 000 iterations were

performed for m = 7 to 10, due to the larger number of candidate points.

For m = 4, the A-best design SAS found was not a BA:

V T
d =

0 0 0 0 1 1 1 0 1 1 1

0 0 0 1 0 0 1 1 0 1 1

0 0 1 0 0 1 0 1 1 0 1

0 1 0 0 1 0 0 1 1 1 0

.

Its A-value for estimation of the BP effects is 2.0505 and its relative efficiency compared to

the A-optimal approximate BA is 0.6372 which is better than the BAs listed in Table 5.2.

We are cautiously confident that this design is A-optimal, as the search was extensive relative

to the number of possible designs that could be considered.

For m = 5 and 6 the A-best designs were the BAs with index sets found in Table 5.4, which

is not surprising given their high efficiencies. For m > 7, OPTEX was unable to find designs
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with relative efficiencies close to what was seen in Table 5.2, even with a large number of

iterations. For these large m, OPTEX has provided some evidence that the designs discussed

previously may not exist.

5.2.4 A-optimal exact BAs for reduced BP 2-f.i. model with m =

4, 5, and 6 and N > ν

We next investigated whether the issue of finding BAs may be due to the restriction N = ν.

That is, it may be that with larger N a BA would be easier to construct. For m = 4, 5,

and 6, the ratios in Table 5.1 were used to calculate the optimal approximate indices for

increasing N and we then searched for the corresponding BAs with the R code described

in Section 5.2.3 as well as with the SAS PROC OPTEX macro described in the previous

section. Constructing the BAs for m = 4 is trivial, since the indices will uniquely describe

the N × 4 BA we are looking for. Tables 5.5 to 5.7 list the optimal BA indices for m = 4, 5,

and 6 as found with the R program. Their efficiencies relative to the best design found with

the SAS PROC OPTEX macro is also noted in these tables.

The efficiency values for m = 4 are very encouraging. The worst A-efficiency (with respect

to the approximate, optimal bound) was for the saturated case (58%). When comparing

the design with the best BA index set found with R with the best design found in SAS, we

see that the efficiency is 91%. As soon as we add one more run to the saturated case, the

A-efficiency increases to 75% and continues to increase overall with N until it hits around

95%. The efficiencies with respect to the SAS-best design are even more encouraging. For

N = 16, 17, 22, and 23 the same designs were found, and even when they were different

the A-values were nearly the same. The high efficiencies carry over to m = 5 and m = 6,

but there is still the issue of constructing these BAs. In some cases we may be evaluating
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non-existent BAs, including those where the OPTEX A-best designs have efficiency greater

than 1. In those cases, either the BA does not exist or OPTEX was unable to find the BA

(or a better design).

Based on the results for m > 6 in the previous sections, we did not explore this approach for

a larger number of factors. Other analytical tools will need to be developed to handle these

larger problems and will likely require an exploration of the properties of strength 4 BAs.

Table 5.5: A-efficient strength 4 BAs with m = 4 factors for the reduced BP 2-f.i. model.
Efficiencies for individual BP effects are based on the A-optimal approximate BAs. The last
column is relative to the best design produced by OPTEX.

N A-eff θ0-eff θi-eff θij-eff n0 n1 n2 n3 n4 OPTEX A-eff
11 0.580 0.215 0.511 0.696 0 1 1 0 1 0.910
12 0.749 0.702 0.854 0.709 1 1 1 0 1 0.995
13 0.741 1.113 0.911 0.667 2 1 1 0 1 0.940
14 0.709 1.466 0.904 0.624 3 1 1 0 1 0.863
15 0.823 0.504 0.694 0.945 1 1 1 1 0 0.945
16 0.925 0.550 0.781 1.063 1 1 1 1 1 1.000
17 0.970 0.874 0.863 1.039 2 1 1 1 1 1.000
18 0.962 1.161 0.879 0.998 3 1 1 1 1 0.997
19 0.937 1.419 0.871 0.954 4 1 1 1 1 0.972
20 0.912 1.361 0.844 0.931 4 1 1 1 2 0.942

21 0.975 0.773 0.974 0.991 2 2 1 1 1 0.997
22 0.990 1.013 1.037 0.967 3 2 1 1 1 1.000
23 0.982 1.232 1.062 0.937 4 2 1 1 1 1.000
24 0.968 1.202 1.046 0.924 4 2 1 1 2 0.991
25 0.951 1.396 1.049 0.893 5 2 1 1 2 0.977
26 0.935 0.891 1.066 0.884 3 3 1 1 1 0.961
27 0.939 1.082 1.119 0.864 4 3 1 1 1 0.970
28 0.958 0.818 0.910 0.995 3 2 2 1 1 0.994
29 0.963 0.999 0.938 0.974 4 2 2 1 1 0.999
30 0.961 0.981 0.931 0.975 4 2 2 1 2 0.997

31 0.954 0.981 0.940 0.951 5 2 2 1 2 0.987
32 0.961 0.756 0.965 0.974 3 3 2 1 1 0.991
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Table 5.6: Potential A-efficient strength 4 BAs with m = 5 factors for the reduced BP 2-f.i.
model. Efficiencies for individual BP effects are based on the A-optimal approximate BAs.
The last column is relative to the best design produced by OPTEX.

N A-eff θ0-eff θi-eff θij-eff n0 n1 n2 n3 n4 OPTEX A-eff
16 0.916 0.497 0.741 1.067 1 1 1 1 1 1.000
17 0.962 0.935 0.827 1.037 2 1 1 1 1 1.000
18 0.945 1.324 0.833 0.990 3 1 1 1 1 0.989
19 0.915 1.286 0.809 0.956 3 1 1 1 2 0.960
20 0.885 1.619 0.792 0.912 4 1 1 1 2 0.926

21 0.929 0.583 0.913 0.963 2 2 1 1 1 0.966
22 0.974 0.918 1.046 0.948 3 2 1 1 1 1.000
23 0.972 1.224 1.096 0.919 4 2 1 1 1 1.000
24 0.960 1.235 1.100 0.901 4 2 1 1 2 0.998
25 0.941 1.503 1.107 0.869 5 2 1 1 2 0.987
26 0.917 1.751 1.099 0.839 6 2 1 1 2 0.969
27 0.892 1.980 1.083 0.809 7 2 1 1 2 0.946
28 0.894 0.851 0.801 0.944 3 2 2 1 1 0.950
29 0.892 1.142 1.198 0.796 5 3 1 1 2 0.948
30 0.882 1.369 1.229 0.774 6 3 1 1 2 0.944

31 0.871 0.449 0.688 1.037 2 2 2 2 1 0.929
32 0.936 0.648 0.909 0.969 3 3 2 1 1 0.991
33 0.957 0.869 0.974 0.955 4 3 2 1 1 1.003
34 0.962 0.935 0.827 1.037 4 2 2 2 2 1.000
35 0.956 1.135 0.834 1.014 5 2 2 2 2 0.991
36 0.947 1.273 1.018 0.908 6 3 2 1 2 0.976
37 0.950 0.561 0.860 1.030 3 3 2 2 2 0.972
38 0.984 0.755 0.933 1.023 4 3 2 2 2 0.999
39 0.995 0.940 0.973 1.008 5 3 2 2 2 1.000
40 0.994 1.115 0.993 0.990 6 3 2 2 2 1.000
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Table 5.7: Potential A-efficient strength 4 BAs with m = 6 factors for the reduced BP 2-f.i.
model. Efficiencies for individual BP effects are based on the A-optimal approximate BAs.
The last column is relative to the best design produced by OPTEX.

N A-eff θ0-eff θi-eff θij-eff n0 n1 n2 n3 n4 OPTEX A-eff
22 0.948 0.765 1.027 0.929 3 2 1 1 1 1.056
23 0.960 1.167 1.122 0.903 4 2 1 1 1 1.005
24 0.951 1.249 1.153 0.882 4 2 1 1 2 1.000
25 0.931 1.599 1.164 0.850 5 2 1 1 2 0.993
26 0.906 1.922 1.155 0.820 6 2 1 1 2 0.977
27 0.880 2.221 1.136 0.791 7 2 1 1 2 0.957
28 0.854 2.180 1.109 0.765 7 2 1 1 3 0.934
29 0.859 0.969 1.222 0.766 5 3 1 1 2 0.945
30 0.854 1.270 1.291 0.745 6 3 1 1 2 0.941

31 0.841 1.552 1.322 0.724 7 3 1 1 2 0.926
32 0.908 0.454 0.707 1.070 2 2 2 2 2 0.992
33 0.949 0.743 0.772 1.057 3 2 2 2 2 1.000
34 0.953 1.016 0.790 1.034 4 2 2 2 2 1.000
35 0.943 1.272 0.792 1.009 5 2 2 2 2 0.987
36 0.929 1.274 0.785 0.991 5 2 2 2 3 0.965

5.3 A-optimal designs for the reduced BP 2-f.i. model

with weighted effects

In the previous section, Cdθ2 was shown to be equivalent to a weighted information matrix

of the treatment means with heft at most 2 with weight matrix W = HT
11H11. Suppose

we wish to further weight the BP intercept by w0, BP main effects by w1, and BP 2-

f.i.’s by w2 (this could be done for a variety of reasons). To achieve this weighting, let

w = (w0, w11
T
m, w21

T

(m
2 )

)T , Dw = Diag(w), H∗11 = D
1/2
w H11, and θ∗2 = H∗11τ1. A natural

selection of these weights is
√
w0 = 1,

√
w1 = 1√

2
, and

√
w1 = 1

2
, the normalization constants

for the BP effects. We could also potentially use this technique to put more emphasis on
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estimating main effects rather than 2-f.i.’s.

For some such Dw, let W∗ = H∗T11 H
∗
11, which has the form

W∗ = HT
11DwH11

=


w0 + w1m+ w2

(
m
2

)
−(w1 + w2(m− 1))1Tm w21

T

(m
2 )

(w1 + w2(m− 2))Im + w2Jm −w2V
T
m;2

w2I(m
2 )

 . (5.21)

Clearly w0, w1, and w2 > 0, so the diagonal elements of the diagonal submatrices in the

partition of (5.21) are the same within each submatrix but different between them. Using

this fact and previous arguments used to find ΠW , where W = HT
11H11, it is easily shown

that ΠW∗ = ΠW since the respective matrices that make up the partitions for W∗ shown in

(5.21) have a similar structure to the corresponding partitions in W = HT
11H11. That is,

ΠW∗ contains all and only the m! factor permutations.

The weighted information matrix for a design d corresponding to W∗ is defined to be

CdW∗τ1 = W
−1/2
∗ QTXT

dXdQW
−1/2
∗ and we want to find forms of CdW∗τ1 that are invariant

to permutations in ΠW . Rather than working with this weighted information matrix, we

instead focus on the following information matrix:

Cdθ∗2
= D−1/2

w KH−1T
BP XT

dXdH
−1
BPK

TD−1/2
w

= D−1/2
w Cdθ2D

−1/2
w ,
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which has the same eigenvalues as CdW∗τ1 . It is easily shown from (5.7) that

Cdθ∗2
=


1
w0
N 1√

w0w1
1TNVd

1√
w0w2

1TNVd2

1
w1

V T
d Vd

1√
w1w2

V T
d Vd2

1
w2

V T
d2Vd2

 , (5.22)

so the submatrices in the partitions of Cdθ2 and Cdθ∗2
found in (5.7) and (5.22), respectively,

are proportional. The proof of Theorem 5.2.1 relied only on arguments for the submatrices

in (5.7) and the added weights do not change these results, giving us the following corollary.

Corollary 5.3.1. The information matrix Cdθ∗2
= D

−1/2
w Cdθ2D

−1/2
w is invariant to all Π ∈

ΠW∗ = ΠW if and only if XdVm = Vd is a BA of strength 4.

Even though BAs of strength 4 create optimal forms for both Cdθ2 and Cdθ∗2
, we expect that

for any substantially different values of w0, w1, and w2 that a BA that is optimal for one is

not optimal for the other.

A BA of strength 4 will have Cdθ∗2
of the following form

Cdθ∗2
= D−1/2

w Cdθ2D
−1/2
w

=


c0
w0

c1√
w0w1

1Tm
c2√
w0w2

1T
(m

2 )

1
w1

C11
1√
w1w2

C12

1
w2

C22

 . (5.23)

Suppose we want to find an A-optimal design for Cdθ∗2
. If we knew the diagonal elements

of C−1
θ2

then we could easily derive the trace of C−1
dθ∗2

given the BA indices using tr(C−1
dθ∗2

) =

tr(D
1/2
w C−1

dθ2
D

1/2
w ) = tr(C−1

dθ2
Dw). We instead use the same eigenvalue approach that was

used for Cdθ2 in Section 5.2.1.

The eigenvectors for Cdθ2 when we have a BA of strength 4 are clearly eigenvectors for
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D
−1/2
w and so Cdθ2 and Cdθ∗2

have the same eigenvectors. First note that even though

the submatrices in the partitions of Cdθ∗2
seen in (5.22) are different from those in (5.7),

the row sums of each partition are still constant. Hence we consider vectors of the form

a = (a1|a21
T
m|a31

T

(m
2 )

)T . For Cdθ2 , this gave a 3 × 3 matrix M . For Cdθ∗2
, we get a similar

matrix, M ∗, which is easily shown to be

M ∗ =


w
− 1

2
0 0 0

0 w
− 1

2
1 0

0 0 w
− 1

2
2

M

w
− 1

2
0 0 0

0 w
− 1

2
1 0

0 0 w
− 1

2
2

 ,

a diagonal weighting of the original M . Mathematica was used to find E∗2 and E∗3 , the

analogs of E2 and E3 in (5.10) and (5.11), which are omitted from the dissertation.

The next eigenvectors to consider are those of the form e = (0|0Tm|eT(m
2 )

)T . Note that any

eigenvector of C22 is also an eigenvector for 1
w2
C22 with the original eigenvalues of C22 scaled

by 1
w2

. The eigenvectors of 1
w2
C22 with eigenvalue n2

w2
will clearly satisfy 1√

w1w2
C12e(m

2 ) = 0,

which implies that n2

w2
is an eigenvalue of Cdθ∗2

with multiplicity m(m−3)
2

.

Now consider eigenvectors of the form e = (0|qdT0 |dT )T defined previously for Cdθ2 . Then

Cdθ∗2
e yields expressions analogous to (5.16) and (5.17)

q

w1

C11d0 +
1

√
w1w2

C12d = λqd0 (5.24)

q
√
w1w2

CT
12d0 +

1

w2

C22d = λd . (5.25)
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Solving for q as was done in Section 5.2.1, we get

q =
−b±

√
b2 + 4(n2 + n3)2(m− 2)

2(n2 + n3)

b =

√
w1

w2

(n2 + (m− 2)n3)−
√
w2

w1

(c1 − c2) .

This form is similar to that for Cdθ2 , except the b term did not have the weights involved.

These q produce two different eigenvalues, each with multiplicity m− 1

λ∗q1 =
−b+

√
b2 + 4(n2 + n3)2(m− 2)

2
√
w1w2

+
n2 + (m− 2)n3

w2

λ∗q2 =
−b−

√
b2 + 4(n2 + n3)2(m− 2)

2
√
w1w2

+
n2 + (m− 2)n3

w2

.

Corollary 5.3.2. Assume Cdθ∗2
is the reduced information matrix for θ∗2 for a BA of strength

4 and is nonsingular. Then the trace of C−1
dθ∗2

is

tr
(
C−1
dθ∗2

)
=
E∗2
E∗3

+

(
m(m− 3)

2

)
w2

n2

+ (m− 1)(λ∗−1
q1

+ λ∗−1
q2

) . (5.26)

Representing (5.26) in terms of the ratios r0, . . . , r3 again gives an expression proportional

to c0. We again minimize this expression with respect to the ratios using the same approach

taken to construct Table 5.1, but here for weights w0, w1, and w2. We first investigate the

A-optimal approximate BAs for the normalized BP effects under the reduced BP 2-f.i. model

by setting w0 = 1, w1 = 1
2
, and w2 = 1

4
. The results for m = 4, . . . , 10 are shown in Table 5.8.

Focusing on the normalized BP effects caused r0 and r1 to increase over those in Table 5.1

while r2 and r3 decreased. As for the saturated A-optimal approximate BA, we see that

greater emphasis is placed on n0 and n1 than found previously, implying that treatments

of smaller heft will likely be replicated more in the exact A-optimal design for estimation

of the normalized BP effects. This is consistent with what was found for the full model in
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Section 3.4.

Table 5.8: Optimal ratios for the saturated, normalized BP 2-f.i. model, optimal AW -values,
and optimal BA index sets.

m r0 r1 r2 r3 AW -value n0 n1 n2 n3 n4

4 2.6614 2.3694 2.0623 1.8307 0.4193 2.0124 0.9755 0.5147 0.3838 0.4620
5 2.6189 2.3066 2.0118 1.8004 0.3153 2.9190 1.3819 0.7468 0.5853 0.7313
6 2.5812 2.2635 1.9813 1.7833 0.2416 3.9634 1.8626 1.0302 0.8348 1.0657
7 2.5483 2.2316 1.9609 1.7730 0.1893 5.1406 2.4166 1.3651 1.1338 1.4668
8 2.5196 2.2069 1.9464 1.7664 0.1514 6.4456 3.0431 1.7522 1.4833 1.9354
9 2.4944 2.1871 1.9357 1.7622 0.1234 7.8746 3.7417 2.1918 1.8841 2.4719
10 2.4722 2.1708 1.9275 1.7595 0.1022 9.4239 4.5115 2.6843 2.3368 3.0769

Now suppose we are more interested in precisely estimating the non-normalized BP main

effects than we are the intercept and 2-f.i.’s. We reflect this relative importance by setting

w1 = 20 and w0 = w2 = 1 and again optimize the AW expression in Mathematica; the results

are reported in Table 5.9. As expected, the ratios r0 and r1 become even larger compared

to the unweighted case but decrease much more dramatically as m increases. This gives a

saturated AW -optimal approximate BA that has large n0 and n1 values.

Table 5.9: Optimal ratios for the saturated BP 2-f.i. model with w1 = 20 and w0 = w2 = 1,
optimal AW -values, and BA index sets.

m r0 r1 r2 r3 AW -value n0 n1 n2 n3 n4

4 3.4698 3.2830 1.9932 1.4402 7.8249 2.5114 1.3903 0.3331 0.1481 0.3364
5 3.4281 2.9003 1.8504 1.4458 5.3702 4.1093 1.8470 0.4714 0.2681 0.6015
6 3.3598 2.6789 1.7747 1.4380 3.8227 5.9223 2.3893 0.6475 0.4195 0.9577
7 3.2909 2.5394 1.7305 1.4317 2.8155 7.9523 3.0168 0.8602 0.6047 1.4006
8 3.2283 2.4449 1.7028 1.4279 2.1363 10.1983 3.7286 1.1099 0.8250 1.9280
9 3.1729 2.3774 1.6848 1.4260 1.6627 12.6574 4.5240 1.3972 1.0814 2.5382
10 3.1238 2.3268 1.6724 1.4255 1.3225 15.3246 5.4019 1.7226 1.3751 3.2318

It remains to be seen whether these weighted criteria lead to different exact designs than those
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found in the previous section. We enumerated A-optimal BA indices using the previously

mentioned program in R and found them to be different from those in Table 5.2. However, in

many instances the AW -best design produced by SAS PROC OPTEX was either the same or

nearly identical to the unweighted case. As m or N increases we will likely see these designs

diverge.

155



Chapter 6

Future work

Having developed a new general approach to design evaluation, there are many avenues of

future work. Although the class of weight matrices we have focused on has many applications,

it would be worthwhile to investigate other forms of weight matrices that give a desirable

weighting of estimable functions. We have spent much time exploring the AW -criterion and

should develop properties and applications of other weighted criteria, including the EW -

criterion. Many of the results in this dissertation are for completely-randomized designs,

although the theory generalizes outside this class of models, and we should begin to consider

what happens when we introduce blocking.

For factorial experiments, it is sometimes desirable to estimate all OP main effects and 2-

f.i.’s and it is known that a Resolution V design is universally optimal. If such a design does

not exist, then typically an orthogonal array is chosen that maximizes the number of 2-f.i.’s.

Alternatively, design search algorithms like OPTEX are used to find an efficient design that

can estimate all effects. But, as mentioned before, the number of 2-f.i.’s can increase quickly

and so standard optimization may implicitly focus its attention on estimating these effects

well, instead of the main effects. By employing weights, we can search for a design that

156



not only estimates all the effects, but emphasizes precise estimation of main effects. Blocks

could also be introduced, leading to optimal partially confounded factorial designs.

Much of the work in this dissertation has been devoted to developing a general theory for

BP, and there is still much to be done. We could extend the baseline parameterization to

factors with more than two levels by modifying the Kronecker construction in Lemma 1.2.2,

following the approach in Hedayat et al. (1999). One specific application of BP is with cDNA

microarray experiments, which often employ one or two blocking factors and small block size.

Our modification of SAS PROC OPTEX to search for A-optimal incomplete block designs

could be used to quickly search for good designs for cDNA microarray experiments.

Finally, general weighted optimality criteria has so far been defined in terms of the informa-

tion matrix of a linear model. When working with nonlinear models, optimization is typically

based on the Fisher information matrix, which itself is based on a linear approximation to

the nonlinear model. Weighting this matrix like we have done for linear models will create

weighted optimality criteria for estimation of parameters in a nonlinear model.
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Caliński, T. and Kageyama, S. (2000), Block Designs: A Randomization Approach; Volume

I: Analysis, New York: Springer.

Chakravarti, I. M. (1956), “Fractional Replication in Asymmetrical Factorial Designs and
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