General Wiener-Hopf Operators and
Complete Biorthogonal Systems

JOHN REEDER

Communicated by Mark Kac

1. Introduction. Tet .1 be a linear operator defined on a dense subset of a
separable Hilbert space H. Let P be an orthogonal projection onto the closed
subspace B(P). The general Wiener-Hopf operator associated with A and P is

(1.1) Tx(A) = PA | R(P),

the vertical bar denoting restriction. Shinbrot [3] has developed an inversion
formula for such operators assuming A, and thercfore Tr(4), has strongly
positive real part. This was achieved by embedding A in a family of operators
A(2) depending analytically on z and then making use of some basic properties
of analytic functions. He thereby obtained an inversion formula for Tp(4(2))
which takes the form of a scries expansion:

3 0@we),

where z denotes the complex conjugate of 2 and the ¢, (2)’s are analytic functions
of z taking values in R(P) and satisfying certain additional properties. In
particular, it was required that

(A@Y:@), ¥:(2) = 8.,

for z contained in some prescribed complex domain, §,; denoting the Kronecker
delta.

In this paper we broaden the above class of inversion formulas by considering
ordered pairs of sequences {¢,}, {w:} from R(P) rclated by

(A¢i, w;) = 8.

Results which extend those of [3] are obtained in §2 without the use of analytic
function theory. Our inversion formula takes the analogous form

Z; (', wi)¢i .
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Using a Gram-Schmidt type construction we prove that there always exists an
ordered system {¢¥;}, {w;} such that the above formula equals T'5(A) 7"

One of the conditions we require of the system in order to obtain the inversion
formula is the spanning property:

Sp{\bi}?;al = Sp{wi”=1 (n = 17 27 ) )

But this condition is most annoying since it is sometimes easy to produce an
ordered system {y.}, {w,} satisfying all of the necessary requirements but this
one. Moreover the condition would seem unnceessary sinee without it the
inversion formula must still be valid on a dense subset of R (P) (Theorem 2.2 (ii)).
It was conjectured to be extraneous by Shinbrot [3, p. 356] within the class
of inversion formulas which he considered. In §3 we show that this spanning
condition is essential at least within the broader eclass of inversion formulas
which we consider. These formulas come from this larger class in a natural way
when solving specific problems.

The proofs used in [3] are in error when the operator A is unbounded, leaving
the results in question. But if A is assumed to be bounded the results remain
valid. In this paper it will be assumed that A is bounded. The only exception
to this is contained in the remark at the end of §2 where one means of generalizing
our results to unbounded operators is given. The remark includes an explanation
of the error in [3] and a means of correcting it.

In §4 the results of §2 are used to prove a new sufficient condition for a com-
plete biorthogonal system in a separable Hilbert space to be a basis. This
result is then used to prove the cxpansion theorem of Paley and Wiener [1].
Further applications of general Wiener-Hopf operators may be found in [3]
and [4]. Some open questions related to our results are listed in §5.

The author would like to express his thanks to Professor Marvin Shinbrot
for many stimulating conversations.

2. The inversion formula. Let A denote a bounded linear operator on a
separable Hilbert space H. An ordcred pair of sequences {¢.}, {w:} from H
is called an A-biorthogonal system if

2.1 (A, wi) = 84 -

Given two sequences {¢,}, {w;} from H and any integer n > 0, we definc
2.2) P, to be orthogonal projection onto sp{y.}7.; ;

(2.3) P, to be orthogonal projection onto sp{w}i-, ,

where “sp” denotes the span of the set in question, 7.e., the set of all (finite)
linear combinations of elements from that set with scalars from the complex
numbers C. A new operator is defined by

T. = P,A | R(P,),
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R(P,) denoting the range of P, . Finally for z in H we set

(2.4 S.x = Z (x, w)¥: ,

so that for each n, 8, is a bounded linear operator on H.

Lemma 2.1. If {¥.}, {w:} s any A-biorthogonal system in H, then T, s
invertible for all n. Moreover,

(2.5) T." = 8. | R(P.).
Proof. It is apparent that
T, :R(P,) — R(P,)
and
S. | R(P.) : R(P.) — R(P,).
If z e R(P,), we have x = D ", a; for some a; ¢ C. Thus,

n

SnTnx = Z (PnA Z ai‘pi )wi)'pl'
= Z ay; =2
t=1

by (2.1) and (2.3). On the other hand, for y ¢ R(P,) we have that

T50,0) = (Pt 3 0009 ,0,)

(2.6) = @) G=1,,m).

Since T.8.y £ R(P,), (2.6) shows that
T.8.y =y,

and this completes the proof.

The main objective of this section is to impose sufficient conditions on the
operator A and an A-biorthogonal system {¥.}, {w,} so that we may pass-to
the Hmit in (2.5) in order to obtain an inversion formula for the Wiener-Hopf
operator Tp(A4) defined by (1.1):

To(A) 'z = 2 (@, 0¥ .
i=1
Given an A-biorthogonal system {.}, {w;} set

(2.7 Sz = Zm: (2, w)¥:

i=1
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where the domain of S, D(S), is the set of all z ¢ H for which the right hand side
of (2.7) converges. An operator 4 is said to have positive real part if

(2.8) Re (4z, z) > 0

for all non-zero x in H. We abbreviate this Re A > 0. Clearly Re A > 0 implies
Re Tp(A) > O for any orthogonal projection P. It follows that Tp(4) is one
to one and, since T»(A)* (= Tp(A¥*), * denoting the adjoint) also has positive
real part, Tp(A) has dense range. Hence if Re A > 0, T»(A4)7" exists and is
defined on a dense subset of R(F), but it need not be bounded. The following
result extends Theorem 5.1 of [3].

Theorem 2.2. Let P be an orthogonal projection and suppose Re A > 0. If
(.}, {w:} is any A-biorthogonal system such that ¢, , w, ¢ R{(P) for all i, then:
(1) if x e Tp(A)sp{¥.}, then x ¢ D(S) and

(2.9 Sz = Tp(A) 'x;

(ii) Z’)‘__SQ_{_K(/J = R(P), then (2.9) holds for all z in a dense subset of R(P);
(iii) spiw;} = R(P) if and only if (2.9) holds for all x € D(S) M R(P).

Proof of (i). If y e spl{y.}, we have y = D>."_, a;¥; for some n and some
a;e C. Then fori > n

n

(Tp(A)y, wi)) = Z a;(Ay; ,w) =0

i=1

since w, ¢ R(P) and the system {¢.}, {w,} is A-biorthogonal. Therefore Tpr(A)y e
D(S). Moreover, (2.9) is obtained from the following:

©

3 (Pa S a v

i=1

= Zai‘ﬁi =Y.

i=1

ST:(A)y

il

Proof of (ii). By (i) it suffices to prove that T»(A)sp{y.} is dense in R(P)
if sp{y.} is. But if y ¢ R(P) is orthogonal to Tr(A)sp{y¢.}, then we have

W, Te(A)¥:) = (y, AYs) = (A*y, ) = 0

for all 2. Therefore T»(A*)y = 0. Now Re A > 0 implics Re Tp(4%) > 0 which
asserts that y = Q.

Proof of (iil). Suppose sp{w,} is dense in R(P) and let x be any clement from
D(8S) M R(P). Observe that S,z = S,P.x so that by Lemma 2.1

P.ASx = T.S.,P.x = P.x .
Now fori > n

P.AYy, =0
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via the A-biorthogonality of the system {¢.}, {w:}. Hence
(2.10) P,ASz = P,AS.x = P.x.

Since q—pnj = R(P), (2.9) is obtained by letting n tend to infinity in (2.10).

Suppose, on the other hand, that (2.9) holds for all x ¢ D(S) N\ R(P). If
z ¢ R(P) is orthogonal to w, for all ¢, then z ¢ D(8) and Sx = 0. Therefore, by
(2.9),

x = Tp(A)Sx = 0,
so that sp{w;} is densc in R(P). This completes the proof.
An operator 4 is said to have strongly positive real part if
(2.11) Re (4dz, z) = 6 ||x||?

for some & > 0 and for all z ¢ H. We abbreviate this Re 4 = 6. If Re 4 = 3,
then T'p(A) inherits this property for any orthogonal projection P. It follows
that T'»(A) is not only one to one with dense range, but has closed range as well.
Hence if Re A = 8, then T»(A) possesses a bounded inverse. The following
theorem generalizes Corollary 5.2 of [3].

Theorem 2.3. Let P be an orthogonal projection on H and suppose Re A = 8.
If (Y.}, {w:} 1is any A-biorthogonal system such that:

sp{v.} = R(P);
(2.12) sp{vi}i-i = splalicy, (0 =1,2,--),
then Tr(A) has a bounded inverse and for every x ¢ R(P)

Teo(A) 'z = il (z, w)¥: .

Proof. Tp{A) has a bounded inverse because Re A = 6. Since w; &€ R(P)
for all 4, S is defined and equals zero on the orthogonal complement of R{(P).
Thus by Theorem 2.2 (ii), the domain of S is dense in H. It follows that we can
extend the domain of S to all of H if and only if the S,.’s (2.4) are uniformly
bounded in norm. Moreover, if D(S) = H, then we get the desired inversion

formula by Theorem 2.2 (iii). Since Re A 2 8, for x ¢ H we have
8 [1S.x|]” < Re (AS,z, S.x)

Re (P, A8z, S.x)

1P, A S,z 1]8,2]].

By hypothesis (2.12), P, = P, for all n, so that

(2.13)

IA

P.AS.x = T8,z
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But by Lemma 2.1
T.82 = T,8,P.x = Pz,

and therefore

P.ASx = P.x.
Using this in (2.13), we have that
182l = 87" [|P,ASzl|
(2.19) = 37" ||Pa]]
< 87 ||=l]-

This completes the proof.

The theorem below extends Lemma 3.1 of {3]. We prove that the inverse of
any general Wiener-Hopf operator arising from an operator with strongly
positive real part can always be expanded in terms of an A-biorthogonal system
satisfying the hypotheses of Theorem 2.3. In fact the following is true.

Theorem 2.4. Let P be an orthogonal projection on H and suppose Re A > 0.
Then there exists an A-biorthogonal system {y.}, {w:} such that:

sp{¥:} = R(P);
Sp{‘l’i}?ﬂ = splw:}ia n=12--).

Proof. Let {a;} be any complete linearly independent sequence from R(P).
In particular, {;} could be an orthonormal basis for R(P). Define

n—1
(2.15) o = 0 — 2 bua ;
i=1
n~-1
(216) Wy, = oy — Z daio; n=23,-- ’))
i=1

(and 7, = w, = a,) where the coefficients b,; and d,; are determined by requiring
that

(217) (ATn y Ol,-) = (A*wn s 0[,') =0
forj =1, --- ,n — 1. Rewriting (2.17), we require that forn > 1
n—1
(218) Z bm‘(Aai >ai) = (Aan 7ai);
fe=]
n—1
(2.19) Z dm‘(A*ai ;ai) = (A*an !ai)
=]
forj =1, --- , n — 1. Now the determinant, det (Aa. , «;), is not zero. For

if it were zero, there would exist a; ¢ C, not all zero, such that
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n—1

Z a,(Aa, ) a,') = 0

i=1

forj =1, ---,n — 1. Then if we set z = 2_"2! a.a, and evaluate:

n-1 n—1
(Az,z) = ) a,.[z a:(Aa; ,ai)] = 0.

i=1 i=1
But this is impossible since Re A > 0 and z is not zero. Re A > 0 implies
Re A* > 0 s0 that det (4%a, , ;) is also not zero. Hence the b,.’s and d,.’s are
uniquely determined by the linear systems (2.18) and (2.19). It follows from
(2.17) that

(AT,. ] an) = (ATn y Tn)
which is not zero since 7, ¢ 0 and Re A > 0. Finally, set
(2.20) Vo = (A7, , a.) 7 n=12 --).

It is an easy matter to verify that the ordered system {y.}, {w;} defined by
(2.16) and (2.20) is A-biorthogonal and that

Sp{ai}'x‘;l = Sp{wi}?=1 = Sp{wi}?MI (n = 17 2) Tty .

Lastly, since {a;} is complete in R(P), we have that

spivs} = R(P).

Remark. Suppose 4 is a densely defined unbounded linear operator. One
can show that T'»(A4) is closed and has a bounded inverse provided PA is closed,
D(AP) and D(A*P) are dense, and Re 4, Re A* = 6 on their respective domains.
Now suppose {¢.}, {w:} is an A-biorthogonal system (¢, € D(4), w; £ D(4%))
satisfying the hypotheses of Theorem 2.3. The S,’s (2.4) remain uniformily
bounded so that the domain of 8 is a closed set. But does this set contain all
of R(P)? As in Theorem 2.2 (i), we have

Tr(A)spiy.} C D(S).
But is Tp(A)sp{¢.} dense in R(P) when sp{y;} is? In general the answer
is no, but the answer is of course affirmative if T5(A4) is bounded (see the proof
of Theorem 2.2 (i1)). This is why the proofs used in [3] are in error when 4 ig
unbounded. An incorrect proof was given for the false assertion that if sp{y.}
is dense in B(P), then T,(4)sp{y.} is also.

One way around this difficulty is to simply assume that T,(4)sp{y.} is
itself dense in R(P) and thereby obtain the inversion formula in the unbounded
case. But this may be a difficult hypothesis to verify because it requires a
knowledge of the range of T'»(4) restricted to a certain given dense set, namely,
spiv:}. However, A-biorthogonal systems can always be constructed so that
this additional hypothesis is satisfied (provided that D(AP) C D(A*P)). Start
with a sequence {6} C R(AP) which is a basis for R(AP) and set a; = A7'8; .
Then build the ¢,’s and w,’s from the a.’s as in the proof of Theorem 2.4.
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Thus the results of [3] arc valid provided the following two additional hypoth-
escs are made: for all z e @ both PA(2) is closed and T'»(A (2))sp{¢:(2)} is dense
in R(P). This latter condition replaces (3.1) of [3]. The other assumptions made
above already hold for the operators considered in [3].

3. The spanning condition. In this section we illustrate the essential char-
acter of the spanning condition (2.12) in obtaining the inversion formula (2.7)
for T»(A). Theorem 2.3 states that the inversion formula gives the solution of
the Wiener-Hopf equation

Ty(A)e =y
for all y e R(P) provided that the bounded lincar operator A satisfics:

3.1 Re A = 3,

and that the ordered system {¢.}, {w.} satisfies:

(3.2) (A¢i, w) = 85 ;5

(3.3) sp{¥:} = R(P);

3.4) sp{¥i}i-1 = splwi}ia (n=1,2--).

In applications we can sometimes produce an A-biorthogonal system for which
(3.1-3.3) hold. The scquences can arise, for example, as solutions to an eigen-
value problem associated with 4 (to get {¢.}) and its adjoint (to get {w,}).
Examples of this are given in [4] for positive A. But the spanning condition (3.4)
will, in general, not hold for such a system. Theorem 2.2 (ii) says that if (3.1-3.3)
hold, the inversion formula gives the Wiener~Hopf inverse on a dense subset
of R{P) regardless of whether or not (3.4) holds. But the following result proves
that the discrepancy between S and T,(4)™' can be quite severe without
condition (3.4).

Theorem 3.1. Let P be an orthogonal projection with infinite dimensional
range and suppose A satisfies (3.1). Then there exists an ordered system satisfying
(3.2, 3.3) and such that:

Sz = Tp(A) 'z for x in a dense subset of R(P);

Sz % Tp(A) 'z Jor x in a dense subset of R(P).
Proof. Since Re A 2 8, T»(A)™" is a bounded lincar operator. Let {«,} be

any orthonormal basis for R(I’) and sct

n

¢, = Z 2—iai ;

i=]
'pn = TI‘(A)EI(#" ;
w, = ?‘nan _ 2n+la"+1 (n = 1’ 2, . -)‘

From these definitions we see that



WIENER-HOPF OPERATORS 115

(A¥: , w) = (Te(A)Y: , )
= (b: ,w;) = & .
Moreover, sp{y;} is densc in R(P) since T»(4)™" is bounded and
spi¢:)ir = splafic,  (m=1,2 -

Therefore, by Theorem 2.2 (ii), Sz = T»(A) 'z for all x belonging to the dense
subset T,(A)sp{v.} of R(P). For any y ¢ R(P), set

k 3

Yo = Z (?/, ai)ai + Z 2*1'“" (k = 17 27 )
=1 i=k+1

Notice that ¥, € R(P) and that y, —» y as k — «. Now fix k and observe that if

1>k, (Y, w:) = 0. Hence y, ¢ D(S). It is not difficult to verify that

;1 W » wdbs = Y — ; 27, y

and therefore that

Tp(A)Sy, = Z Wy , w)di 7 Y
im1

for all k. We conclude that the set of z e D(S) M R(P) for which Sz = Tp(4) "2
forms a dense subsct of R(P). This completes the proof.

Theorem 2.2 (iii) says that the discrepency between 8 and Tp(4)7' in the
preceding result is duc to the fact that sp{w.} isn’t dense in R(P). That
S_p{w,-} #= R(P) is casy to sce since Do, 2 "a, is a non-zero element of R(P)
which is orthogonal to w, for all 7. We could remedy this difficulty quite simply,
not by requiring condition (3.4), but rather the weaker and very reasonable
condition that

3.5) splw:} = R(P).

With this assumption and (3.1-3.3) we know that S and 7,(4)" agree on all
of the densc subset D(S) M R(P) of R(P). But condition (3.5) is still not strong
enough to yicld a viable inversion formula.

Theorem 3.2. Let P be an orthogonal projection with infinite dimensional
range and suppose A satisfies (3.1). Then there exists an ordered system {¢.}, {w:}
satisfying (3.2, 3.3, 3.5) and such that:

Sx = Tp(A) 'z for x in a dense subset of R(P);
Sx is undefined for x in a dense subset of R(P).

Proof. Let {a:} be an orthonormal basis for R(P) and set

n

b, = Z j_Zai ;

iet
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Y = TP(A)“I‘#'A >
w, = "o, — (N + 1Yo n=12 ---).
The ordered system {¢.}, {w.} thus defined satisfies (3.2) and (3.3). Moreover,
sp{w;} is dense in R(P). For if z ¢ R(P) is orthogonal to w, for all n, then
(@, awir) = n’(n 4+ 1)7(z, ).

This says r must equal zero since

lelf* = 3 (e, el < .

Therefore, by Theorem 2.2, Sz = Tp»(4) 'z on the dense subset D(S) N R(P)
of R(P).

We now show that the set of elements in B(P) and in the complement of D(S)
is also dense in R(P). Let « be any element in R(P) and set

k w
T = E (x, aj)a; + Z j—lai k=12 ---).
i=1 i=k+1

Observe that z, ¢ R(P) and that z, — z as k — «. An easy computation reveals
that

é; (2, wi)p; = i (@, a)o; — (0 + DXz, ani)dn .

t=1

Therefore, for k fixed,

Tp(A)Snxk = Z (x,, 5 ai)a,» - (n + l)z(xk )an+l)¢n .

It follows that for » large enough (n > k)

n

Z (@ , )

i=1

HTH (DN 8wl 2 (0 4 1) [l —

2+ 1) — [zl

We conclude that z, ¢ D(8) for all k and this gives the desired result.

In general it is no easy matter to determine the domain of 8. Therefore, if
the inversion formula is to be of practical use, we must insist that the spanning
condition (3.4) as well as (3.1-3.3) hold. We thereby obtain an inversion formula
which is valid everywhere.

4. Complete biorthogonal systems. A pair of sequences {¢,}, {6} from H
is called a biorthogonal system if

(b:, 0,) = bii .

Such a system is said to be complete if one of the sequences is complete, that is,
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if the set of all finite linear combinations of clements from that sequence is
dense in H. A biorthogonal system is called a basis if one of the sequences is a
basis for H, that is, if every clement in H can be expressed uniquely as a linear
combination (perhaps infinite) of elements from that sequence.

Theorem 4.1. If {¢.}, (6.} is a complete biorthogonal system and if there
exists a bounded linear operator B satisfying Re B = § and such that

Sp{B¢i}?=l = Sp{ei}:‘lﬂ (n = 1) 2; )r
then the system is a basis.

Proof. B has a bounded inverse since Re B = 4. Using the Schwarz in-
equality it is casy to verify that Re B™' = 6 ||B}|™>. Now set ¢, = B¢, , w; = 0, ,
and A = B™'. Observe that the operator A and the ordered system {¢,}, {w:}
satisfy the hypotheses of Theorem 2.3 with P equal to the identity. Hence we
have a series expansion for A7

Aﬁlx = Z (x; wi)¢i .

i=1
But since B has a bounded inverse, this becomes

©

X = Z (x’ ez’)¢i
i=1
for all = in H. That this representation is unique follows casily from the biortho-
gonality of {¢.} to {6,}.
Recalling the proof of Theorem 2.3, we sce that the above proof is based on
showing that the finite sums,

Zl (x, 0.)¢: ,
are uniformly bounded in n for cach x in H. This is the uniform boundedness
condition of 8. Banach for the system {¢.}, {8;} to be a basis.

It should be pointed out that a biorthogonal system need not be a basis even
if both sequences in the system are complete. Moreover, there exist biorthogonal
systems in which one sequence is complete while the other is not. Examples of
these remarks are contained in the proofs of Theorems 3.2 and 3.1 respectively
(consider the systems {¢:}, {w;}). These facts are known to hold even in a
Banach space setting [53]. Also, one can show that if a biorthogonal system is
a basis, then both sequences in the system are bases so that every x in H has
the unique expansions:

2= 2 (@ 006 = X (2,60, .

The most obvious ease in which a complete biorthogonal system is a basis
oceurs when ¢, = 6, for all ¢ so that the system reduces to the usual complete



118 P. REEDER

orthonormal sequence. This happens when we take B equal to the identity in
Theorem 4.1. If {¢.] is “close enough’” to a complete orthonormal sequence,
then there exists a sequence {8,} biorthogonal to {¢.} and such that the system
{¢:}, {6} is a basis. There are a number of “near orthogonality” results of this
kind which comprise the so called stability theorems of Paley—-Wiener type.
These results, together with several others which are very abstract, are the only
known sufficient conditions for when a complete biorthogonal system is a basis.
They can all be proved in a Banach space setting [5]. Although a version of
Theorem 4.1 may be stated for Banach spaces, our proof fails to generalize. The
difficulty is that a sequence of projections in a Banach space need not be uni-
formly bounded in norm so that step (2.14) of Theorem 2.3 need not be valid.

Theorem 4.1 can be used to prove the original expansion theorem of Paley
and Wiener for Hilbert spaces [1, p. 100]. The author wishes to thank M. Shinbrot,
for communicating this fact to him.

Corollary 4.2. (Paley-Wiener). Let {a;} be a complete orthonormal sequence
and suppose {p.} is a sequence such that for every finile sequence {a.} of complex
numbers

(4.1) U3 aila; — )P 02 Ja’, 0=<6< 1.

Then there cxists a sequence (8.1 blorthogonal to {¢.} and such that the system
{#.}, 16.} is a basis.

Proof. Asin Riesz—Nagyv {2, p. 209], define an operator K by
Kr = ; (, a)(a; — ¢.),

wherever the series converges. Taking a, = (z, o) for any z in H, (4.1) implies
that Kr is well defined and that ||Kz|] < 6 ||z}]|,0 < ¢ < 1. Hence the operator
T = I — K is bounded and has a bounded inverse. Notice that

Tz = }: (z, ai)d’i ’

so that Ta;, = ¢, . Now define B = (TT*)™" and 0, = B¢, . The system {6},
{#,} is biorthogonal since
(s ’ 01’) = (Tai ’ (TT*)—lTa,-)
= (@, ;) = &; .

Moreover, {¢,;} is complete, for if (z, ¢;) = 0 for all 7, then (r, Ta;)
a;) = 0. Since {a;} is complete, T*x = 0. Therefore, z = 0.

The spanning hypothesis of Theorem 4.1 obviously holds since 8, = B¢, .
Also, Re B = 4. In fact,

Bz, z) = ||T 2| = ||T||”* [l=|{".

The system {¢,}, {6:} is therefore a basis by Theorem 4.1.
If we ignore the existence part of the expansion theorem of Paley and Wiener,

i

(T*z,
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then as remarked earlier, the thecorem is a “ncar orthogonality’ result, (4.1)
being a sufficient condition for a complete biorthogonal system to be a basis.
When viewed in this way, Corollary 4.2 shows that Theorem 4.1 is a natural
generalization of the expansion theorem of Paley and Wiener.

There exist an abundance of complete biorthogonal systems which are not
necessarily ‘“close” to a given complete orthonormal sequence, but which do
satisfy the hypotheses of Theorem 4.1. They are therefore bases.

Theorem 4.3. Let B be any bounded linear operator such that Re B = 8.
There exists a complete biorthogonal system {¢;}, {6.} such that
(42) Sp{B¢i}?=1 = Sp{oi}?=l (n = 1, 2; ) )

Proof. Re B = & implies that B has a bounded inverse and that Re B™' 2
8 ||B||®. By Theorem 2.4 with A = B! and P equal to the identity, we get an
A-biorthogonal system {y,}, {w;} such that {y.} is complete and

(4.3) spivili,

Now set ¢; = B™'y; and 8, = w, and observe that {¢,}, {6} forms a complete
biorthogonal system. Moreover (4.2) is simply a restatement of (4.3).

splodis (0 =1,2 ).

5. Questions. Below are some open questions listed in the order of the section
to which they refer.

§2. Can our results be generalized to unbounded operators without the
agsumption that Tp(A)sp{¢.} is dense in R(P)?

§3. Is the spanning condition (3.4) nccessary to obtain the inversion formula
(2.7) within the smaller class of “analytic” formulas considered in [3]? Can the
spanning condition be replaced by something weaker which will hold for systems
arising from solutions to eigenvalue problems (see [4])?

§4. Can a meaningful condition on a complete biorthogonal system be given
in order that there exist an opcrator B satisfying the hypotheses of Theorem 4.1?
Does such a B exist if the system is a basis? Does Theorem 4.1 generalize to
Banach spaces?
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