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Abstract: The authors propose the use of a 
generalised array manifold for parameterised 
spatial signature estimation in wireless 
communication channels with local scattering. 
The array manihld commonly used for point 
sources is generalised to include linear 
combinations of the nominal array response 
vectors and their derivatives. The motivation 
behind this idea I S  to obtain better estimates of 
the spatial signatures for direction of arrival 
(DOA) based signal waveform estimation. The 
estimators proposed exploit the orthogonality 
between the so-called noise and signal subspaces, 
leading to a separable solution for the derivative 
coefficients. As a result, a search is required for 
the DOAs only. For uniform linear arrays, the 
spatial signatures are shown to be approximately 
Vandermonde vectors with damped modes, and a 
closed-form estimator such as ESPRIT may be 
used in this case. Simulation examples are 
included to compare the signal estimation 
performance obtained using the proposed 
generalised manifold and the conventional array 
manifold. 

1 Introduction 

The use of antenna arrays as a tool for improving cov- 
erage, reducing interference, and increasing capacity in 
wireless communication systems has recently attracted 
significant interest [I]. For the uplink (remote to base) 
portion of the system, signals can be separated at the 
array based on knowledge of their spatial andlor tem- 
poral signatures. The array can also be used on the 
downlink (base to remote) channel to transmit energy 
towards one user and not at another. Such systems can 
reduce radiated power requirements, allow for multiple 
cochannel users, and reduce signal contamination from 
adjacent cells. 
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In this work we study uplink signal separation using 
direction of arrival (DOA) based algorithms for situa- 
tions where the multipath propagation is due to local 
scatterers in the vicinity of the sources. The time dis- 
persion introduced by the multipath propagation is 
assumed to be small in comparison with the reciprocal 
of the signals’ bandwidth. The channel between the 
source and the array may then be modelled as a single 
vector, referred to here as the spatial signature. Even 
small errors in the signatures may cause substantial 
degradation in interference rejection, especially in sce- 
narios with large power differences between the 
sources. 

Fast fading is usually attributed to scattering local to 
the user, and in [2-51 local scattering models have been 
used to derive channel models for flat Rayleigh fading 
that include the spatial dimension. By assuming a spa- 
tial distribution for the multipath components in terms 
of a nominal direction and angular spread it is possible 
to determine the fading correlation between the ele- 
ments of an array. The fading correlation may be used 
to determine the spacing between antennas to get suffi- 
cient spatial diversity [2] and for examining the system 
capacity enhancement with base station antenna arrays 
[5 ] .  Local scattering is not uncommon in many cellular 
radio systems, since the base station antennas are typi- 
cally mounted on a tower away from potential multi- 
path reflectors. 

Traditional DOA estimation techniques rely on the 
fact that the spatial signature is a known function of 
the DOA. To determine the spatial signature it then 
suffices to estimate the DOA. Due to the multipath 
propagation considered here, the spatial signature will 
not belong to the array manifold parameterised by 
DOA alone. If however the scatterers are local to the 
mobile and the base station is some distance away, the 
scattered signals from a given user will be coherent and 
confined to a relatively small angular region. Thus, 
under the assumption of local scattering, use of the 
DOA may still make sense for determining the spatial 
signatures, since they will be close to some vector from 
the conventional planewave manifold. 

The problem of estimating the parameters of the 
angular distribution of multipaths from multiple reali- 
sations of the spatial signature has been addressed in 
[4]. Here, a deterministic approach is taken instead, 
using a generalised array manifold model consisting of 
a linear combination of the nominal steering vector and 
its gradient [6]. For the uplink, the actual realisation of 
the spatial signature is of interest. If the parameters of 
the distribution are determined, the spatial signature 
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still remains to be estimated. For the downlink in a fre- 
quency division duplex (FDD) system, the opposite is 
true. The parameters of the distribution are needed 
since the uplink and downlink channels are uncorre- 
lated when the duplex distance is larger than the coher- 
ence bandwidth. 

In essence, we propose adding degrees of freedom to 
the conventional model. The resulting model is still 
only an approximation, suitable for scenarios with mul- 
tipath propagation from local scatterers. It is not likely 
that the model exactly describes the observed data in a 
multipath environment. In the general case, the devia- 
tion of the spatial signature from the closest array 
manifold vector may be due to many different phenom- 
ena. In the presence of other errors, the dominating 
error source should be compensated for. 

The use of information about the derivative of the 
array manifold is not new. Derivative constraints have 
been used to improve the robustness of linearly con- 
strained minimum variance beamformers (LCMV) 
[7-91. By using derivative constraints, the response of 
the beamformer is flattened near the steered direction. 
As a result, the sensitivity to steering angle errors is 
reduced. Another way to correct for steering errors is 
presented in [lo], where a Taylor expansion of the 
steering vector is used to iteratively tune the beam- 
former. In contrast to the problem studied in this 
paper, these methods assume that the true spatial sig- 
nature belongs to the nominal array manifold. 

The autocalibration methods considered in [l l-131 
assume a parametric perturbation to the array mani- 
fold, and require derivatives of the steering vectors with 
respect to the perturbation parameters. In these papers, 
a maximum a posteriori approach is taken, in which the 
perturbation parameters are assumed to have a known 
a priori gaussian distribution. The local scattering 
model proposed here could also be addressed by such a 
bayesian framework, if the gradient term is viewed as a 
perturbation with some prior probability distribution. 
This would however require knowledge of the statistics 
of the gradient coefficient. As mentioned, a determinis- 
tic approach is instead taken in this paper, where the 
gradient coefficient is regarded as a deterministic 
parameter. 

2 Data model 

A scenario with d mobile sources emitting narrowband 
signals is considered. The scenario is assumed to be 
time invariant during the observation period, and the 
time dispersion introduced by the multipath propaga- 
tion is assumed to be small in comparison with the 
reciprocal of the bandwidth of the emitted signals. The 
signal received by the m element antenna array x(t) is 
therefore assumed to obey the following model: 

d 

x( t )  = x v i s i ( t )  + n(t) = V s ( t )  + n(t) 
2=1  

where 

V = [ v 1  * ' *  Vd], s ( t ) = [ s & )  . * '  S d ( t ) l T  

(2) 
The ith column of V, denoted vi is the spatial signature, 
or channel, associated with the ith source, and sL(t) is 
the transmitted signal. Additive noise is represented by 
n(t). The noise is assumed to be spatially white 
(although this assumption may be relaxed), and inde- 
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pendent of the transmitted signals. Under these 
assumptions, the covariance matrix of the signal 
received by the array is given by 

R = E{x(t)x*((t)} = VSV* + a21 ( 3 )  
where c9 is the noise power and S is the covariance 
matrix of the signals, S = E{s( t ) s*( t ) } .  It is assumed 
that the signals transmitted by each source are nonco- 
herent in the sense that S is full rank. 

We consider the problem of estimating V using a 
parametric model for the spatial signatures. Clearly, if 
the spatial parameterisation is not valid owing to the 
propagation environment, or the array is uncalibrated, 
one must resort to other approaches, for example using 
temporal properties of the signals s(t). 

base station 
array 

Fig. 1 Local scattering 

2. I Local scattering 
Let si(t) be the signal emitted by the ith source. Due to 
multipath propagation, its contribution to the output 
of the array is modelled as a superposition of Ni scat- 
tered signals 

(4) 
k = l  

Here Pzk is the (complex) amplitude of the kth scattered 
signal from the ith source, and a(8) is the m x 1 nomi- 
nal steering vector representing the array response due 
to a plane wave with DOA 8. The quantities 8, and 8, 
+ 8 ,  represent the nominal DOA of the ith signal, and 
the arrival angle of the kth scattered signal, respec- 
tively. The delay associated with the kth scattered 
signal is denoted by zzk. The situation is illustrated in 
Fig. 1. Without loss of generality, assume that the time 
delay associated with the first ray is zero. Assume that 
the time dispersion introduced by the multipath propa- 
gation is small compared with the reciprocal of the 
signal's bandwidth so the time delay may be approxi- 
mated as a phase shift s,(z- zzk) = e-J2@cz%sZ(t), where f, 
is the carrier frequency. Let a,k = /$ke-J2@cc,zik. The con- 
tribution from the ith signal in eqn. 4 may then be 
approximated as 

N, 

k = l  

This agrees with the model in eqn. 1 if vi is defined to 
be 

k = l  
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2.2 Approximating the spatial signature 
Determining the DOAs and amplitudes of all the D = 
Cid,, Ni rays incident on the array is a formidable task 
and is typically not possible since D is very large. 
Instead, we take another approach and approximate 
the spatial signature. The assumption of local scatter- 
ing near each user and a correspondingly small angulcr 
spread means that A; in Fig. 1 is small. The angles t& 
will thus also be relatively small, and a first-order Tay- 
lor expansion of eqn. 6 may be used to approximate vi 

k = l  

where 
Ni 

k=l 

(9) 

and the spatial signature is assumed to be scaled so 
that &ka& = 1. Substituting eqn. 7 into V leads to the 
following compact matrix notation: 

v = A(@,$) = A(8) + D(@)@($) 

A(@) = [a(&), . . f ,a(&)] 

D(8) = [d(Ol), * ' * ? d(8d)l 

@(4) - = diag{h,. . . , 4 d J  

- 8 = [el, 1 . .  ,&IT 

- 4 = [$l> * f 3 4 d I T  

(10) 
where 

(11) 

(12) 
This measurement model is referred to as the general- 
ised array manifold (GAM) model. Both a(@ and the 
gradient d( 0) are assumed to be known (calibrated) 
functions of 0, and the problem addressed in this paper 
is the estimation of the spatial signatures in terms of @ 
and - @ given N observations of the array output. 

2.3 Unique parameter estimates 
Subspace methods are considered for estimating the 
parameters of the approximate GAM model. A natural 
question is then under what conditions unique parame- 
ter estimates may be determined. This may also be 
reformulated as follows. Assume that the GAM model 
is exact, i.e. eqn. IO holds with equality. The question 
is then under what conditions the parameters and @ 
are identifiable from the column span of A(@, @). FG 
this to be the case, the spatial signatures have to be 
rank-d unambiguous, i.e. no linear combination of d 
spatial signatures can produce another spatial signa- 
ture. This holds if an m x (d + l) matrix A(& @) has 
full rank for any cclllection of distinct parameters 01, 
..., Od+, and arbitrary @,, ..., $d+l. In [14], sufficient con- 
ditions are derived for the GAM model. Consider the 

rank for all e with dlistinct elements, then, except for a 
set of zero measure, the parameters can be uniquely 
determined if d 5 YIZ - 2. However, this discussion is 
concerned with determining the parameters from the 

MZ x 2(d + 1) matrix [A(&) D(@] If this matrix has full 
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column span of A(@, @), which is the case for subspace 
based methods. For-other estimation methods and 
models, other conditions may arise. Another way to 
handle the uniqueness problem may be to use an a 
priori distribution for the coefficients of the Taylor 
expansion similar to [12]. As a final remark, in the der- 
ivation of the model, higher-order terms were 
neglected, and the DOAs determined with the GAM 
model may therefore differ from the true underlying 
nominal DOAs for larger spreads. This is also illus- 
trated by a numerical example in Section 6 .  However, 
the model is primarily intended as a measurement 
model for spatial signatures, and the result gives an 
upper bound on the number of signals that may be 
handled. 

2.4 Spatial reference point 
It has been observed that the choice of the spatial 
phase reference point affects the performance of line- 
arly constrained minimum variance (LCMV) beam- 
formers using derivative constraints [8, 91. In what 
follows, it is shown that this choice does not affect the 
proposed model. Assume that the steering vector a(@) 
has the form 

1 

where g,(O) is the complex response of the ith element 
and q(0) represents the time delay relative to some spa- 
tial reference point. Suppose that another reference 
point is chosen and let a(O) represent the corresponding 
response vector. As pointed out in [9], the two steering 
vectors are related through 

a(@) = a ( ~ ) e - - J 2 ~ f ~ * T ( Q )  (14) 
where A@) represents the time delay associated with 
the propagation between the two different reference 
points. The derivative is then given by 

Using some simple algebra it can be shown that any 
linear combination of the form pla(0) + pzd(0) may be 
written as 

/71.(0) + p 2 d ( B )  = &.(e) + p 2 d ( B )  
provided that 

(15) 
Thus, the range of the measurement model is not 
affected by the choice of spatial reference point since 
there exists a one-to-one mapping between pt and pi. 

3 Parameterised spatial signature estimation 

In this Section two algorithms for estimating 8 and 4 
are proposed that take advantage of the special struG 
ture of the GAM model in eqn. 10. The basic idea 
behind the algorithms comes from similar GAMS that 
arise in situations involving diversely polarised antenna 

53 

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on August 17, 2009 at 19:47 from IEEE Xplore.  Restrictions apply. 



arrays [14-161. The key advantage is that a search is 
required only for the DOA parameters; the gradient 
coefficients are separable and solved for explicitly given 
the resulting DOA estimates. 

The algorithms exploit the orthogonality between the 
noise subspace and the signal subspace. The eigenvec- 
tors associated with the m - d smallest eigenvalues of 
the sample covariance matrix of the N observations are 
used as an estimated basis of the noise subspace. The 
collection of estimated noise subspace eigenvectors is 
denoted n. 

3. I MUSIC-based approach 
In the standard MUSIC algorithm [16], the DOAs are 
estimated bv searching one bv one for values of 6 that 
make a(@) nearly ortYhogon2 to n. The 
orthogonality for MUSIC is defined to be 

and the d smallest minima of V,,A6) are 

measure of 

(16) 

taken to be .._ - ~ I 

the estimates of the DOAs. With the GAM model, a(6) 
must be replaced with 

a(0) + 4d(8) = A(')$ (17) 
where A(6) = [a(@ d(6)] and 7 = [1 $IT. For this case 
the MUSIC cost function becomes 

The MUSIC criterion is seen to be a ratio of quadratic 
forms in i j ,  and thus minimising VM,XO, $) with respect 
to q5 is equivalent to finding, as a function of 6, the fol- 
lowing minimum generalised eigenvalue and eigenvec- 
tor: 

A*(0)EnE;A(O)zmin = X,inA*(0)A(e)z,i, (19) 
As proposed in [16], the DOA estimates can then be 
found by viewing A,, as a function of 9, and searching 
for its minima. The gradient coefficient q i  can be peter- 
mined from the eigenvector associated with Amin(Oi). 

3.2 Noise subspace fitting 
As an alternative, consider the noise subspace fitting 
(NSF) approach outlined in [17, 181. Under the GAM 
model, the NSF algorithm estimates 6 and $ as the 
minimising arguments of the following cost function: 

VNSF (8, $1 =   race(^* (8, $)EnE:~(8, $ 1 ~ )  

where W = W" > 0 is a d x d weighting matrix. Using 
arguments similar to those in [14], the cost function 
may be written as 

(20) 

VNSF(@, $1 = @*M(!i)@ (21 1 
where 

L L J  

and e is a column vector composed of d ones and 
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Here, 0 denotes the element-by-element product. The 
cost function may be rewritten as 

VNSF = (4  - + M , - , l M d a e ) * ~ d d ( $  + ~ ; j ~ d . e )  

From this it follows that the estimate of q5 is separable 
from that of the DOAs, and is given by 

+ eT(Muu - MudM,-,lMdab (24) 

- $ =  - M ; ~ M ~ ~ ~  (25) 

- 

The concentrated cost function is then given by 

VNSF(@) = eT(Muu - MadMylMdu)e (26 )  
Thus, VNS&3) is the sum of the elements of the Schur 
complement of M(8). The algorithm is implemented as 
follows: 
- Estimate 8 as the argument that minimises VNsF(@) 
in eqn. 26. 
- Solve for - 6 by using 8 in eqn. 25. 
Recall that the GAM model was derived as an approx- 
imation to the spatial signatures of the sources. If, 
however, the model of eqn. 10 is valid, the weighting 
matrix W can be chosen so that the NSF method yields 
asymptotically efficient parameter estimates (i.e. the 
asymptotic variance of the estimates attains the 
Cram&-Rao bound). This follows directly from the 
results of [14, 191. The optimal W is parameter depend- 
ent, so the NSF approach must be preceded by a step 
where e and I$ arc estimated consistently (e.g. using the 
MUSIC approach described earlier). It is well known 
that using a consistent estimate of the optimal W has 
no effect on the asymptotic properties of the estimates. 

As a final comment on the approach, for small angu- 
lar spreads it may be reasonable to neglect the scatter- 
ing when estimating the DOAs. The spatial signature 
may then be approximated by, using the estimated 
DOAs in eqn. 25 to solve for 4. Simulations indicate 
that such an approach performswell for small angular 
spreads. 

4 Uniform linear arrays 

The special structure of uniform linear arrays (ULAs) 
with omnidirectional elements may be utilised to obtain 
a 'sub-optimal' but computationally efficient solution. 
For a ULA with m elements separated by 6 wave- 
lengths, the array response vector and its derivative are 
given by 

1 ,j2.ir&sine l 1  

= I e j 2 ~ r b ( m - l )  sin 0 1 
r 0 

where the first sensor is used as spatial phase reference 
point. Row (k + 1) of eqn. 7 may be approximated as 

( a ( Q i ) + q & d ( Q i ) ) k + I  = ej2.lrbksinoi (1+4ij2ndk cos0i) 
e j 2 ~ 6 k  sin 0i j & , Z ~ & k  cos 0% 

- e 

(28) 
In eqn. 28, the approximation is based on the fact that 
for small apertures and small angular spreads, 6k and 
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14J are small, resulting in l4j2n6k cos 0,l << 1. Using 
eqn. 28, 

v, N vl:w,) = [ 1 (29) 

e3 (m- lbJ% 
where 

w, = 2nb(sin8, + #L cos8,) (30) 
Note that and w, are complex scalars. If the angular 
spread is zero, 4, = 0, then eqn. 29 reduces to the con- 
ventional plane wave model: v(q) = a(6J as defined by 
eqn. 27. The condition that the elements be omnidirec- 
tional may be relaxed to requiring identical elements 
with approximately flat responses over the angular sec- 
tor of interest. Different spatial reference points in 
eqn. 27 will lead to different scalings of the spatial sig- 
nature in eqn. 29. 

This suggests the use of a Vandermonde matrix, 
defined as V(@) = [v(q) ... v(wd)], as measurement 
model for the spatial signatures. As outlined in [20], the 
ESPRIT algorithm [21] may be used to estimate the 
damped exponentials of this Vandermonde model. This 
may be viewed as an approximation of the GAM 
model described in the previous Section, applicable to 
ULAs. Whereas the GAM model uses three real 
parameters, this Vandermonde model uses only two 
real parameters, namely the real and imaginary parts of 
w,. Consequently, we require d 5 m - 1 for the parame- 
ters {U,}  to be uniquely determined. Note that this 
uniqueness result differs from the result in Section 2.3, 
as a more restricted Vandermonde model is assumed. 

5 Minimum variance beamforming 

The array manifold dlerivative is commonly used in lin- 
early constrained minimum variance (LCMV) beam- 
formers to make them more robust to steering angle 
errors [7-91. However, as explained subsequently, this is 
not equivalent to the approach taken herein. A weight 
vector wi is used to form a linear estimate of the ith sig- 
nal as s^,(t) = w:x(t) subject to certain constraints. The 
vector wi is chosen to minimise the output power 

(31) wi = argminElw*x(t)12 = argminw*Rw 
W W 

subject to the linear constraints 

The most commonly used constraint is a*(Oi)wi = 1, 
which gives unit power in the look direction 0,. The 
resulting beamformer., also known as the minimum var- 
iance distortionless response (MVDR) beamformer, is 
sensitive to steering errors in 0,. To flatten the response 
in the angular domain and make the beamformer more 
robust to steering errors, a derivative constraint such as 
d*(O,)wi = 0 may be used. For this case, the weight vec- 
tor for the ith signal is given by 

c*wi = f ( 3 2 )  

wi = Rp1C(C*Rp1C)- l f  

C =  [a(Oi) d(8;)l f = [ l  0IT (33 )  
As noted in [S, 91, the resulting beam pattern depends 
on the location of th,e phase reference, a property that 
is clearly not desirable. This motivated the work in [9], 
which considered derivatives of the output power F(0) 
= Iw;a(0,)i)12 to avoid constraining the phase of the 
beamformer. However, for the scenarios studied in the 
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following Section, this phase-independent method per- 
formed worse and its results are therefore not included. 
The poor performance may be explained by the fact 
that the phase-independent approach only uses a con- 
straint on the real part of w;d(Bi). As a result, part of 
the gradient term is not blocked and this causes the 
performance degradation. 

The LCMV beamformer is constrained to block the 
gradient term of the spatial signature, whereas the pro- 
posed GAM model aims at coherently combining it 
with the nominal steering vector. In the local scattering 
scenarios studied below, the GAM model approach 
performs better than the derivative constrained LCMV 
beamformer. 

6 Numerical examples 

To make a meaningful performance analysis of the 
proposed GAM model, a statistical model for the spa- 
tial signatures should be used. However, such an analy- 
sis is complicated by the dependence between the 
spatial signatures and their estimates. Instead, we 
investigate the performance through simulations. In the 
simulations, the spatial signatures are generated by 
drawing 30 local scatterers with random phase from a 
uniform angular distribution of width 24. This agrees 
with the model of eqn. 6. The signatures are then nor- 
malised so that v,*v, = m. 

For a ULA, three different measurement models may 
be used, the conventional model, A(@), the Vauder- 
monde model V(@) described in Section 4, and the 
GAM model A(@, 4). In the simulations, the DOAs of 
the conventional model are estimated with the standard 
MUSIC algorithm, and the damped modes of the Van- 
dermonde model are estimated with ESPRIT. The 
parameters of the GAM model are estimated with both 
the MUSIC approach of Section 3.1 and with the NSF 
approach of Section 3.2. 

With estimates of the spatial signatures, 9, several 
different linear signal waveform estimators may be con- 
structed [22]. In the first two examples, the so-called 
deterministic signal copy vectors are used. The esti- 
mated signals are given as 

S(t)  = (V*V)-1V*x(t) (34) 
In contrast with the LCMV beamformer, this method 
uses the estimates of the spatial signatures of all sig- 
nals. 

In the first example, a ULA with six elements sepa- 
rated by half a wavelength is used. In each trial 100 
snapshots are collected. The signals are estimated and 
the signal to interference plus noise ratio (SINR) is 
averaged over 2000 trials. The standard ESPRIT algo- 
rithm is used for determining initial estimates for 
MUSIC and NSF. Two sources with 20 and 40dB 
signal to noise ratio (SNR) are present. The angular 
width of both sources as seen from the array is 2A = 
4". In Fig. 2, the average SINR for the weaker esti- 
mated signal is shown for different angular separations. 

In the second example, a ULA with eight elements is 
used and three well separated signals with nominal 
DOAs -30, 0 and 30" and SNR 30, 10 and 30dB are 
present. For each trial, 500 snapshots are collected, and 
the results are averaged over 2000 trials In Fig. 3, the 
average SINR in the estimated weaker signal is shown 
for different angular spreads. 

The advantage of using the GAM model varies with 
the scenario. More interestingly, it varies with the 
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actual angles of the signals. This may be explained as 
follows. If the nominal DOAs of the signals are such 
that the inner product of the correspbnding steering 
vectors is large, the signal waveform estimator will cre- 
ate a wide zero in the angular domain. If the steering 
vectors from the nominal array manifold are nearly 
orthogonal, the waveform estimator will essentially be 
a standard beamformer matched to the steering vector. 
Due to the angular spreading, interference from other 
sources will then leak through. Thus, the largest per- 
formance gains will occur for scenarios with DOAs giv- 
ing nearly orthogonal steering vectors. The simulations 
also indicate that the NSF algorithm performs slightly 
worse than the MUSIC approach. This may be 
explained by the approximate nature of the model 
(eqn. 7). 
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We also consider using the GAM model together 
with LCMV beamformers. With DOAs estimated with 
the conventional model and the standard MYSIC algo- 
rithm, the MVDR beamformer, wi = &la(@,>, and the 
LCMV beamformer with a first order derivative con- 
straint as given by eqn. 33 are constructed. The phase 
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reference is chosen to coincide with the centre of the 
array. Finally, an MVDR beamformer w, = R-l(a(Oj) + 

with Bi and $ j  estimated using the GAM model 
and MUSIC is also considered. In each trial, 500 snap- 
shots are collected for the scenario considered in the 
second example. In Fig. 4 the average SINR of the 
weaker signal estimate is shown for different angular 
spreads. This example demonstrates that the proposed 
GAM model also offers a significant performance gain 
when used in the form of the LCMV solution. 
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For the last example, the root mean square error 
(RMSE) of the DOA estimate of the weaker signal is 
plotted in Fig. 5 for the different models and estima- 
tors. Note that the approximate nature of the GAM 
model leads to higher RMSE for larger spreads also 
when the GAM model is used. Our experience is that 
the standard ESPRIT algorithm in general gives lower 
RMSE as compared to the conventional MUSIC algo- 
rithm. The estimates calculated with the NSF approach 
have higher RMSE than the estimates calculated with 
the MUSIC approach for the GAM model, owing to 
the approximate nature of the model. 
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7 Summary 

For channels with local scattering we have proposed 
the use of a generalised array manifold (GAM) model 
for DOA-based spatial signature estimation and signal 
waveform estimation. Two procedures for estimating 
the parameterised spatial signatures were proposed, a 
MUSIC-like estimator and one based on noise sub- 
space fitting. In addiiion, a computationally efficient 
solution based on ESPRIT was proposed for ULAs. 
To demonstrate the advantages of the proposed model, 
numerical examples of signal waveform estimation in 
the presence of strong interference were given. They 
indicate a significant performance gain over using the 
conventional array manifold. One drawback of the 
method is that the array needs to be well calibrated. In 
addition to the conventional manifold, the gradient of 
the steering vectors must be known as well. 
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