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Abstract

Factor analysis and related models for probabilistic matrix factorisation are of

central importance to the unsupervised analysis of data, with a colourful history

more than a century long. Probabilistic models for matrix factorisation allow us to

explore the underlying structure in data, and have relevance in a vast number of

application areas including collaborative filtering, source separation, missing data

imputation, gene expression analysis, information retrieval, computational finance

and computer vision, amongst others. This thesis develops generalisations of matrix

factorisation models that advance our understanding and enhance the applicability

of this important class of models.

The generalisation of models for matrix factorisation focuses on three concerns:

widening the applicability of latent variable models to the diverse types of data that

are currently available; considering alternative structural forms in the underlying

representations that are inferred; and including higher order data structures into the

matrix factorisation framework. These three issues reflect the reality of modern data

analysis and we develop new models that allow for a principled exploration and use

of data in these settings. We place emphasis on Bayesian approaches to learning and

the advantages that come with the Bayesian methodology. Our port of departure

is a generalisation of latent variable models to members of the exponential family

of distributions. This generalisation allows for the analysis of data that may be

real-valued, binary, counts, non-negative or a heterogeneous set of these data types.

The model unifies various existing models and constructs for unsupervised settings,

the complementary framework to the generalised linear models in regression.

Moving to structural considerations, we develop Bayesian methods for learn-

ing sparse latent representations. We define ideas of weakly and strongly sparse

vectors and investigate the classes of prior distributions that give rise to these

forms of sparsity, namely the scale-mixture of Gaussians and the spike-and-slab

distribution. Based on these sparsity favouring priors, we develop and compare

methods for sparse matrix factorisation and present the first comparison of these

sparse learning approaches. As a second structural consideration, we develop

models with the ability to generate correlated binary vectors. Moment-matching

is used to allow binary data with specified correlation to be generated, based on

dichotomisation of the Gaussian distribution. We then develop a novel and simple

method for binary PCA based on Gaussian dichotomisation. The third generalisation

considers the extension of matrix factorisation models to multi-dimensional arrays

of data that are increasingly prevalent. We develop the first Bayesian model for

non-negative tensor factorisation and explore the relationship between this model

and the previously described models for matrix factorisation.
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Notes on Notation

Symbol Description

X Generally, a P -way tensor of dimensions M1 × . . .×MP .

X A matrix, usually considered to have dimensions D ×N .

xn A column vector, being the nth column of the matrix X.

x Scalar variable.

xij Element i,j of the matrix X.

Ω\Ωj All elements of the set Ω excluding the jth item.

I(x > 0) The indicator function that x > 0.

Ep(x) [x] Expectation of random variable x under the distribution p(x).

xi⊥⊥xj |θ Conditional independence between xi and xj given θ.

Distribution

Uniform U(x ∈ R|[a, b]) = 1
b−a for a < x < b

Gaussian N (x ∈ R
D|µ,Σ) = (2π)−

D
2 |Σ|−

1
2 exp

(
−1

2(x− µ)⊤Σ−1(x− µ)
)

Gamma G(x ∈ R
+|α, β) = βα

Γ(α)x
α−1 exp(−βx)

Bernoulli B(x ∈ {0, 1}|π) = πx(1− π)(1−x)

Beta β(π ∈ [0, 1]|α, γ) = Γ(α+γ)
Γ(α)Γ(γ)π

(α−1)(1− π)(γ−1)

Poisson P(x ∈ N|λ) = 1
x! exp(−λ)λx

Exponential E(x ∈ R
+|λ) = λ exp(−λx)

Laplace L(x ∈ R|λ) = 1
2λ exp(−λ|x|)

Canonical Expo-

nential Family

Expon (x|η) = h(x) exp
(
S(x)⊤η −A(η)

)

Conjugate Expo-

nential Family

Conj (η|λ, ν) = exp
(
λ⊤η − νA(η)− f(λ, ν)

)

xii
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Chapter 1

Latent Variable Models and

Probabilistic Inference

Matrix factorisation models are some of the most popular models in current statistical

practice. The name stems from the intuition in the use of this broad class of models:

to learn the set of factors that underlie data and the phenomena from which the data

was obtained. Statistically, these underlying factors are represented by latent or hid-

den variables, variables whose realisations are not observed directly but must rather be

inferred given other manifest variables, whose realisations are observed. Models with

latent variables provide a rich tool-kit with which to explore many problems: study-

ing the underlying behaviour in biological systems, surveying the themes embedded

in document archives, unpacking customer shopping behaviours or removing noise

in experimental data; and are indispensable in the specification of generative descrip-

tions of data. As a result, we will often refer to matrix factorisation models as latent

variable models. In this thesis, we will develop new latent variable models that ad-

vance our current understanding and usage of this important class of models. This

introductory chapter motivates the general use of latent variables in the analysis of

real data along with the statistical tools that will be used for inference. The primary

objective here is to enframe the development of latent variable models in later chap-

ters and to highlight the place and importance of the work to be developed in the

general study of statistical models with latent variables.

1.1 The Ubiquitous Latent Variable

Models with latent variables hold a central role in in the analysis of data in a diverse

set of research areas spanning machine learning, statistics, economics, psychology,

computational biology, geography and political science. The omnipresence of latent

variables is now widely recognised, though this may be obscured in some settings
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where latent variables exist under a variety of alternative names, including random

effects, common factors and latent traits or classes. What distinguishes latent

variables from model parameters is that for every observation xn ∈ R
D, there is

a corresponding latent variable vn ∈ R
K , for the nth observation. Therefore, the

number of latent variables grows with the size of the data, whereas the number

of parameters in a model is usually fixed irrespective of the data size. The latent

variables provide an underlying representation of the data and low dimensional

representations are obtained if the dimensionality of the latent variables is less than

that of the observed data, K < D. If K > D then the latent representation is referred

to as over-complete.

The latent variable models considered in this thesis encompass at least four

broad motivations for the use of latent variables:

Finding ‘true’ values. In many data analysis problems, we assume that a true value

for noisy measurements exists and consider the statistical problem of finding

this true value. A data point xn for the nth observation is generated as:

xn = vn + ǫn,

where vn is a latent variable that is the true value of the signal and ǫn is the

measurement error. It is this motivation that is often used for the popular

method of principal components analysis (PCA) (Joliffe, 2002). In PCA, the

true measurement is assumed to be a low dimensional embedding that lies in

a subspace. PCA is an important foundational model of concern in this thesis,

and will be described in more detail in chapter 2.

Hypothetical explanations of data. Latent variables can be considered to represent

hypothetical factors underlying each of the observed data points. Here, we

consider the observed data to be indirect indicators of meaningful latent fac-

tors, such as factors of ‘self-esteem’ or ‘positive preference’ in psychological

studies, or ‘political impact’ in political science. This is important since it is the

motivation for the use of many statistical models with latent variables and their

use in exploratory data analysis. Chapters 2 and 3 look at applications of this

type.

Learning flexible distributions. Latent variables can be used to generate multivari-

ate distributions with a particular dependence structure. One such situation

is the analysis of count based data with an excessive number of zero-entries.

Such a situation can arise in the analysis of manufacturing defects. In a prop-

erly calibrated system, there are no defects in the product manufactured – a

defect-free mode. In a miscalibrated system, the number of defects is subject

to random fluctuations – a defect-prone mode. Modelling in this setting uses

a zero-inflated Poisson distribution (Lambert, 1992) to account for the higher
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Figure 1.1: Diagrammatic thesis outline showing the focus of each of the chap-
ters in the context of their contribution to modelling with latent variables.

number of zero defects, since the system is most often in the defect-free mode.

A latent variable is introduced to indicate membership to the defect-free or

defect-prone mode, and allows a flexible distribution to be learnt, a task which

cannot be achieved using the standard Poisson distribution. The use of latent

variables for learning flexible distributions akin to this situation is discussed in

chapter 3.

Studying thresholding effects. Latent variables are also useful for the analysis of

coarsened variables. It is not uncommon for a continuous variables vn to be

dichotomised or thresholded, resulting in an indicator response such that xn =

I(vn > 0), where the latent variable vn is seen as the propensity to be in the

category indicated by xn = 1. The use of latent variables in exactly this manner

will be discussed in chapter 4.

Newer types of data are generated each day from a wide range of technologies such as

high throughput genome sequencing, blog entries and posts using social networking

media, customer purchasing decisions at supermarkets involving detailed purchas-

ing histories, new measurement systems in hospitals and manufacturing facilities, or

traffic patterns in a city. With this new data comes the need for an advancement of

available models, a need for increasing accuracy and sophistication to provide com-

petitive advantage, and a need to understand the complex phenomena that underlie

these modern systems. This thesis is motivated by these needs, to advance latent

variable models to consider: newer kinds of data types that are prevalent, newer

kinds of structure underlying the observed data and newer data structures in which

the data may be stored. We will expand upon this triad of concerns, figure 1.1, in

each of the ensuing chapters, where new models will be developed for these analysis
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vn

xn

N

θk

K

υλ'

Figure 1.2: Graphical model
showing the form of a general la-
tent variable model.

Latent Variable Model

Gaussian Factor analysis/PCA
Multinomial Gaussian mixture model
Dirichlet Partial Membership model
Laplace Sparse latent feature model

Table 1.1: Models obtained using the
generic latent variable model structure un-
der differing distributional assumptions
for the latent variables.

problems. We will provide a succinct and intuitive understanding of the models and

learning tools used and will describe how these new models fit into the wider context

of modelling with latent variables.

1.2 Models for Matrix Factorisation

We will use the term latent variable model to refer to any model that can be

described by the generic graphical model of figure 1.2. The plate notation represents

replication of variables. For this class of models, the observed data X consists of N

observations xn, which are D-dimensional vectors. The observed data X is assumed

to be factorised into a set of latent factors V and factor loadings Θ. The set of latent

factors or underlying representation is given by the latent variables vn ∈ R
K , with

K < D and the set of all factors is the matrix V. The parameters θk are referred to

as factor loadings and the set of loadings is represented by the matrix Θ. We will

describe specific distributional assumptions for random variables in the graphical

model in the subsequent chapters.

Importantly, latent variable models of this form are models for matrix factorisa-

tion, since the likelihood p(X|V,Θ) depends only on the product of the matrix

factors Π = ΘV. This is conceptually simple while being a very flexible modelling

approach for use in a wide range of tasks.

Consider a Gaussian noise model of the form: xn = Θvn + ǫ, ǫ ∼ N (0,Ψ).

Given this specification, the choice of prior distribution for the latent variables vn

in figure 1.2, spans a broad class of models in popular use. Table 1.1 lists various

distributional assumptions for the latent variables and the corresponding model that

is then obtained, showing the generality of the latent variable model construction.

Generalised latent variable modelling is thus the study of various aspects of this

generality. For the remainder of this chapter, we will describe the principles used in
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constructing models for probabilistic matrix factorisation and latent variable models.

We summarise the important properties of the exponential family of distributions,

and review aspects of Bayesian inference and posterior computation using Markov

chain Monte Carlo methods. We conclude this chapter with an outline of the

remaining chapters and the key contributions made in each.

1.3 The Exponential Family of Distributions

The exponential family is an important family of distributions that emphasises the

shared properties of many standard distributions, including the Binomial, Poisson,

Gamma, Beta, Multinomial and the Gaussian distributions. The exponential family of

distributions allows for a singular discussion of the inferential properties associated

with members of the family, and forms the basis of an important class of models

known as generalised linear models. In this section we will review the aspects of the

exponential family of distributions relevant for our discussion.

1.3.1 The one-parameter exponential family

A one-parameter exponential family is a parameterised family of density functions

that can be written in the following form:

p(x|θ) = h(x) exp (η(θ)S(x)−B(θ)) , (1.1)

for x ∈ R
d and real-valued functions h, η,B, which are not unique. The space of

parameters θ ∈ Θ for which B(θ) is defined is referred to as the mean parameter

space. It is often more useful to index the model by η rather than θ, giving rise to the

canonical one-parameter exponential family:

q(x|η) = h(x) exp (ηS(x)−A(η)) (1.2)

A(η) = ln

∫
h(x) exp(ηS(x))dx, (1.3)

where η is refereed to as the natural parameter of the distribution and S(x) as the

sufficient statistics. A(η) is the log-partition or cumulant function, which must be finite

and ensures that q(x) is normalised. h(x) is not of particular interest, but reflects the

underlying measure with respect to which q(x|η) is a density. The function η(θ) is

referred to as the link function, since it is a function from the mean parameters to

the natural parameters. The space Ω, which contains all η such that A(η) is finite, is

referred to as the natural parameter space. The set Ω is a convex set with the functions

A(η) being convex functions and is of importance for inference with such distribu-

tions (as will be discussed in section 2.2.3). Table 1.2 provides a useful listing of the

exponential family forms for several well-known distributions.
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Table 1.2: Several well known exponential families listing their log-partition
functions A(η), conjugate dual functions A∗(θ), corresponding Bregman diver-
gence B(x‖θ) and canonical link functions η(θ).

Family A(η) A∗(θ) BA∗(x‖θ) η(θ)

Bernoulli − log(1 + exp(η)) θln θ−(1−θ) ln(1−θ) ln(1 + exp(x∗θ))
x∗ = 2x− 1

ln
(

θ
1−θ

)

Exponential − log(−η) θ ln θ − θ x ln
(
x
θ

)
− (x− θ) θ

Poisson exp(η) −(1 + ln θ) x
θ
− ln

(
x
θ

)
− 1 ln(θ)

Multinomial ln
(
1+
∑k−1

i=1 exp(ηi)
) ∑k

j=1 θj ln
(

θj
N

) ∑k

j=1 xj ln
(

xj

θj

)
ln
(

θj

1−
∑k−1

i=1
θi

)

Gaussian (loca-
tion family)

1
2σ2 η

2 1
2σ2 θ

2 (x−θ)2

2σ2 θ

Example 1.1: The Bernoulli Family

The Bernoulli distribution is a one-parameter exponential family, which can

seen by rewriting the density function.

p(x|θ) = θx(1− θ)1−x = exp

{
log

(
θ

1− θ

)
x+ log(1− θ)

}
, (1.4)

where the approach taken is to rewrite the density as the exponential of the

logarithm of the original distribution and rearranging to obtain the required

form. This is an exponential family distribution employing the logit link

function:

k = 1, η(θ) = log
(

θ
1−θ

)
, S(x) = x, h(x) = 1.

B(θ) = − log(1− θ), or A(η) = − log(1 + exp(η)) (in canonical form).

1.3.2 The k-parameter exponential family

One-parameter exponential families are naturally indexed by a one-dimensional real

parameter η. Common one parameter distributions are the Bernoulli and the Pois-

son. Other distributions admit k-parameter exponential families, which is the param-

eterised collection of density functions of the form:

p(x|θ) = h(x) exp




k∑

j=1

ηj(θ)Sj(x)−B(θ)


 , (1.5)

for observed data x ∈ R
d, natural parameter vector η(θ) = [η1, . . . , ηk]

⊤, and suf-

ficient statistics S(x) = [S1(x), . . . , Sk(x)]
⊤, with S1, . . . , Sk on R

d. This can be ex-

pressed in the canonical form as:

q(x|η) = h(x) exp
(
S(x)⊤η −A(η)

)
. (1.6)
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We will use the shorthand Expon (x|η) to refer to the exponential family of distribu-

tions given by equation (1.6).

Example 1.2: The Gaussian Family

The standard Gaussian distribution p(x|θ) = N (x|µ, σ2), may be rewritten as:

p(x|θ) = exp

{
µ

σ2
x− x2

2σ2
− 1

2

(
µ2

σ2
+ ln(2πσ2)

)}
. (1.7)

This corresponds to a two-parameter exponential family with:

θ1 = µ, θ2 = σ2

η1(θ) =
µ

σ2
, η2(θ) = −

1

2σ2

S1(x) = x, S2(x) = x2

B(θ) = −1

2

(
µ2

σ2
+ ln(2πσ2)

)
, A(η) = −1

2

(
η21
2η2

+ ln

(
π

η2

))
.

1.3.3 Conjugate Families of Prior Distributions

Distributions that are members of the exponential family also have natural conjugate

prior distributions. By conjugate we mean that for a given probability distribution

p(x|θ), we seek a prior p(θ) such that the posterior distribution has the same func-

tional form as the prior. For a k-parameter exponential family distribution p(x|θ), the

conjugate distribution on θ is given by the (k + 1)-parameter exponential family:

p(θ) = exp




k∑

j=1

ηj(θ)λj − λk+1B(θ)− f(λ)


 .

This is an exponential family with sufficient statistics given by {ηj(θ),−B(θ)} and

natural parameters λ. It will be convenient to use the canonical form, representing

the (k + 1)th parameter as ν for clarity:

q(λ, ν) = exp




k∑

j=1

ηjλj − νA(η)− f(λ, ν)


 . (1.8)

We will use the shorthand Conj (λ, ν) for the conjugate exponential family given by

equation (1.8).
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Example 1.3: The Beta Prior

The Beta distribution is the conjugate distribution to the Bernoulli distribution

described in example 1.1. The density function can be written as:

p(θ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θ(a−1)(1− θ)(b−1)

ln p(θ|a, b) = ln

(
Γ(a+ b)

Γ(a)Γ(b)

)
+ (a− 1) ln θ − (b− 1) ln

(
1

1− θ

)
, (1.9)

which corresponds to the (k + 1)-parameter exponential family with:

(λ, ν) = {(a− 1), (b− 1)}, η(θ) = ln θ, f(λ, ν) = ln

(
Γ(a+ b)

Γ(a)Γ(b)

)

B(θ) = − log(1− θ), or A(η) = − log(1 + exp(η)) (in canonical form).

Example 1.4: The Conjugate Beta-Bernoulli Model

Consider the simple conjugate Beta-Bernoulli model:

zn ∼
∏

k

B(znk|πk) =
∏

k

πznk
k (1− πk)(1−znk) (1.10)

πk ∼ β(πk|α, γ) =
Γ(α+ γ)

Γ(α)Γ(γ)
π
(α−1)
k (1− πk)(γ−1), (1.11)

where B(znk|πk) is the Bernoulli distribution with probability πk and β(πk|α, γ)
is the Beta distribution with shape α and scale γ. The zn are independent given

π, with n = 1, . . . , N . Due to conjugacy, the posterior distribution for πk is a

Beta distribution and is:

p(πk|z) = β(πk|ᾱ, γ̄) (1.12)

ᾱ = α+
∑

n

znk γ̄ = γ +N −
∑

n

znk. (1.13)

1.3.4 Exponential Families and Bregman Divergences

The Bregaman divergence is a generalised distance measure that is closely related to

any discussion of Exponential family distributions, since it can be shown that their

exists a unique Bregman divergence corresponding to every regular exponential fam-

ily (Bregman, 1967; Azoury and Warmuth, 2001; Banerjee et al., 2005). The Bregman
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Bφ(x, y)= φ(x)− φ(y)− (x− y)Tφ(y)

y x

φ(z)= 1
2
z
T
z

Bφ(x,y)=
1
2

x−y
2

Figure 1.3: Illustration of the Bregman distance between points x and y, with a
quadratic function φ, which corresponds to the Euclidean distance.

divergence between x, y, for a differentiable and strictly convex function φ, is:

Bφ(x, y) = φ(x)− φ(y)−∇φ(y)(x− y), (1.14)

where ∇φ(y) represents the gradient of φ evaluated at y. Intuitively, the Bregman

divergence measures the convexity of the function φ. The divergence measures the

increase in φ(x) over φ(y) above linear growth given by the slope ∇φ(y). This is

shown diagrammatically in figure 1.3 considering a quadratic function, in which

case the Bregman divergence is equivalent to the Euclidean distance. In general,

every Bregman divergence is non-negative and is equal to zero if and only if its two

arguments are equal. Popular distance measures such as the Euclidean distance,

logistic loss, Itakura-Saito distance and the KL-divergence can be expressed in this

form and are Bregman divergences.

The relationship between the Bregman divergence and the exponential family

can be seen by examining the negative-log probability of an exponential family

distribution, written as:

ln p(x|θ) = −BA∗(x, θ(η)) + ln bA∗(x), (1.15)

which is the sum of a Bregman divergence and a function that is constant with

respect to θ and can therefore be ignored. θ(η) is the inverse canonical link function

that transforms natural parameters η to their corresponding mean parameters θ. The

properties of the convex function φ are well studied and for the exponential family

of distributions, φ is the conjugate dual of the log-partition function A∗(θ), giving

φ(θ) = A∗(θ). The conjugate dual function corresponds to the negative entropy of

the particular exponential family distribution (Wainwright and Jordan, 2006, thm 3.4).

The use of Bregman divergences thus provides an alternative view of learning

with exponential family distributions: learning with generalised loss functions given
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by the Bregman divergence. In addition, the divergence has convex properties that

are useful in designing learning algorithms for models involving these distributions.

Table 1.2 lists some well known exponential family distributions with their corre-

sponding Bregman divergences.

Example 1.5: The Bernoulli Family (cont.)

The Bernoulli family was first discussed in example 1.1. The canonical link and

inverse link functions were derived as:

η(θ) = ln

(
θ

1− θ

)
, θ(η) =

1

1 + exp(−η) .

The conjugate function A∗, which is the negative entropy of the Bernoulli dis-

tribution is given by:

A∗(θ) = θ ln(θ) + (1− θ) ln(1− θ).

Using this convex function, the Bregman divergence using equation (1.14) with

x∗ = 2x− 1 is thus:

BA∗(x‖θ) =A∗(x)−A∗(θ)− (x− θ)∇A∗(θ)

=x ln x
θ + (1− x) ln

(
1−x
1−θ

)
(1.16)

1.4 Probabilistic Modelling and Bayesian Inference

Throughout the thesis, we develop probabilistic approaches for matrix factorisation.

A probabilistic approach provides a principled approach to learning and a means of

dealing with uncertainties involved in the data generation and model specification

processes. A probabilistic model is specified by providing the joint-probability

distribution of all variables used in characterising the learning problem. Since

complex settings are usually considered, latent variables are introduced to aid the

modelling process. Often the generation of data is thought of as a sequence of

realisations from a hierarchy of random variables, such as figure 1.2. The model

of interest is then the joint distribution of any latent variables v, model parameters

θ, and the observed data x: p(x, v, θ). The task is then to learn the values of these

unknown parameters and latent variables from the observed data.

The likelihood function is of key importance in probabilistic modelling, and is

the probability that a model with any particular parameter setting assigns to the
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observed data. The likelihood is thought of as a function of the parameters θ

and encapsulates the ability of the chosen parameters to explain the given data:

L(θ|x1, . . . , xn) = p(x1, . . . , xn|θ). In maximum likelihood inference, a point estimate of

parameters is determined that maximises this likelihood given the observed data,

though in practice the log-likelihood is maximised instead. Approaches to learning

rely on the theory of optimisation, which is immense and allows for effective and

scalable algorithms for learning to be designed.

Using Bayesian inference, rather than finding point estimates, we can instead

learn the posterior distribution of parameters. Bayesian statistics is the powerful

branch of statistics with which we can determine the posterior distribution of

parameters conditioned on the observed data by using Bayes’ theorem:

p(θ|x) = p(x|θ)p(θ)
p(x)

, (1.17)

where p(θ) is called the prior probability distribution and embodies the prior belief

of plausible parameter values in various regions of the parameter space. The

introduction of the prior allows the likelihood to be transformed into a proper

distribution over parameters. The Bayesian approach allows for the natural inclusion

of prior knowledge and provides a mechanism for dealing with uncertainty by

learning posterior distributions rather than point estimates of the parameters.

Bayesian inference has many other advantages, such as a built-in regularisation and

safeguards against model overfitting. We will discuss the advantages of Bayesian

methods in further detail in the next chapter.

The following integration problems are central to Bayesian statistics:

Normalisation. To obtain the posterior distribution, the normalising factor in Bayes’

theorem (1.17) must be computed:

p(x) =

∫
p(x|θ)p(θ)dθ.

Marginalisation. Marginal distributions may often be of interest, particularly when

latent variables are involved:

p(θ|x) =
∫
p(θ, v|x)dv.

Expectation. Often summary statistics are sought, of the form:

Ep(x|θ) [f(x)] =
∫
f(x)p(x|θ)dx,

for some function f(x), e.g. if the mean is sought, then f(x) = x.
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These integration problems are typically intractable and must be approximated by

some means: Markov chain Monte Carlo methods are popular in this regard and

will be described further in the next section.

We will exemplify the principles of probabilistic inference that have been high-

lighted here in the ensuing chapters, showing more precisely the specification of

the joint probabilities and the description of the generative processes of data. We

will develop both maximum likelihood and Bayesian inference techniques in this

thesis, but will place a strong emphasis on Bayesian approaches to learning. A more

thorough and complete discussion of probabilistic modelling and inference can be

found in the books by Bishop (2006); MacKay (2003); Bernardo and Smith (1994) and

are reference works on many fundamental aspects of probabilistic modelling that

will be referenced throughout this thesis.

1.5 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) methods are established tools for solving the

typically intractable integration problems central to Bayesian statistics that were just

described. MCMC methods trace their history to the work of Metropolis and Ulam

(1949) and the subsequent generalisation of this work to the Metropolis-Hastings

method (Hastings, 1970). But the lack of computational resources in earlier research

curtailed the wider use of MCMC as a method for inference. With modern com-

puting technology, MCMC is now widespread throughout statistical practice, with

this popularity being attributed to the work of Gelfand and Smith (1990). The work

of Neal (1993) is also highly significant, especially in popularising MCMC in the

machine learning community.

The merits of MCMC as an approach for inference in comparison to other in-

ference methods such as variational methods or expectation propagation are not

discussed, though this is of relevance and interest. MCMC is a wide area of research

and the texts by Gilks et al. (1995); Robert and Casella (2004); MacKay (2003);

Bishop (2006) provide excellent discussions covering the breadth of current MCMC

practice. In addition, the review papers by Neal (1993) and Andrieu et al. (2003)

are highly informative. We make use of three well established MCMC methods in

this thesis: Gibbs sampling, Hybrid Monte Carlo sampling and slice sampling. We

provide algorithmic descriptions of these methods and defer technical aspects of

these methods to the reference texts provided.
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1.5.1 Gibbs Sampling

Gibbs sampling is arguably the most widely applied of MCMC methods. The Gibbs

sampler was given its name by Geman and Geman (1984) for problems in image

restoration and subsequently popularised by Gelfand and Smith (1990). Gibbs sam-

pling aims to generate samples from the posterior distribution of θ that is partitioned

into a vector of components θ = (θ1, . . . , θd). Although it may be hard to sample

from the joint-posterior, it is assumed that it is easy to simulate from the full con-

ditional distributions p(θi|{θj , j 6= i}). Implementing the Gibbs sampler begins with

initial guesses for the θi denoted θ
(0)
1 , . . . , θ

(0)
d . Sampling then iterates through the

following steps, for iteration t:

θ
(t)
1 ∼ p(θ1|{θ

(t−1)
j , j 6= 1}), (1.18)

θ
(t)
2 ∼ p(θ2|θ

(t)
1 , {θ(t−1)

j , j > 2}), (1.19)

...

θ
(t)
i ∼ p(θi|{θ

(t)
k , k < i}, {θ(t−1)

j , j > i}), (1.20)

...

θ
(t)
d ∼ p(θd|{θ

(t)
j , j 6= d}). (1.21)

As t approaches infinity, the joint distribution can be shown to approach the joint

distribution of θ. In order for Gibbs sampling to produce samples from the correct

distribution, the resulting Markov chain must be ergodic. This implies that none

of the conditional distributions should be zero anywhere. If this is satisfied, then

any point in the space can be reached from any other point using updates of each

of the component variables. For t∗ sufficiently large, the set of samples θ(t
∗) can be

regarded as one simulated draw from the posterior distribution. L such samples can

be generated and used to compute any required posterior moments.

Samples obtained from Gibbs iterations are always accepted, making Gibbs

sampling simply the repeated simulation from full conditional distributions. Many

models make use of conjugate pairs of distributions, which allow the required full

conditional distributions to reduce analytically to closed-form distributions, for

which efficient sampling methods exist. If only two iterating steps are needed,

then Gibbs sampling is often referred to as data augmentation. If any of the full

conditional distributions are not amenable to sampling from a known closed-form

distribution, then samples must be simulated using any other sampling technique

– the default choice being the Metropolis-Hastings method. This sampling scheme

is then referred to as Metropolis-within-Gibbs sampling. Since sampling from

non-conjugate distributions is more involved, many models use conjugate pairs of

distributions so that inference can be performed using Gibbs sampling. If at each
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Figure 1.4: Sampling from the two-dimensional Gaussian distribution showing
the progression of Gibbs sampling.

stage, the maximum of the conditional distribution is used instead of samples being

drawn, then this method is referred to as Iterated Conditional Modes (ICM) (Kittler

and Föglein, 1984), making ICM a greedy approximation to Gibbs sampling.

There is typically strong positive correlation between the values of θ(t) and

θ(t+1). If independent samples are required, then thinning of the samples must be

applied, where samples at t, t+ s, t+ 2s and so on are used for spacing s. Figure 1.4

shows the behaviour of Gibbs sampling when simulating from a two-dimensional

Gaussian distribution. The exploration of the space is effective, though the correla-

tion between the samples results in slower mixing (as seen by the lack of samples in

the lower left corner after 100 samples).

1.5.2 Hybrid Monte Carlo Sampling

The Hybrid Monte Carlo sampling approach is the first of two auxiliary variable

sampling methods we discuss in this chapter. In the auxiliary variable sampling

framework, instead of sampling from the distribution p(θ), samples are obtained

from an augmented distribution p(θ,u), where u is a set of auxiliary variables. The

idea of sampling with auxiliary variables originated in physics with the work of

Swendsen and Wang (1987) and is central to Hybrid Monte Carlo sampling (HMC)

discussed here and in slice sampling discussed in the next section.

Hybrid Monte Carlo was first described by Duane et al. (1987) and is based

on the simulation of Hamiltonian dynamics. The details of the physical under-

pinnings describing Hamiltonian dynamics and its appropriateness for MCMC are

best described in the work of Neal (1993, 2010). Consider generating samples from

the distribution p(θ|ψ), with ψ being any relevant hyperparameters; an auxiliary

variable u will be used. Intuitively, HMC combines auxiliary variables with gradient
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information from the joint-probability space to improve mixing of the Markov chain.

The gradient acts as a force that results in more effective exploration of the sample

space. HMC can be used for sampling from continuous distributions for which

the density function can be evaluated (up to a known constant). This makes HMC

particularly amenable to sampling in non-conjugate settings where full conditional

distributions cannot be obtained, but for which joint-probability densities can be

computed. The derivatives of the log-density function must also exist.

For HMC, a Potential energy function and a Kinetic energy function is defined,

whose sum forms the Hamiltonian energy:

H(θ,u) = E(θ|ψ) +K(u) (Hamiltonian Energy) (1.22)

E(θ|ψ) = − ln p(θ|ψ) (Potential Energy) (1.23)

K(u) = −1
2u

⊤u (Kinetic Energy) (1.24)

The Hamiltonian can be seen as the log of the augmented distribution to be sampled

from: p(θ,u|ψ) = p(θ|ψ)N (u|0, I). The gradient of the Potential energy is defined

as: ∆(θ) = ∂E(θ)
∂θ . Each iteration of HMC has two steps. In the first step, we assume

that an initial sample (state) for θ is given and generate a Gaussian variable u for

the momentum (line 4, algorithm 1.1). In the second step, we simulate Hamiltonian

dynamics, which follows the equations of motion to move the current sample and

momentum to a new state. The Hamiltonian dynamics must be discretised for im-

plementation and the most popular discretisation is known as the leapfrog method

(lines 7-11, algorithm 1.1). The leapfrog approximation is simulated for τ steps using

a step-size ǫ. The values of θ and u at the end of the leapfrog steps form the proposed

state, which is accepted using the metropolis criterion (line 15, algorithm 1.1):

min (1, exp(−H(θ∗,u∗) +H(θ,u))) . (1.25)

Marginal samples from p(θ) are obtained by ignoring u. The full set of steps needed

for HMC are described by algorithm 1.1.

HMC requires the selection of two free parameters. The number of leapfrog

steps τ , and the step-size ǫ. In general the step-size should be chosen to ensure that

the sampler’s rejection rate is between 25% - 35%. It is also preferable to have a

large number of leapfrog steps since this reduces the random walk behaviour of the

sampling (Neal, 1993). Typically, 50 leapfrog steps are used in the applications in

this thesis. The selection of these parameters can be challenging, but there exists a

great deal of guidance in choosing these parameters and in tuning HMC for optimal

performance in general. The review chapter by Neal (2010) provides a wealth of

guidance in tuning HMC and many other aspects of its application in practical

situations. Theoretical analysis also exists regarding optimal tuning, the most recent
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Algorithm 1.1: Hybrid Monte Carlo (HMC) Sampling

1 Evaluate Gradient g = ∆(θ) with initial θ // g = gradE(theta)

2 Evaluate Energy E = E(θ|ψ) // E = findE(theta)

3 for L iterations do

4 Initialise new momentum u drawn from a Gaussian

5 Calculate: K(u) = 1
2u

⊤u and H = E(θ|ψ) +K(u)
6 θnew ← θ; gnew ← g;
7 for τ leapfrog steps do

8 u← u− ǫ
2g // Make half-step in u

9 θnew ← θnew + ǫu // Make a step in theta

10 gnew ←∆(θnew) // gradE(thetaNew)

11 u← u− ǫ
2g

new // make half step in u

12 Enew = E(θnew|ψ) // Enew = findE(thetaNew)

13 Calculate K(u) = 1
2u

⊤u
14 Hamiltonian Hnew ← Enew +K(u)
15 if rand() < exp(− (Hnew −H)) then

16 Accept← True

17 g ← gnew; θ ← θnew; E ← Enew

18 else

19 Accept← False

of which is described by Beskos et al. (2010). Figure 1.5 shows the behaviour of HMC

in sampling from the two-dimensional Gaussian. Qualitatively comparing this to

figure 1.4, HMC is much more effective than Gibbs sampling in exploring the space.

1.5.2.1 Hybrid Monte Carlo with Constrained Variables

Many modelling problems involve the use of random variables that may be con-

strained, e.g. be non-negative or bound between [0,1]. Hybrid Monte Carlo is still

amenable in this setting, but requires an adjustment to the energy function that is

used. The method to be described here will be referred to as the transformation method.

Consider the Bayesian modelling of data X with constrained parameters c and prior

distribution p(c). The posterior distribution to be sampled from is:

p(c|X) ∝ p(X|c)p(c). (1.26)

To perform Hybrid Monte Carlo sampling in this setting, the constrained variables c

must first be transformed to unconstrained variables u, using any suitable transfor-

mation: c = T (u). The determinant of the Jacobian of the change of variables must

be included: J(u) = ∂c
∂u = ∂T (u)

∂u , giving the new posterior probability as:

p(u|X) = |J(u)| p(c|X). (1.27)
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Figure 1.5: Sampling from the two-dimensional Gaussian distribution showing
the progression of HMC sampling. The lines represent the simulated path fol-
lowed during the leapfrog iterations.

Commonly used transformations include the exponential function for non-negatively

constrained parameters, or the softmax function for parameters bound on a simplex.

The usual HMC algorithm 1.1 can be applied after transforming the constrained

variables to unconstrained variables and making the following adjustments to the

potential energy function and its derivatives:

E(u) = − ln p(u|X) = − ln p(X|c)− ln p(c)− ln J(u), (1.28)

∂E(u)
∂u

=
∂E(c)
∂c

∂c

∂u
(Chain Rule)

= −∂ ln p(X|c)
∂c

∂c

∂u
− ∂ ln p(c)

∂c

∂c

∂u
− ∂ ln J(u)

∂u
. (1.29)

It is especially important not to forget to apply the chain rule consistently to the

derivatives of the potential energy function, since this can be easily overlooked.

Example 1.6: Sampling from the Log-Normal Distribution

To show that the adjustments for sampling with constrained variables give the

correct results in general settings, consider sampling from the random variable

c with log-Normal distribution, which is bound to the range [0,∞) and has the

density function:

p(c|0, 1) = 1

c
√
2π

exp

(
−1

2
(ln c)2

)
, c ≥ 0. (1.30)

Using the transformation: T (u) : c = exp(u), sampling in the unconstrained

space involves the following energy function:

E(u) = E(c)− ln |J(u)| = − ln(1c )−
1

2
ln2 c− ln c =

1

2
u2. (1.31)
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By inspection, this is the form of a Gaussian distribution N (0, 1). This then,

verifies the well know technique of sampling from the log-Normal distribution

based on transformations of a Gaussian random variable using the exponential

function (Devroye, 1986).

Neal (2010) discusses an alternative means by which to handle constraints on model

parameters, based on modifying the leapfrog method used in simulating the dynam-

ics, and will be referred to as the splitting method. Any constraints on subsets of the

parameters can be handled, such as c ≤ bu, c ≥ bl or both. The key aspect of this

adjustment involves the specification of a Potential energy function that is infinite

for any parameter values that violate the constraints, giving such parameters zero

probability. Further details of this approach require more discussion of the leapfrog

discretisation than has been provided here and are thus deferred to Neal (2010). We

will use the transformation method in our applications of HMC since suitable trans-

formations are known in all constrained cases that we consider.

1.5.3 Slice Sampling

Slice sampling (Neal, 1997; Damien et al., 1999; Neal, 2003) is a further example of

an auxiliary variable sampler and is a generalised version of the Gibbs sampler. Like

Gibbs sampling, a slice sampling chain has no rejections but is more straightforward

to implement than Gibbs sampling, and can be shown to be more efficient than simple

Metropolis updates (Neal, 2003). Slice sampling introduces an auxiliary variable u,

known as the slice level, to construct an extended density q(θ, u) = 1 if 0 ≤ u ≤ p(x)

and 0 otherwise. This results in the following full conditional distributions:

p(u|θ) = U(u|[0, p(θ)]), (1.32)

p(θ|u) = U(θ|{θ : p(θ) ≥ u}), (1.33)

where U(θ|A) is the uniform distribution over the region A. Slice sampling thus

alternates between sampling the slice level u, and then sampling θ in the interval

A = {θ : p(θ) ≥ u}. If there are multiple dimensions, slice sampling operates

by cycling though each of the dimensions with all other dimensions fixed. If the

region A is known, then slice sampling is easy to implement. A simple strategy for

determining the region A involves growing a region (called a bracket) around the

current value θ(t−1) using a step-size w, and testing that p(θ) ≥ u. This process is

continued with the bracket expanding until the condition is no longer true. More

sophisticated methods for determining the bracket have also been developed and are

discussed by Neal (2003); Skilling and MacKay (2003).

Slice sampling is an appealing MCMC method since all that is required for a

successful implementation is the evaluation of the joint-density function (up to a
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Figure 1.6: Sampling from the two-dimensional Gaussian distribution showing
the progression of slice sampling.

known constant) and the specification of a step-size w. Other methods such as Gibbs

sampling require the derivation of full conditional distributions, or require the spec-

ification of many free parameters needed for tuning as with Hybrid Monte Carlo.

Figure 1.6 shows the slice sampling behaviour in sampling the two dimensional

Gaussian. Recent advances in slice sampling allow for joint updates to be made

instead of in a co-ordinate-wise fashion in situations where Gaussian latent variables

are used (Murray et al., 2010), enhancing the attractiveness of slice sampling as a

method for sampling.

1.5.4 Monitoring Chain Convergence

The objective of MCMC methods is to obtain samples from the target posterior distri-

bution and to explore its characteristics. If the resulting sequence has not converged,

then inferences that are obtained may not be sensible. As a result, a great deal of

research is dedicated to determining when a Markov chain has mixed sufficiently

and the length of the chain required to ensure suitable mixing. Most approaches

focus on monitoring the convergence of the chain with the aim of rejecting the null

hypothesis that the chain has not reached convergence. Rejecting this hypothesis

does not imply that the chain has actually converged, but rather that there is no

reason to suspect lack of convergence given the current test – a stronger statement

cannot be made. The standard practice is to evaluate the chain convergence using

at least two convergence assessment techniques. The two convergence assessment

methods used here are: Gelman’s potential scale reduction factor (PSRF) (Gelman

et al., 2004) and the Brooks’s hairiness index (Brooks and Roberts, 1998).

The potential scale reduction factor (PSRF), denoted R̂, evaluates the conver-

gence of scalar quantities of interest to the sampling problem, by examining the

performance of multiple chains with dispersed starting points. The replication of
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5 chains is usually enough, and is what is used in this thesis. The between- and

within-chain variance is computed, with the intuition that at convergence these two

quantities should be the same. A detailed discussion of the computation of the PSRF

appears in Gelman et al. (2004). Guidance in using the PSRF is simply that the value

should be low, with high values indicating that further simulation of the chain may

improve inferences about the target distribution. In general, the value of R̂ < 1.1 is

the oft-suggested criterion with which to decide when to stop the chain (Gelman

et al., 2004, pp. 297).

The Hairiness index, denoted Ĥ , is based on the CUSUM method for conver-

gence monitoring (Robert and Casella, 2004, pp 481). CUSUM monitors how often

derivatives of the sampler statistics of interest change in sign: infrequent changes

in sign indicate that the sampler may not have reached convergence. The hairiness

index is a measure of these changes in derivative and is usually plotted with 95%

confidence intervals. Problems with convergence are flagged when the index lies

outside the confidence interval. Further details regarding the computation of the

hairiness index is deferred to Brooks and Roberts (1998) or Robert and Casella (2004).

While details are omitted here regarding these convergence methods, there is

a great deal of research in this area. Robert and Casella (2004) provide a deeper

discussion on theoretical aspects of convergence and other relevant empirical

methods of convergence assessment. The review papers by Neal (1993); Cowles and

Carlin (1996) and the books by Gelman et al. (2004); Gilks et al. (1995) are also very

useful for wider context in this area.

1.6 Thesis Outline

In the forthcoming chapters we will advance latent variable modelling in three

ways, by: expanding model scope regarding the types of data that are considered,

considering alternative structure underlying the observed data, and learning with

data stored in more complex data structures. Each chapter begins by describing a

broad motivation for the discussion in the chapter and moves to develop a set of

models and inference algorithms that improve on currently available methods. We

evaluate all models using synthetic and real data, and include application studies

that aim to demonstrate the practical use of the new models for exploratory analysis

and system design. Each chapter also includes an ‘in context’ section that places the

work of the chapter in historical context, describes related work, and emphasises

where the contribution of the chapter fits in the wider context.

The focus and contributions of each chapter of this thesis are:
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Chapter 2. We follow the natural evolutionary path for matrix factorisation mod-

els by developing a framework for latent variable models generalised to the

exponential family. This establishes the complementary framework for for un-

supervised learning, which exists for regression as the generalised linear mod-

els. This exponential family generalisation extends the scope of latent variable

models to dichotomous, categorical, counts and non-negative data, or heteroge-

neous set of these data types. We clarify the relationship between many existing

models using our exponential family framework. We develop a fully Bayesian

model that overcomes many of the problems of maximum likelihood leaning

and demonstrate a new method for dealing with factor identifiability.

Chapter 3. Building on the framework presented in chapter 2, we develop and con-

trast models for learning sparse latent representations. This is an important

structural aspect underlying many data sets and provides valuable insight in

many applications. We show how sparse unsupervised models can be con-

structed, what classes of priors are applicable and the dilemmas that this may

pose, and develop both maximum likelihood and Bayesian learning approaches.

Importantly, we present the first comparison of such methods and provide use-

ful guidance for the implementation of sparse models.

Chapter 4. We develop a novel and simple approach for the principal components

analysis of binary data based on analysing dichotomised or thresholded un-

derlying Gaussian variables. Using this approach, we gain an understanding

of the effects of the dichotomisation process and methods for the analysis of

large, sparse binary data. We demonstrate an efficient algorithm for matching

moments between a correlated binary distribution and a latent Gaussian distri-

bution. Our algorithm allows for sampling of correlated binary variables with

desired means and covariance, gives insight into the implications of dichotomis-

ing a Gaussian distribution, and by combining Gaussian dichotomisation with

efficient methods for computing principal components, demonstrates a simple

method for the principal components analysis of binary data.

Chapter 5. We develop a novel Bayesian model for data expressed as tensors or

multi-dimensional arrays of data. This type of data is generated increasingly

often, especially in factorial experiments that consider outcomes under vary-

ing conditions. We employ latent variables to learn representations of each of

the tensor modes. We focus on the popular class of non-negative factorisations

and discuss the applications of this model class. The relationship between the

new non-negative Bayesian tensor factorisation and the the matrix factorisation

models considered in the previous chapters, is described along with an account

of related approaches to the probabilistic modelling of tensors.

Chapter 6. This concluding chapter summarises the contributions of this thesis, ex-

plores its emergent themes and examines the scope for future work.
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Chapter 2

Generalising Latent Variable

Models to the Exponential Family

We begin the exposition of this chapter with the important statistical framework for

linear Gaussian models. This framework, coupled with an understanding of the

shared properties of members of the exponential family of distributions, allows for

the construction of a class of unsupervised linear latent variable models generalised

to the exponential family. We portray the historical development of such an expo-

nential family generalisation, describe the important properties of the construction,

develop a method for fully Bayesian learning and demonstrate the efficacy of the new

class of generalised latent variable models through empirical analysis.

2.1 Linear Gaussian Models

Linear Gaussian models form an important statistical framework that employs

Gaussian latent variables and assumes Gaussian noise (Roweis and Ghahramani,

1999). Many well known models such as principal components analysis (PCA)

(Pearson, 1901; Hotelling, 1933; Joliffe, 2002), factor analysis (FA) (Spearman,

1904; Bartholomew and Knott, 1999), Gaussian mixture models (Newcomb, 1886;

Titterington et al., 1985) and hidden Markov models fall within this framework. Of

particular interest to this chapter is the subclass of static linear Gaussian models,

which allow latent representations of i.i.d. data to be inferred and to which both

principal components analysis and factor analysis belong.

Principal components analysis exemplifies the form of latent variable model that

we consider here. Since the initial ideas for PCA were established by Pearson (1901),

PCA has become one of the most popular methods for linear latent variable mod-

elling. PCA is a method for dimensionality reduction that searches for a mapping
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Figure 2.1: Graphical model for probabilistic PCA. The plate notation represents
replication of variables and the shaded node represents the observed data.

from observed data x ∈ R
D to a lower dimensional representation v ∈ R

K with

K < D; the mapping between the two is given by the eigenvectors corresponding

to the K-largest eigenvalues of the data covariance matrix. Due to this conceptual

simplicity, PCA is now a much relied upon tool for dimensionality reduction, feature

extraction, data visualisation and image and signal processing.

A probabilistic interpretation of PCA that falls into the framework of linear

Gaussian models can be given (Tipping and Bishop, 1997; Roweis, 1998), and is

described using the probabilistic graphical model of figure 2.1. The graphical model

describes the generative process whereby an observed data point xn is considered

to be a noise-corrupted version of the true data x̃n that lies in a subspace, under the

assumption of Gaussian noise. A latent variable vn is introduced for each observed

data point and represents the principal component subspace. The model assumes a

Gaussian prior for each of the latent variables vn, as well as a Gaussian conditional

distribution p(xn|vn):

p(vn) = N (vn|0, I), (2.1)

p(xn|vn) = N (xn|Θvn + µ, σ2I). (2.2)

The D × K matrix Θ represents the K principal components and σ2 is the scalar

variance of the conditional distribution. The negative log-likelihood yields an objec-

tive function that is equivalent to the usual PCA objective function, which minimises

the Euclidean distance between the data and its reconstruction. Following this spec-

ification, all marginal and conditional distributions are Gaussian. A fully Bayesian

specification includes a Gaussian prior on the matrix Θ, as a set of K independent

D-dimensional Gaussian distributions:

p(Θ|λ) =
K∏

k=1

N (θk|0, λkI). (2.3)
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Given this specification, the log-joint probability for probabilistic PCA, ignoring all

constant terms is:

ln p(X,V,Θ) = ln p(X|V,Θ) + ln p(V) + ln p(Θ|λ) (2.4)

= −1

2

(
∑

n

(
1

σ2
(xn −Θvn)

⊤(xn −Θvn) + vn
⊤vn

)
−
∑

k

1

λk

θk
⊤θk

)
.

This probabilistic specification of PCA has a number of advantages: probabilistic

PCA specifies a generative process that provides a mechanism with which to

generate samples from the model, it allows for a principled approach to dealing

with missing data, a computationally efficient EM algorithm for learning can be

derived, and fully Bayesian inference is possible where hyperparameters can be

learnt (Bishop, 2006).

The key assumption made in this specification is that the noise is Gaussian,

which is a distribution most suited to the analysis of real-valued data. If the data is

binary, integer or is non-negative, then this Gaussian assumption is inappropriate.

Gaussianity may also be inappropriate for real-valued data that is heavy-tailed. The

Poisson distribution is better suited to integer data, the Bernoulli to binary data

and the Exponential to non-negative data. A generalisation of PCA that allows the

Gaussian assumption to be replaced with a more befitting distribution, would thus

be desirable. Such a generalisation is made possible by the fact that many of the

distributions of interest in modelling observed data are members of the exponential

family of distributions (c.f. section 1.3). The very same motivation has spurred the

development of modelling strategies in other statistical settings, most notably in

regression with the generalised linear models (GLMs) (Nelder and Wedderburn,

1972). The experience gained with GLMs is brought to bear upon the generalisation

of latent variable models.

2.2 Generalising Models to the Exponential Family

2.2.1 Generalised Linear Models

Linear regression is one of the most well-studied of statistical models, relating a set

of covariates (features or inputs) vn ∈ R
D to a set of response variables (labels or

outputs) xn ∈ R. The relationship between the covariates and the response consists

of a systematic component and a random component, described by the linear model:

xn|vn ∼ N (xn|µn(vn), σ
2), n = 1, . . . , N (2.5)

E[xn] = µn(vn) = βvn. (2.6)
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The systematic component µn = βvn is an approximation to the response variable,

often referred to as the ‘signal’ and the vector β ∈ R
D is the set of model parame-

ters. The optimal parameters β∗ are found by minimising the negative log-likelihood,

which gives the least squares criterion:

β∗ = argmin
β

∑

n

(xn − βvn)
2 . (2.7)

This model remains a key tool for applied statistical work, but has some shortcom-

ings. Consider a problem in which the response variable is integer-valued. An

approach to dealing with this setting is to apply a logarithmic transformation to the

response variable and thereafter apply the standard linear regression model. This

approach fails to take into account the often increasing variance of count-based data

with the mean and the discrete nature of the response. The Gaussian assumption,

similar to the conclusion of the previous section, is thus undesirable and not

generally applicable. In recognition of this shortcoming, models were subsequently

developed for binary response regression, polytomous logistic (multinomial) regres-

sion and others.

Nelder and Wedderburn (1972) introduced the generalised linear models (GLM)

by recognising the shared properties that distributions of the exponential family

share with each other, and demonstrated the unity of many existing models for

regression. For GLMs, the random component is given by an exponential family

distribution in the canonical form, rather than the Gaussian form assumed in

linear regression. The systematic component βvn, now approximates the natural

parameters of the chosen exponential family distribution and equations (2.5) and

(2.6) become:

xn|µn ∼ Expon (xn|g(µn)) = h(xn) exp {g(µn)xn −A(g(µn))} (2.8)

E[xn] = µn = g−1(βvn), (2.9)

where, for the chosen exponential family, g(µn) are the natural parameters, g(·) is the

link function that ‘links’ the mean parameter space to the natural parameter space,

and A(·) is the log-partition function, as described in section 1.3. The negative log-

likelihood using equation (2.8) is thus:

L(β) =
∑

n

A(βvn)− xn βvn − lnh(xn). (2.10)

The optimal parameter values are solved, as before, by minimising the negative log-

likelihood.
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Example 2.1: Linear Regression

The standard linear regression is obtained by considering the case of the Gaus-

sian distribution that has the log-partition function A(η) = η2

2 , with natural

parameter η. Using this form and ignoring constant terms, the equivalence be-

tween this maximum likelihood criterion (2.10) and the least squares criterion

(2.7) can be seen.

Example 2.2: Logistic Regression

The equally popular logistic regression for binary responses is recovered from

the GLM framework, utilising the Bernoulli distribution whose log-partition

function is A(η) = − ln (1 + exp(η)) with natural parameters η. The objective is

more compactly written using a [-1,1] outcome convention instead of the [0,1]

convention using x∗ = 2x − 1. The resulting negative log-likelihood can be

simplified and written as:

L(β) =
∑

n

ln (1 + exp(−x∗n βvn)) , (2.11)

where x∗n = 1 if xn = 1 and x∗n = −1 if xn = 0.

The GLM framework provides a mechanism for generalising the least squares re-

gression to loss functions that are more appropriate for members of the exponential

family other than the Gaussian. The general strategy that has been described in-

volves:

• Considering a Gaussian likelihood model with a systematic component µn.

• Selecting a member of the exponential family most appropriate for the data

under study, such as the Bernoulli, Poisson, Gaussian, Gamma, etc.

• Applying a transformation of the systematic components µn to natural parame-

ters ηn of the chosen exponential family using a suitable link function, with the

canonical link being appropriate most often.

This general strategy can now be used to construct generalised models for many other

settings, with this chapter focusing on the generalisation of latent variable models.

The approach has been used in other settings, including generalised additive models

(Hastie and Tibshirani, 1990), generalised linear mixed models (Breslow and Clay-

ton, 1993), generalised models for survival analysis (Fahrmeir and Tutz, 2001) and

generalised linear multi-link models (G2L2M) (Gordon, 2002).

2.2.2 PCA for the Exponential Family

We mirror the preceding model development in this section, and examine unsu-

pervised latent variable models in which the covariates vn are now unobserved
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latent variables. Historically, this modelling approach may have been referred to as

‘internal analysis’ (Bartlett, 1947), but unsupervised learning is now the established

name for this analysis in machine learning, statistics and many other areas of applied

science. Unsupervised learning is immensely important since it is used to build

underlying representations of input data and allows us to explore the patterns and

structure inherent in data. These representations can then be used to predict future

inputs, for decision making, data visualisation or data compression, amongst others.

We will demonstrate many of these applications throughout this thesis.

The Gaussian likelihood model that is generalised here is probabilistic PCA,

described by equations (2.1) – (2.4). Let X be an D × N matrix of observed data,

whose nth column is xn, for n = 1, . . . , N . Let V be a K × N matrix of latent

variables, where K is the dimensionality of the the latent representation with

K < D, and columns vn. Θ is a D × K matrix of parameters whose kth column is

θk. The matrix Π = ΘV is the D×N matrix of natural parameters with columns πn.

The Gaussian assumption used in equation (2.2) is replaced with the more general

exponential family distribution with natural parameters πn:

p(xn|vn,Θ) =
N∏

n=1

Expon (xn|πn) , (2.12)

πn =
∑

k

vnkθk = Θvn. (2.13)

The loss function for maximum likelihood parameter learning is thus:

L(V,Θ) = − ln p(X|V,Θ) = −
∑

n

ln p(xn|πn) (2.14)

= −
∑

n

(
x⊤
nπn −A(πn)

)
(2.15)

=
∑

n

BA∗ (xn, g(πn)) . (2.16)

This loss function changes depending on the choice of exponential family most ap-

propriate for the data being studied. The loss function (2.15) follows from the ex-

ponential family form, where A(·) is the appropriate log-partition function; constant

terms have been omitted. Equation (2.16) follows from the correspondence between

the exponential family and the Bregman divergence BA∗ (discussed in section 1.3.4),

and g(·) is the link function described in section 1.3. This highlights an additional

viewpoint from which to understand the learning process, i.e. as the minimisation

of a Bregman divergence between the data and its reconstructions. For Gaussian

data, the Bregman divergence is the Euclidean distance, and hence corresponds to

the usual distance measure used for PCA. This generalisation of PCA is referred to

as Exponential Family PCA (EPCA) (Moustaki and Knott, 2000; Collins et al., 2002).
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Example 2.3: Standard PCA

The standard PCA is obtained by using equation (2.15) with the Gaussian log-

partition function A(πnd) =
π2
nd
2 . The standard PCA loss (Joliffe, 2002) is:

LPCA =
1

N

N∑

n=1

‖xn − g(πn)‖2, (2.17)

where the canonical link function for the Gaussian is the identity, i.e. g(πnd) =

πnd. Thus the objective function (2.15) is equivalent to this loss (2.17), ignoring

constant terms. This example is an unsupervised analogue of example 2.1 for

linear regression.

Example 2.4: Logistic PCA

Logistic PCA is obtained by employing a Bernoulli likelihood with the logistic

link function. The log partition function is A(πnd) = − ln(1 + exp(πnd)), giving

the loss function:

LbernLPCA = −
∑

nd

(xndπnd + ln(1 + exp(πnd))) , (2.18)

which is equivalent to the loss function provided by Tipping (1999, eq. 2)

and Schein et al. (2003, eq. 4). This example is an unsupervised analogue of

example 2.2 for logistic regression.

Example 2.5: Non-negative Matrix Factorisation

Non-negative matrix factorisation (Lee and Seung, 1999) can also be obtained

from the generalisation of PCA discussed here. Exponential family PCA with

a Poisson likelihood has a canonical log-partition function A(πnd) = exp(πnd).

The loss functions for NMF (Lee and Seung, 1999, eq. 2) and EPCA are:

LNMF = −
∑

nd

xnd ln(πnd) + πnd, (2.19)

LpoissEPCA = −
∑

nd

xndπnd + exp(πnd). (2.20)

The difference between the two loss functions is due to the use of different

link functions. The EPCA loss function uses the canonical link, which for the

Poisson is the logarithm, whereas NMF makes use of a substitute link function

viz. the identity. While both losses (2.19), (2.20) imply Poisson noise, the dif-

ference has a bearing on the learning in the model and how the the underlying

factors are interpreted in terms of the observed data. The use of the identity

link imposes positivity constraints on the model parameters πn and allows for

a parts-based interpretation of the NMF factors. The positivity constraint is

obviated if the canonical link is used, but linear combinations of factors explain
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the generation of the data. The use of substitute link functions is discussed

further in section 2.3.3.4.

Example 2.6: Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) is a model for

categorical data that uses a multinomial likelihood. The loss functions for PLSA

and EPCA are:

LPLSA = −
∑

nd

xnd ln(πnd), (2.21)

Lmult
EPCA = −

∑

nd

xndπnd − ln

(
∑

d

exp(πnd)

)
. (2.22)

PLSA makes use of the identity link, which again requires constraints on the

natural parameters to ensure validity. The canonical link is the softmax function

and deals with the required constraints automatically.

The previous two examples highlight the differences between various models based

on the use of different link functions – a characteristic that is not often recognised.

The examples also highlight an important property of generalised modelling, namely

the estimation of parameters in either the natural parameter or mean parameter

space. Both NMF and PLSA estimate model parameters that lie in the same space

as the observed data, referred to as the mean parameter space; for Bernoulli data

the mean parameters are probabilities of being on or off, or for Gaussian data the

mean parameters are location values on the same scale as the data. Estimation in the

mean parameter space requires constraints to be explicitly handled during learning,

e.g leading to the multiplicative updates needed to maintain positivity in NMF.

We are not required to manage constraints in generalised latent variable models,

because learning is performed in the natural parameter space and constraints are

automatically handled through the use of an appropriate link function.

The recognition of the shared properties of the distributions in the exponential

family and the potential for the generalisation described above has been recognised

by a number of researchers. Two substantial pieces of research in this area are

those of Moustaki and Knott (2000), who discuss generalised latent trait models

and Collins et al. (2002) who focus on the generalisation of PCA to the exponential

family. Our unified presentation hopefully clarifies the link between these various

models and adds to the wider discourse in this area. These related works and the

contributions of this chapter will be placed within the wider context in section 2.8.
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2.2.3 Maximum Likelihood EPCA

Two general approaches for determining maximum likelihood estimates for gen-

eralised latent variable models are by Expectation Maximisation (EM) or by direct

optimisation. EM is a powerful and highly popular method for determining

maximum likelihood solutions in latent variable models (Dempster et al., 1977). In

EM, we marginalise the joint likelihood over the latent factors vn and maximise

over parameters θ. Tipping and Bishop (1997) describe an EM algorithm for

probabilistic PCA, which is an effective algorithm for parameter learning since

the marginalisation of the latent variables can be done analytically in this linear

Gaussian setting. For generalised latent variable models, it is no longer possible to

marginalise the latent variables, because the likelihood is no longer conjugate to

the Gaussian latent variables. Moustaki and Knott (2000) describe an EM algorithm

for generalised latent variable models. They approach the marginalisation of latent

variables using numerical integration methods, which has limited accuracy, and

were able to demonstrate the method for two latent factors only.

Collins et al. (2002) present a general purpose algorithm for parameter learning in

EPCA based on an alternating minimisation procedure. Alternating minimisation

algorithms are also known as co-ordinate descent algorithms and are in widespread

use, appearing in the early work of Csiszár and Tusnády (1984) and more recently

for learning in related work by Zass and Shashua (2006); Lee et al. (2007); Friedman

et al. (2007); Mairal et al. (2010). Alternating minimisation procedures, as the naming

suggests, are based on alternately optimising the loss function L with respect to one

argument, while keeping all other arguments fixed. Let V(t) and Θ(t) represent the

parameters at the tth iteration, with V(0) as a random initialisation. The iterative

updates for the EPCA loss function (2.15) are:

Θ(t) = argmin
Θ

L(V(t−1),Θ) (2.23)

V(t) = argmin
V

L(V,Θ(t)). (2.24)

This approach is amenable to parameter learning in EPCA due to the convex prop-

erties of the loss function. The loss function is not convex in the two arguments

jointly, but the loss function is convex in either of its arguments with the other fixed.

This implies that each iterative update can be done efficiently using the wide array

of tools for convex optimisation that are available (Boyde and Vandenberge, 2004). It

is unusual to follow a co-ordinate descent algorithm in models with latent variables,

since this approach ignores posterior uncertainty in the latent variables and results in

overfitting, will be problematic in missing data settings, and can have slow conver-

gence rates. This will also be a poor minimisation scheme if there is high correlation

between the latent variables and parameters. Notwithstanding these concerns, we
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use this method for our comparisons since the alternating minimisation approach

has become the established and popular approach for EPCA learning.

2.3 A Bayesian Exponential Family PCA

2.3.1 Motivating a Bayesian Approach

The maximum likelihood approach to learning discussed thus far has a number of

shortcomings that can be addressed by a Bayesian treatment of matrix factorisation

models. Firstly, maximum likelihood learning produces point estimates {V∗,Θ∗}
of the parameters. Ideally though, we wish to learn the posterior distribution

p(V,Θ|X) and use this distribution to make predictions of unseen data. Secondly,

maximum likelihood estimates are prone to overfitting, resulting in models that fit

part of the data perfectly. This is most undesirable since the model will be unable to

make predictions of data that it has not been trained with. In these circumstances,

resorting to maximum a posteriori (MAP) solutions, where the maximum of the

posterior distribution is used instead, seems desirable but does not overcome this

problem since the maximum of the posterior is not representative of the entire

distribution. MAP solutions are also not invariant to reparameterisation, which

detracts from their appeal. Further discussion of these issues is left to the insightful

discussion in the books by MacKay (2003); Gelman et al. (2004) and Bishop (2006).

In the case of generalised latent variable models, the maximum a posteriori

approach defines a generative process over elements of the observed training matrix,

but is ill-posed to predict new rows of the matrix not part of this set, because the

latent variables are set to their MAP values. This issue and the theoretical limits of

MAP estimation in this setting were brought to light by Welling et al. (2008) for the

class of models labelled deterministic latent variable models, of which maximum

likelihood EPCA is a member, as well as NMF (example 2.5) and PLSA (example

2.6), and expanded to other cases by (Singh, 2009). The findings of this work are not

applicable to Bayesian methods, since a complete generative description over both

seen and unseen data elements is specified in all cases.

A Bayesian approach provides a natural framework in which to incorporate

prior information into statistical models. The inclusion of the prior provides a

built-in regularisation, allowing Bayesian methods to avoid problems with over-

fitting. Prior information can include the specification of plausible links between

random variables, restrictions on the range of parameter values and probabilistically

expressing the underlying process that is believed to generate the observed data. The

ability to incorporate prior information makes it possible to extend many models

to increasingly complex cases through the use of hierarchical Bayesian modelling
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Figure 2.2: Graphical model for Bayesian exponential family PCA.

(Gelman et al., 2004). It is also often the case that better performance can be

demonstrated with Bayesian methods than with maximum likelihood methods e.g.

Salakhutdinov and Mnih (2008).

Approaches to Bayesian inference provide a mechanism by which to learn the

posterior distribution of latent variables and parameters, and thus provides addi-

tional motivation for the development of Bayesian models for unsupervised learning.

The estimation of these distributions is of interest in a number of application areas,

particularly where the latent variables are subject to interpretation and further

analysis. Since there is also a great deal of uncertainty in specifying many models,

Bayesian methods provide a principled approach for selecting and averaging across

plausible models when performing inference and prediction (Bishop, 2006).

2.3.2 Model Construction

We develop a generalised Bayesian latent variable model using the hierarchical

model depicted in figure 2.2. The notation used for the specification of EPCA in

section 2.2.2 is repeated here for clarity. The shaded node indicates the observed

data, which forms as a D × N matrix X = [x1, . . . ,xN ], with an individual data

point xn = [xn1, . . . , xnD]. N is the number of data points and D is the number of

input features. Θ is a D ×K matrix of parameters with columns θk. V is a K × N
matrix of latent variables V = [v1, . . . ,vn], with columns vn = [vn1, . . . , vnK ] that are

K-dimensional vectors of continuous values in R. K is the number of latent factors

representing the dimensionality of the sought after underlying representation.

Let m and S be hyperparameters representing a K-dimensional vector of mean

values and a covariance matrix respectively. Let α and β be the hyperparameters

corresponding to the shape and scale parameters of an inverse-Gamma distribution.

The model is defined by drawing µ from a Gaussian distribution and the elements
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σ2k of the diagonal matrix Σ = diag(σ21, . . . , σ
2
K) from an inverse Gamma distribution:

µ ∼ N (µ|m,S), (2.25)

σ2k ∼ G−1(α, β). (2.26)

For each data point n, the K-dimensional latent representation vn is drawn:

vn ∼ N (vn|µ,Σ). (2.27)

The data is described by an exponential family distribution with model parameters

θk. The exponential family distribution modelling the data and the corresponding

prior over the model parameters is:

xn|vn,Θ ∼ Expon

(
∑

k

vnkθk

)
, (2.28)

θk ∼ Conj (λ, ν) . (2.29)

The set of parameters to be learnt is Ω = {V,Θ,µ,Σ} and the set of hyperparame-

ters is Ψ = {m,S, α, β,λ, ν}. Given the graphical model, the joint probability of all

parameters and variables is:

p(X,Ω|Ψ) = p(X|V,Θ)p(Θ|λ, ν)p(V|µ,Σ)p(µ|m,S)p(Σ|α, β). (2.30)

Using the model specification given by equations (2.25) – (2.29), the log-joint proba-

bility distribution is:

ln p(X,Ω|Ψ) =

N∑

n=1

[
x⊤
n

(
∑

k

vnkθk

)
−A

(
∑

k

vnkθk

)]
(2.31)

+

K∑

k=1

[
λ⊤θk − νA(θk)− f(λ, ν)

]

−
N∑

n=1

[
K

2
ln(2π) +

1

2
ln |Σ|+ 1

2
(vn − µ)⊤Σ−1(vn − µ)

]

− K

2
ln(2π)− 1

2
ln |S| − 1

2
(µ−m)⊤S−1(µ−m)

+
K∑

k=1

[
α lnβ − ln Γ(α) + (α− 1) lnσ2k − βσ2k

]
,

where the functions h(·), A(·) and f(·) correspond to the functions of the chosen

conjugate-exponential family pair of distributions (c.f. Table 1.2). It is also impor-

tant to note that while conjugate distributions have been used between elements of

the model, the model is not wholly conjugate. This model will be referred to by the

shorthand BXPCA, referring to Bayesian Exponential Family PCA.
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Example 2.7: Probabilistic PCA as a Special Case

The hierarchical construction recovers the familiar probabilistic PCA, discussed

in section 2.1, as a special case. This can be shown as in previous examples by

considering the the Gaussian-Gaussian conjugate pair as priors for V and Θ

using the log-partition function for the Gaussian, and comparing the resulting

log-joint likelihood to that of probabilistic PCA given by equation (2.4).

2.3.3 Properties of the Construction

2.3.3.1 Derivatives of the Likelihood Function

The derivatives of the likelihood function, as well as the full joint probability, will

be used for MCMC learning in this Bayesian model. These derivatives are also used

in maximum likelihood learning of the model parameters. The derivatives of the

likelihood are:

∂ ln p(X|V,Θ)

∂V
= Θ⊤X−Θ⊤A′

V(ΘV) (2.32)

∂ ln p(X|V,Θ)

∂Θ
= XV⊤ −A′

Θ(ΘV)V⊤, (2.33)

where A′
V
(ΘV) is the derivative of the log-partition function with respect to the

matrix V, and similarly for the derivative w.r.t Θ. These derivatives form a set of

coupled equations that can be used in an alternating fashion and are exactly the

equations that would be needed in the alternating optimisation for the maximum

likelihood solution (section 2.2.3). For the case of Gaussian data, these updates are:

∂ ln p(X|V,Θ)

∂V(t)
= Θ(t−1)⊤(X−Θ(t−1)V(t)) (2.34)

∂ ln p(X|V,Θ)

∂Θ(t)
= (X−Θ(t)V(t))V(t)⊤, (2.35)

where the solutions obtained at iteration t are denoted by V(t) and Θ(t). Equating

(2.34) and (2.35) to zero and substituting the update for V into Θ gives:

Θ(t) =
1

C
XX⊤Θ(t−1), (2.36)

where C is a scalar. Θ is the basis of the underlying subspace and corresponds to

the set of principal components. The update (2.36) is equivalent to the power method

for determining the eigenvector of XX⊤ with the largest eigenvalue (Golub and Van

Loan, 1996, pp. 330). This is the best one-component solution for Θ and provides a

link to one of the classical methods for solving the standard PCA problem.
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2.3.3.2 Mixture Interpretation

A common strategy in unsupervised modelling involves the marginalisation over

latent variables. Employing this strategy using equation (2.28) results in:

p(xn|Θ) =

∫
p(vn|µ,Σ)p(xn|vn,Θ)dvn

=

∫
N (vn|µ,Σ)Expon (xn|Θvn) dvn. (2.37)

The observed data xn is effectively being modelled as a Gaussian mixture of expo-

nential family distributions. This gives insight and guidance for learning parameters

of the model. If the exponential family distribution under study is Gaussian, the mix-

ture is Gaussian. Efficient inference can be performed by recognising this property,

and is the strategy employed for learning in probabilistic and Bayesian PCA (Tipping

and Bishop, 1997; Bishop, 1999). For other distributions in the exponential family, a

different distributional form is obtained when marginalising over the latent variables,

which has a bearing on learning in the model. To effectively explore the posterior

distribution in this setting, we make use of Hybrid Monte Carlo sampling, which

uses gradient information to aid the exploration of the posterior.

2.3.3.3 Aspects of Model Identifiability

Identifiability of model parameters is a concern in many applications of latent

variable models, particularly in cases where the researcher aims to provide an

interpretation for the factors that are learnt. In general, inferred factors are statistical

quantities and do not have any physical basis, but an interpretation is often made in

practice on the basis of posterior summaries of latent variables. For unidentified pa-

rameters, this summarisation is not possible. In the exponential family PCA model,

the product Π = ΘV is identified but V and Θ are not, since for any orthogonal

matrix R, ΘV = (ΘR⊤)(RV). For problems of prediction, missing data imputation

and data reconstruction, the lack of identifiability (also called factor indetermi-

nacy) is not an obstacle, since the (identified) product ΘV can be computed for all

samples and thereafter averaged to obtain the probabilities for individual data points.

There are two general strategies that can be used to ensure identifiability if

this is an aspect of the model design. The first broad set of strategies is to impose

constraints on the loadings matrix Θ, with such constraints often suggested by the ap-

plication. Since latent variables are often introduced for convenience, one approach

is to set the upper triangular elements of Θ to zero, following the specification of

Geweke and Zhou (1996) and demonstrated by other authors such as Lopes and

West (2004). The disadvantages of such constraints are that they change the model

and make learning more difficult. The second class of approaches for handling
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Table 2.1: Substitute link functions for four distributions. The canonical link
functions are indicated by red squares in the tables. Φ−1(·) is the inverse Gaus-
sian CDF.

Link Name Function Bernoulli Poisson Gaussian Gamma

Identity ω ⋆ � ⋆

Reciprocal 1/ω ⋆ �

Square Root
√
ω ⋆

Log log(ω) ⋆ � ⋆ ⋆

Logit log
(

ω
1−ω

)
�

Probit Φ−1(ω) ⋆

Complementary log-log log(− log(ω)) ⋆

identifiability, is to introduce additional post-processing steps after parameter learning

in the non-identified model. The post-processing strategy is explored further in

section 2.5.

2.3.3.4 Substitute Link Functions

The canonical link function is often the most appropriate link function for a wide

range of applications. It is possible to use a non-canonical or substitute link function,

thus employing a reparameterised, non-canonical exponential family in learning.

This is especially important in certain generalised learning settings, one particular

case being the learning of non-negative data using a Gamma likelihood. The canoni-

cal link function for the Gamma distribution is the reciprocal i.e. ω = − 1
η , where ω

is the Gamma distribution’s scale parameter, and η being the natural parameter. The

requirement that the scale ω > 0, thus imposes a negativity constraint on the natural

parameters.

The Bayesian exponential family PCA (BXPCA) model as specified will not

satisfy this negativity constraint in general, requiring some adjustment of the model

to meet this requirement. The approach taken by Moustaki and Knott (2000) is to

specify the model with latent variables that are constrained Gaussians. This is not

generally desirable, particularly in the case where mixed data is considered, such

as mixed data of binary and non-negative observations. In such a setup, the latent

variables will be constrained for all parameters, which is unnecessary. An alternative

solution is to make use of a substitute link function. Substitute link functions are

often known for many distributions of interest, such as those listed in table 2.1.

The effect of using substitute link functions on the maximum likelihood objective

function was also discussed for EPCA in the examples of section 2.2.2. For the

Gamma distribution, the logarithmic-link is constraint-free and is thus appropriate

for use in modelling non-negative data with the Gamma distribution. The use

of non-canonical link functions results in curved rather than regular exponential

families (Bickel and Doksum, 2001, pp. 416) and their use has been widely studied
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for generalised linear models. For GLMs, canonical links are preferred in general

(Bickel and Doksum, 2001).

2.3.4 Posterior Computation

Learning in the Bayesian exponential family framework involves sampling all

unknown variables, denoted by the set Ω = {V,Θ,µ,Σ}, given the observed data.

The top level parameters in figure 2.2, Ψ = {m,S, α, β,λ, ν} are treated as fixed

hyperparameters, but these can be learnt from the data. Since all parameters of in-

terest are continuous, it is possible to compute derivatives of the log-joint probability

p(X,Ω|Ψ). This property, coupled with the the earlier observation regarding the

need for an effective sampling scheme due to the potential sensitivities in learning,

makes Hybrid (sometimes called Hamiltonian) Monte Carlo an appealing sampling

approach. Hybrid Monte Carlo (HMC) was described in section 1.5.2 and makes

use of gradient information to aid sampling from the posterior distribution. The

additional gradient information helps to overcome the random walk behaviour

experienced by other sampling schemes such as Metropolis-Hastings and can lead to

dramatically improved mixing of the Markov chain. The potential energy function

required for the HMC sampling is E(Ω|Ψ) = − ln p(X,Ω|Ψ).

The use of the exponential family form ensures that inference is performed in

the space of natural parameters and not the original data or mean parameter space.

This natural parameter representation allows sampling of the matrices V and Θ to

be done in an unconstrained space, which makes inference in general easier and

is particularly useful for HMC sampling. HMC is also useful since it allows for

sampling in non-conjugate models, of which the model developed here is an example.

The general approach for using HMC with constrained variables was described in

section 1.5.2.1. The only constrained variable in the model is Σ, where each diagonal

element σ2k > 0. Each σ2k can be transformed to a corresponding unconstrained

variable ξk using the transformation: σ2k = exp(ξk). This transformation requires that

the chain rule for differentiation is applied and that the determinant of the Jacobian

of the transformed variables be included.

Example 2.8: Binary Matrix Factorisation Model

It is illustrative to consider a model for binary data using the Beta-Bernoulli

conjugate-exponential pair. The Jacobian for the variance transformation is:

|J| =
∣∣∣∣
∂

∂ξk
exp(σ2k)

∣∣∣∣ = |exp(ξk)| = σ2k. (2.38)
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The final Potential energy function, which includes the Jacobian term can then

be written as:

ln p(X,Ω|Ψ) =

N∑

n=1

x⊤
n

(
∑

k

vnkθk

)
−

D∑

d=1

ln

(
1 + exp

{
∑

k

vnkθkd

})

+
K∑

k=1

[
D∑

d=1

(
−λ1 ln(1 + e−θkd)− λ2 ln(1 + eθkd)

)

−
D∑

d=1

(θkd − 2 ln(1 + eθkd) + D ln
Γ(λ1 + λ2)

Γ(λ1)Γ(λ2)

]

−
N∑

n=1

(
K

2
ln(2π) +

1

2
ln |Σ|+ 1

2
(vn − µ)⊤Σ−1(vn − µ)

)

− K

2
ln(2π)− 1

2
ln |S| − 1

2
(µ−m)⊤S−1(µ−m)

+
K∑

k=1


α lnβ − ln Γ(α) + (α− 1) lnσ2k − βσ2k + lnσ2k︸︷︷︸

|J |


 . (2.39)

The required derivatives for HMC can now be computed using this expression

and differentiating with respect to each of the variables in the set Ω.

The HMC procedure is implemented to handle missing inputs in a princi-

pled manner. The data is divided into the set of observed and missing data,

X = {Xobs,Xmissing}, and the set Xobs is used for inference. In practice, the pattern

of missing data is represented by a masking matrix, which is an indicator matrix

representing elements that are observed versus missing. Probabilities are then

computed using the elements of the masking matrix set to one.

The exponential family representation allows for the modelling of heteroge-

neous data in a single framework. The evaluations shown in this chapter assume

that all data is of the same type, but learning of mixed data types, where some

features are integers and others binary for example, can easily be accommodated by

representing some of the elements of Θ as parameters of the Poisson distribution

and the remaining elements as parameters of a Bernoulli distribution respectively.

2.4 Evaluating Model Performance

2.4.1 Testing Methodology

We evaluate the exponential family model developed using both synthetic and real

world data. We define training and testing data for each of the available data sets.

The test data is chosen by randomly selecting 10% of the elements of X. These test
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elements are represented as missing data in the training data set and we learn in the

presence of missing data. Twenty such data sets are created, each with a different

set of missing data and we report the mean and standard deviation error bars for

each of the evaluation metrics used. We use this methodology in all the evaluations

presented in this thesis.

For training and testing data xtrain
n and xtest

n respectively for n = 1, . . . , N , the

algorithms under study are evaluated using the root mean squared error (RMSE)

and the predictive probability (NLP). The RMSE is evaluated as:

RMSE =

√
1

N

∑

n

(xtest
n − xpred

n )2. (2.40)

The RMSE makes most sense for Gaussian data, but is commonly used in other

settings. The negative log-predictive probability (NLP), sometimes referred to as the

test likelihood or expected deviance is:

NLP = − ln p
(
xtest|xtrain

)
(2.41)

p
(
xtest|xtrain

)
=

∫
p
(
xtest|Ω

)
p
(
Ω|xtrain

)
dΩ,

where the last equation is computed by Monte Carlo evaluation of the integral using

samples Ω(s) drawn from the posterior distribution, which are sampled during the

learning process. A wider discussion of metrics for model checking and comparison

is given in the book by Gelman et al. (2004, pp. 180).

2.4.2 Binary Synthetic Data Analysis

Consider a model for binary data based on the Beta-Bernoulli model considered

in example 2.8. Synthetic data was generated by creating three 16-bit prototype

vectors, with each bit being generated with a probability of 0.5. Each of the three

prototypes is replicated 200 times, resulting in a 600-point data set. Bits in the

replicates were then flipped with a probability of 0.1, as in Tipping (1999), thus

adding noise about each of the prototypes. BXPCA inference was conducted using

this data for 6000 iterations of hybrid Monte Carlo, using the first half as burn-in.

Figure 2.3 demonstrates the learning process of BXPCA. In the initial phase of the

sampling, the model is unable to learn any useful structure from the data (samples

5, 15). The energy function rapidly decreases and some useful structure has been

learnt by sample 50. By sample 6000 the model has learnt the original data well, as

can be seen by comparing the reconstructions at sample 6000 and the original data.

The rapid evolution of the samples is an indicator of good mixing of the Markov

chain. In addition, convergence of the chain is examined using two quantitative
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Figure 2.3: Reconstruction of data from samples at various stages of the sam-

pling. The top plot shows the change in the energy function. R̂ and Ĥ are
measure of the chain convergence (discussed in text). The lower plots show the
greyscale reconstructions and the original data.

convergence diagnostics: the potential scale reduction factor R̂, and Brooks’s

hairiness index Ĥ , that were discussed in section 1.5.4. These tests are evaluated

on elements of the reconstruction product ΘV. The potential scale reduction factor

was computed by simulating five separate chains, each with random initialisations.

The general rule of thumb is to seek R̂ < 1.1 (Gelman et al., 2004), which indicates

that the chain has been run long enough. The histogram of R̂ values in figure 2.3

shows all measurements being less than this cut-off and gives no indication that

convergence is an issue. The hairiness index is computed for all samples of a single

chain and highlights convergence issues when sample values lie outside the 95%

confidence bounds of the test. A histogram of the hairiness indices for elements of

the reconstruction product is also shown in figure 2.3, along with the 95% confidence

bound. By this test, over 90% of the measurements lie within bounds. The Ĥ and

R̂ indicators, in combination with the rapid mixing of the chain give no reason to

suspect issues of sampler convergence, providing a high level of trust in the use of

the samples for further analysis. Such an analysis can be used for all data sets being

evaluated and can be useful in tuning the samplers that are used.

In figure 2.4a and 2.4b, the RMSE of the two algorithms on the training and

testing data respectively, are compared for various choices of the latent dimensional-

ity K. EPCA shows underfitting for K = 1 and demonstrates severe overfitting for

large K. This overfitting is clearly seen in the training data RMSE for EPCA, which

quickly goes to zero for larger K, whereas BXPCA manages to avoid this problem.

Figure 2.4c shows the NLP of the two methods. A random model is expected to have

an NLP = 10% × 600 × 16 = 960 bits or normalised to 1.6 bits per observation, but

the NLP values for EPCA are significantly larger than this. This is because EPCA
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Figure 2.5: Bar plots comparing performance for missing data levels from 10% -
50%.

tends to fit the training data exactly and becomes overconfident in its predictions.

The performance results were shown for an induced ‘missingness’ level of 10%. The

performance of BXPCA and EPCA was compared for K = 3 latent factors for various

levels of induced missingness, ranging from 10% to 50%, to expose the behaviour of

both methods under the various missing data conditions. The results are shown in

figure 2.5. The stars in the last plot indicate the NLP for a random predictor. For

BXPCA, the increasing level of uncertainty is reflected in all three graphs, showing

an increasing trend in the three error measures used. BXPCA is able to provide

predictive ability even in settings with high missing data levels, with the NLP for

all test scenarios lower than the NLP under a random predictor. EPCA provides a

better fit to the training data, but is then unable to provide useful predictions of the

unseen data as seen in both the test RMSE and NLP. This analysis conducted shows

that Bayesian learning in this model framework provides a mechanism by which to

obtain robust inferences from data and allows effective predictions to be made under

many varying conditions.
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Figure 2.6: Comparison of RMSE and NLP for various latent dimensions for the
SPECT images data set. BXPCA indicated by boxes with ‘+’ for outliers, and
EPCA given by notched boxes with ‘*’ for outliers. (a) RMSE on training data
(b) RMSE on test data (c) NLP.

2.4.3 SPECT Image Analysis

Single Proton Emission Computed Tomography (SPECT) images are used in the di-

agnosis of abnormal cardiac function. The data used here consists of SPECT images

of 267 patients, which has been processed to extract 22 binary attributes that describe

the images (UCI Data). Figure 2.6 compares the performance of BXPCA and EPCA.

The two algorithms perform equally well with small latent dimensionality K. As the

latent dimensionality increases, EPCA begins to over-fit the data, as seen in the plot

of training error with a corresponding degradation in the imputation of the unseen

test data. The results shows lower error on the testing data for the Bayesian approach.

The results also suggest that a latent dimensionality of 4 or 5 is suitable to accurately

represent this data.

2.5 Selecting a Final Embedding

The lack of parameter identifiability, discussed in section 2.3.3, poses a problem

for certain analyses of the posterior samples obtained. In maximum likelihood

methods, the alternating minimisation returns a single V that is the low dimensional

representation. In the Bayesian approach, a single representative for V is not

obtained, but rather many samples, which represent the variation in the embedding.

The lack of identifiability subjects V to permutations of the columns and to rotations

of the matrix, making an average of the samples of V meaningless. This is a problem

encountered in many areas of statistical analysis: in mixture modelling this problem

is referred to as the ‘label switching’ problem (Redner and Walker, 1984) or the

‘alignment’ problem in factor analysis (Clarkson, 1979).

A general strategy by which to induce identifiability in factor models is to

constrain model parameters such that symmetries are removed. This is achieved
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by imposing constraints on the model parameters, as noted in section 2.3.3 or

by post-processing. Post-processing does not affect identifiability since this is a

model property, but allows the set of samples obtained from the model without

identifiability constraints to be adapted and used to make meaningful inferences.

For post-processing, the simplest strategy involves aligning factors based on means,

variances or other statistics of interest. Other more advanced relabelling or alignment

algorithms also exist, such as those discussed by Stephens (2000). The approach

taken here considers the use of further sampling steps, producing a set of post hoc

samples, which will allow meaningful averages to be taken.

As an initial approach, a representative embedding can be obtained by

choosing the best global configuration from the set of available samples

{V∗,Θ∗} = argmax
Ω

(s) p(X,Ω(s)|Ψ), and using this V∗ or Θ∗ in any subse-

quent analysis. This approach does not consider the uncertainty in the embedding

obtained and is thus not a method of choice. A second approach aims to give further

information about the variability of the embedding. Here, the model parameters

{Θ∗,µ∗,Σ∗} are fixed in order to obtain the embedding for V. These fixed parame-

ters can be set using the sample chosen in the first approach. The embedding V is

then sampled from the conditional distribution:

V ∼ p(V|X,Θ∗,µ∗,Σ∗) ∝ p(X|V,Θ∗)p(V|µ∗,Σ∗), (2.42)

where equation (2.42) is obtained using Bayes’ theorem and the joint probability dis-

tribution (2.30). Samples are obtained by any preferred MCMC sampling scheme.

Problems of rotation and permutation have been removed by constraining the vari-

ables {Θ∗,µ∗,Σ∗} and the ergodic average of the post hoc samples can now be cor-

rectly computed. The same procedure can be applied to obtain a representation of

the factor loadings Θ, where samples are drawn from the conditional distribution:

Θ ∼ p(Θ|X,V∗) ∝ p(X|V∗,Θ)p(Θ|λ, ν). (2.43)

Resampling both V and Θ in this way gives an understanding of the variability of

the final embedding, in terms of both Θ and V.

This procedure is demonstrated using the synthetic data described in the pre-

vious section for K = 2 latent dimensions. A visualisation of the latent factors V

depicts observations that are similar, whereas the visualisation of the factor loadings

Θ depicts similarity between the feature dimensions. Figure 2.7 is a visualisation of

the embedding in the two-dimensional space for 10 data points and 20 independent

samples drawn for the latent variables V and for the factor loadings Θ, using

equations (2.42) and (2.43). The colours and shapes indicate different observations,

where all samples corresponding to the same observation are plotted with the same
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Figure 2.7: Variation in embedding obtained using 20 post hoc samples for (a)
embedding of 10 observations of V and (b) the variation in the factor loadings
Θ for all 16 dimensions.

shape and colour. The convex hull of each set of samples is also shown by the

connecting lines, with the enclosed region shaded for ease of visualisation.

From 2.7(a), two clustered regions can be seen, which represent observed data

points that are similar to each other. While three clusters are present in the observed

data, two of the three clusters are very similar and this two-dimensional visualisation

is unable to separate these two classes. Similarly, figure 2.7(b) shows the similarity

of the input dimensions. Dimensions 2, 10 and 13 overlap in figure 2.7(b), and these

are highly similar input dimensions, which can be visually supported by examining

the input data (shown in the last panel of figure 2.3).

When fixing {Θ∗,µ∗,Σ∗} for the resampling of V, it is better to choose a

sample randomly from the set of samples at convergence, since choosing the best

sample will introduce a bias that can undermine performance. This can also be done

for five samples to get an indication of the variation in the embedding in terms of

both parameters. Since there is a dependence between V and Θ, a high correlation

between these two parameters will also result in poor resampling. One way of

resolving these concerns would be to follow an EM approach for determining the

final embedding, and is appropriate for this visualisation task.

2.6 Study: Elicitation of Scotch Whiskey Preferences

The following case study highlights elements of the practical application of ex-

ponential family factor models. Exploratory data analysis is usually the first step

in much of applied statistical work, and the exponential models discussed extend

the ability to visualise and explore the many diverse data types now available -

analysis often restricted to real-valued data. One application of particular interest is
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Table 2.2: Summary of the Scotch whiskey data (Edwards and Allenby, 2003).

# Symbol Brand # Users Price Bottled Type

1 CHR Chivas Regal 806 21.99 Abroad Blend
2 DWL Dewar’s White Label 517 17.99 Abroad Blend
3 JWB Johnnie Walker Black Label 502 22.99 Abroad Blend
4 JaB J&B 458 18.99 Abroad Blend
5 JWR Johnnie Walker Red Label 424 18.99 Abroad Blend
6 OTH Other brands 414
7 GLT Glenlivet 354 22.99 Abroad Single malt
8 CTY Cutty Sark 339 15.99 Abroad Blend
9 GFH Glenfiddich 334 39.99 Abroad Single malt
10 PCH Pinch (Haig) 117 24.99 Abroad Blend
11 MCG Clan MacGregor 103 10 US Blend
12 BAL Ballantine 99 14.9 Abroad Blend
13 MCL Macallan 95 32.99 Abroad Single malt
14 PAS Passport 82 10.9 US Blend
15 BaW Black & White 81 12.1 Abroad Blend
16 SCY Scoresby Rare 79 10.6 US Blend
17 GRT Grant’s 74 12.5 Abroad Blend
18 USH Ushers 67 13.56 Abroad Blend
19 WHT White Horse 62 16.99 Abroad Blend
20 KND Knockando 47 33.99 Abroad Single malt
21 SGT Singleton 31 28.99 Abroad Single malt

in emerging areas of so-called ‘algorithmic marketing’ or ‘computational advertising’.

The Simmons study of media and markets (1997) (Edwards and Allenby, 2003)

was conducted to query households regarding brand awareness and product usage.

One segment of the study focused on the consumption of Scotch whiskey. The data

collected consists of N = 2218 respondents and binary indicators of whether or not

respondents had bought any of D = 21 brands of Scotch over the last year. Table

2.2, lists the brands considered, the number of users, pricing, whether the whiskey

is blended or single malt and the bottling location.

This data set was analysed using the Bayesian exponential family PCA (BX-

PCA) model with K = 2 latent factors as an initial analysis of the data. The latent

variables V represent user preferences amongst the the K underlying factors and

Θ represents the extent to which each of the Scotch brands appeal to the various

user preferences. The latent factors are expected to reflect factors which affect users’

purchasing decisions, such as affordability and reputation. Figure 2.8 provides a

view of the data used, where the abbreviations used are listed in table 2.2. The figure

also shows hairiness plots for 4 model parameters as a check on mixing properties

of the sampler, with curves lying within the 95% confidence intervals.

The aim of the study here is to highlight the potential insights that can be

gained for marketing purposes using this modelling approach. One popular area is

that of collaborative filtering, which is an information filtering approach which can
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be used to make product recommendations to users based on the behaviour of other

individuals with similar tastes, such as the popular Netflix challenge (Netflix, 2009).

The problem set-up for collaborative filtering is a prediction task of the kind demon-

strated in the previous section, and will thus not be explored here further, though

is very relevant. Here, the focus will be on more traditional marketing approaches,

looking at opportunities for campaign design and the insights for campaigns that

can be obtained. A campaign is usually a particular targeting strategy aimed at a

choice of predefined users, or a wider choice of advertising aimed at particular sets

of users.

2.6.1 Product-space Analysis

Figure 2.8 provides a spatial characterisation of the Scotch brands by showing a plot

of the embedding variation for the factor loadings Θ. The post-processing method

described in section 2.5 for selecting a final embedding was used, with the latent

representation obtained being similar to the result produced by Edwards and Allenby

(2003) using PCA. This representation shows interesting groupings of the various

brands by both market share (as indicated by the number of users listed in table 2.2)

and the blend of the whiskey. The top 9 brands by usage are clearly distinguishable

from the remaining brands (forming a grouping on the left side of the plot). The

single malt whiskeys can also be easily identified (bottom right corner of the figure).

Dimension 2 is a factor that can be interpreted as the popularity of the Scotch, with

whiskeys being raked from most popular on the left (CHR) to least popular on the

right (SGT).

2.6.2 User-space Analysis

A latent representation is obtained for every user in the data set, which allows the

common behaviour of users to be studied. Figure 2.9 shows a sample from the model

for the latent user-space V. A number of interesting features can be observed. There

are a number of clusters of Scotch drinkers, which have been highlighted and data

contributions for those users shown in the figure insets. The first grouping are those

that are consumers of CHR and DWL only. The second group are connoisseurs of

single malt Scotch (GLT, GFH) and the third group are those that focus on brands of

Scotch ‘other’ than the widely available options. The marketing analyst would then

construct campaigns for targeted advertising on groups of users, who have been se-

lected not simply because they have bought the same brands of Scotch, but because

they share the same underlying preferences. This thinking focuses on the ‘up-sell’

of products (selling more of the same). The collaborative filtering approach com-

bines the view of the users with the spatial characterisation of Scotches to suggest

related brands of interest - thereby focusing on the ‘cross-sell’ aspect of marketing.
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Figure 2.8: Plot showing the Scotch data matrix (top left panel), Hairiness plots
(bottom left panel), and the two-dimensional embedding of Scotch brands (right
panel).

Current trends will continue to see increased relevance of the modelling techniques

discussed here, becoming embedded in current competitive strategies for marketing

in both online and shop-font settings. A more sophisticated analysis would involve

the inclusion of other sources of data, with the ‘Matchbox’ model a good example

(Stern et al., 2009).

2.7 Methods for Approximate Inference

While we have focussed on MCMC methods throughout this chapter, other approx-

imate inference methods can be used and we contextualise their use here. The first

approximate inference method we consider is variational inference. In the variational

approach, we define the variational free energy (Beal, 2003) of the BXPCA model

(here leaving out hyperparameters for simplicity) as:

F(Q(V,Θ)) = EQ(V,Θ) [ln p(X,V,Θ)− lnQ(V,Θ)] . (2.44)

This variational free energy can be shown to be a lower bound on the log-likelihood

p(X) for all distributions Q(V,Θ). The variational approximate inference procedure

is obtained by maximising F (Q(V,Θ)) subject to the variational approximation

Q(V,Θ) = Q(V)Q(Θ). To implement the inference procedure, we must be able

to compute expectations with respect to the Q-distributions. The maximisation is

achieved by optimising the free energy with respect to Q(V), keeping the Q(Θ)

fixed, and alternating in this way by optimising one keeping the other fixed until
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Figure 2.9: Analysis of the latent user trait space. Inset 1, highlights users highly
loyal to brands 1 and 2, Inset 2 are single malt connoisseurs and Inset 3 are
‘other’ Scotch drinkers.

convergence. Variational methods take into account the whole posterior distribution,

and unlike MAP estimates, can avoid overfitting in this way.

Variational inference for the standard factor analysis model was shown by

Ghahramani and Beal (2000). In the Bayesian exponential family PCA model, the

required expectations are more difficult to compute, since we must take expectations

of the log-partition function. To overcome this difficulty, we can resort to local

variation methods, where we replace the log-partition function with a suitable upper

bound to obtain a tractable approximation. Upper bounds for log-partition functions

are of great interest and are discussed in a number of papers (Wainwright et al., 2005;

El Ghaoui and Gueye, 2008). A more recent approach taken by Khan et al. (2010)

is to use a ‘Bohning bound’ on the log-sum-exponential function. This results in a

tractable bound for categorical and binary variables, whose log-partition functions

are more difficult to compute expectations with; other data types have easier

log-partition functions whose bounds can be obtained using Jensen’s inequality. This

results in a variational method whose performance is shown to have comparable

accuracy to the HMC approach we described here, but can be much faster.

A second approximate inference method is the Integrated Nested Laplace Approx-

imation (INLA) (Rue et al., 2009), which allows for fast approximate inference in

latent Gaussian models, and is thus appealing for the models we have discussed in

this chapter. The INLA approach assumes that we have non-Gaussian observations

x, and latent variables v that are Gaussian and controlled only by a few hyperpa-
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rameters ϑ.

INLA uses approximations to the marginal posterior density for the hyperpa-

rameters p̃(ϑ|x), and for the full conditional marginal posterior densities p̃(vn|x,ϑ).
The approximation for p(ϑ|x) is given by a Laplace approximation, while the

approximation for p(vn|x,ϑ) can be a Laplace or simplified Laplace approximation.

The posterior marginals can then be computed using numerical integration:

p̃(vn|x) =
∫
p̃(vn|x,ϑ)p̃(ϑ|x)dϑ =

K∑

k=1

p̃(vn|x,ϑk)p̃(ϑk|x)∆k, (2.45)

where the area weights ∆k are chosen either by using a grid of points or by the

’central composite design’ (CCD) strategy, both of which are described by Rue et al.

(2009) in detail. INLA has already been applied successfully in a number of settings

(Rue et al., 2009; Martino et al., 2010; Yoon et al., 2010), and is an appealing approach

for use in our model. The major limitation is that INLA requires a small number of

hyperparameters to be effective, due to the numerical integration step. Some work

already exists in overcoming this limitation (Yoon et al., 2010) making the use of

INLA with the models we have described an interesting line of future work.

2.8 Latent Variable Models in Context

The development of latent factor models has a history over a century long with a

specification in diverse areas of research including linear algebra, statistics, psycho-

metrics, machine learning, biostatistics and computer vision, amongst others. The

emergence of latent factor modelling can be traced to the method of Singular Value

Decomposition (SVD) and its two progenitors, Eugenio Beltrami (1873) and Camille

Jordan (1874) (Steward, 1993). These authors developed the ideas for SVD as part of

a wider agenda for promoting an understanding of the class of bi-linear models. Of

course, today this class of models is widely known, much used, and encompasses

many of the models for matrix factorisation and latent variable modelling that have

been developed since.

The model that has been the focus of much of this chapter, Principal Compo-

nents Analysis (PCA) was initially specified by Pearson (1901) as a method for

searching for the closest fitting lines and planes to points in space. At the same time,

Factor Analysis (FA) was proposed by Spearman (1904) as a means of extracting

factors of intelligence - much in the way factor analysis is used at present, though

with the less lofty goal of explaining all human intelligence with the use of such

methods. Both these methods are now part of the foundation of the modern study

of unsupervised models with latent variables.
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The modern development of this area of research begins with a move away from a

linear-algebraic view, towards probabilistic interpretations of SVD and PCA, wherein

the work of this chapter contributes. Machine learning research has been prolific in

this area, with models focussing on the analysis of specific data types being actively

developed. For Gaussian data, Tipping and Bishop (1997) and Roweis (1998) provided

a a probabilistic interpretation of PCA by providing a generative model for SVD

with a Bayesian analysis for PCA given by Bishop (1999). A focus on binary data led

Tipping (1999) to propose a method for binary data visualisation using latent variable

modelling and variational inference techniques, with Schein et al. (2003) specifying

a similar logistic PCA. For non-negative data, the highly popular non-negative matrix

factorisation (Paatero and Tapper, 1994; Lee and Seung, 1999) was presented with

numerous non-negative variants of other methods being developed subsequently.

For co-occurrence and multinomial data such as word appearances in documents,

PLSA was developed (Hofmann, 1999) as well as its successor, Latent Dirichlet

Allocation (LDA) (Blei et al., 2003). The relationship between these methods and the

generalised models of this chapter were examined in section 2.2.2.

The unity of these distinct but related models was recognised by a number of

authors. In psychometrics, Moustaki and Knott (2000) presented a generalised model

for latent traits that considered an exponential family generalisation of models

with latent variables – with the phrasing ‘latent trait’ being the term used in the

psychometrics literature. An expectation maximisation based learning algorithm

was described, but the model had problems with the numerical integration required

and was demonstrated for two factors only. In machine learning, Collins et al. (2002),

unaware of the work of Moustaki and Knott, proposed a generalised model for PCA.

Collins et al. proposed a generic algorithm for parameter learning based on the

alternating minimisation that was described in section 2.2.3.

Welling et al. (2008) followed by providing insights into the limits of maximum

likelihood learning in the latent variable model framework discussing deterministic

latent variable models, and proposed alternative inference based on variational

methods. A family of probabilistic algorithms, called Discrete Components Analysis

(DCA) was presented by Buntine and Jakulin (2006), and provided a unification

of existing theory relating to latent variable models and dimensionality reduction

with discrete distributions. The learning algorithms of the DCA family employ

either Gibbs sampling or variational approximations. We developed fully Bayesian

inference for generalised latent variable models in Mohamed et al. (2009) and have

expanded on this work significantly in this chapter. In this chapter we go further by

providing insight into the links between different models using exponential families,

substitute link functions and Bregman divergences and expanding on the discussion

on identifiability.
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The literature on matrix factorisation is vast and a number of other papers are

of relevance. Maximum Margin matrix factorisation (MMMF) was introduced by

Srebro et al. (2005b) and bounds the norms of the matrix factors rather than the

dimensionality and allows for an unbounded number of factors. Robust probabilistic

projections (Archambeau et al., 2006) considers a Student’s-t likelihood to handle

data with outliers. Probabilistic matrix factorisation (Salakhutdinov and Mnih, 2008)

was developed for the task of collaborative filtering and uses a Gaussian noise model

for movie ratings data, and was shown to be scalable to large Netflix data set.

Additional generalised latent variable models of interest include: EPCA for

belief compression in POMDPs (Roy and Gordon, 2003); models for supervised

EPCA (Guo, 2008); sparse coding using EPCA (Lee et al., 2009); dynamic exponential

family matrix factorisation (Hayashi et al., 2009); generalised models for spatially

correlated multivariate data (Zhu et al., 2005); the Bayesian partial membership

model (Heller et al., 2008); and Bayesian models for generalised spatial dynamic

factor learning (Lopes et al., 2010).

2.9 Summary

In this chapter we developed a framework for generalising latent variable models

to the exponential family. This exponential family generalisation extends the scope

of latent variable models to data that is binary, categorical, counts, non-negative,

or a heterogeneous set of these data types, and has unified many existing models.

We have focussed on the promotion of Bayesian approaches to learning, after

contemplating the limitations of the maximum likelihood approach. The mixture

nature of the resulting generalised model and its identifiability properties were

used to specify sampling schemes for learning and selecting a final embedding.

We showed that the Bayesian approach is robust, avoids overfitting and is able to

produce useful predictions in a number of settings.

Future research directions have already been alluded to by recent work, fo-

cussing on more complex data modalities such a spatial and time varying data.

In what will prove to be a recurring observation, the ideas of this chapter pave

the way for a parallel study of non-parametric Bayesian approaches to generalised

modelling. Any future work, will at its core, become a study of the selection of prior

distributions used in model construction. The next chapter takes one path in this

line of thinking, by examining the implication of alternative priors for the latent

variables. In particular, sparse priors will be examined, and will provide a new

research direction where the generalised modelling framework will prove valuable.



Chapter 3

Models for Sparse Latent Factor

Discovery

In this chapter we focus on sparse latent representations. A model is considered to

be sparse if it sets to zero or close to zero any parameters that are not needed to

explain the observed data. Sparsity allows the learning of parsimonious models that

are interpretable and have gained in popularity, being well motivated in a number

of application areas. We attempt to navigate the dichotomies that permeate current

thinking in sparse learning: zero or close to zero, optimisation or Bayesian, shrinkage

or discrete mixture priors, hypothesis or assumption. These issues are addressed

using the framework for generalised learning developed in the previous chapter:

by unifying models for sparse optimisation, designing new Bayesian models with

sparsity and comparing these various approaches in a controlled manner.

3.1 Applications Motivating Sparse Representations

The analysis of data in any applied science comes with a wealth of domain knowl-

edge that can be incorporated into the model building process. One property shared

by data across scientific disciplines is an inherent redundancy in the data that allows

for a sparse representation in some domain. Exploiting this sparsity can result in

more effective model building and enhanced interpretability of model parameters.

Three scientific areas where sparsity can be used to positive effect are used here to

motivate an interest in methods for sparse learning.

One of the most prolific areas of research in sparse modelling is computational

biology, where numerous motivating applications can be found. One common

example where a sparse representation is applicable is in the analysis of gene

expression data (Ishwaran and Rao, 2003; Huang et al., 2008; Carvalho et al., 2008).
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A gene’s expression is influenced by the presence of a number of transcription factor

proteins, and there exists a wide array of such transcription factors that may affect

the expression of any set of genes. Here, the underlying biology is considered to

be sparse, since an individual gene’s activity may only be directly influenced by a

subset of the underlying transcription factors.

The hedging problem experienced in the construction of asset portfolios is a fur-

ther area of interest (Brodie et al., 2009; Carvalho et al., 2010b). The financial

market consists of many potential assets that can be used in hedging the risk of

a portfolio. The high costs associated with creating a hedging portfolio with a

large number of assets must be avoided to be profitable, requiring that only a

subset of the available assets be used. Using sparse methods, the selection of an

optimal subset of assets for hedging can be achieved and has the much sought after

benefit of reducing transactional costs. The potential for effective hedging at lower

cost and the concomitant prospect of higher profit provides a compelling motiva-

tion for the investigation of sparse methods in the construction of financial portfolios.

In pharmacovigilance, statistical analysis of adverse drug reactions (ADR) re-

ported by patients is used in the surveillance of pharmaceutical products. The

aim of pharmacovigilance is to highlight drugs that may cause adverse patient

reactions (Caster et al., 2008; Madigan et al., 2010). Recent developments in the

analysis of such data have moved away from pairwise evaluation of drugs when

analysing adverse effects, to the use of multi-drug analysis methods. In a regression

setting, ‘interestingness’ coefficients for problematic drugs are determined. This

interestingness is used in the subsequent monitoring of any highlighted drugs and

if ultimately necessary, provides a mechanism with which to accelerate the process

of recalling harmful drugs. The sparse estimation of these coefficients is desirable

since it makes interpretation easier by preventing confounding from other drugs

appearing to be of interest. Due to the potential impact that drugs with adverse

effects can have on the population, methods which improve this surveillance and

ultimate recall are highly desirable, providing a strong motivation for the study of

sparse methods in this setting.

Whether for methodological or application development, sparsity has come to

play a prominent role in many settings, including statistical problems in normal-

means estimation, regression, variable selection and dimensionality reduction,

and applications in signal and image processing, compressed sensing and source

separation. For unsupervised latent variable modelling - the focus of this thesis -

models have been developed for sparse PCA (Zou et al., 2004; Zass and Shashua,

2006), sparse matrix factorisation (Srebro and Jaakkola, 2001; Dueck and Frey, 2004)

and sparse factor regression models (Carvalho et al., 2008). This chapter will use
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the tools developed in the previous chapter with a new focus on the role of prior

specification for sparse learning in generalised latent variable models.

At the same time, the motivation for sparse methods does not come without a

critique of its sensibilities. Do domain experts truly consider the gene regulation

problems considered to be sparse (with exact zeroes)? Concurrently, sparsity in

drug surveillance provides a compelling application of such methods. In all cases,

whether one considers sparsity to be truly present or as an alternative methodology

by which to explore data, it can be useful to agree that there is at least an underlying

compressibility in most data sets that can be exploited to positive effect. Notwith-

standing the philosophical aspects of these arguments, the remainder of this chapter

will provide an exposition of current thinking in sparse and unsupervised learning.

The more subtle aspects of learning with sparsity are probed in section 3.6.

3.2 Sparsity Inducing Loss Functions

An optimisation approach to sparse learning forms an intuitive basis upon which

to consider the adaptation of existing methods. Such an optimisation strategy is

based on the specification of a penalised loss function, using penalty functions that

are known to encourage sparsity. Loss functions obtained in this manner often re-

quire different optimisation methods than those for unmodified loss functions and

the development of these optimisation algorithms forms an active area of research.

3.2.1 Lp norm minimisation

A general penalised loss function based on the Lp norm has the following form:

min
φ

∑

n

ℓ(xn,φ) + α‖φ‖p, (3.1)

for any loss function of interest ℓ(·), a D-dimensional data vector xn, model parame-

ters φ, a regularisation parameter α, and the Lp norm ‖ · ‖p for p ≥ 0. The Lp norm is

defined as follows:

‖x‖0 =
∑

d

I(xd 6= 0); ‖x‖p =
(
∑

d

|xd|p
)1/p

, p > 0. (3.2)

If a loss function for regression is considered with p = 2, the familiar ridge regression

is obtained. The use of the L1 norm as a penalty function is well known to encourage

sparse solutions, and was popularised by a model for sparse regression known as

the LASSO (Tibshirani, 1996). Sparse solutions can also be obtained for the case of
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0 < p < 1, and are briefly discussed in section 3.6.1.

An ideal approach to sparse learning would be to penalise parameters based

on the number of non-zero elements, which can be achieved using the L0 (quasi-)

norm. This however, is an intractable combinatorial problem, requiring the enumer-

ation of all subsets of sparse parameters and is thus not computationally feasible

(Donoho, 2004). The majority of approaches to sparse learning in optimisation focus

on L1 norm penalisation. This popularity stems from an important result, often

referred to as the L0−L1 equivalence, that roughly states that if the representation to

be computed is sufficiently sparse, then the NP-hard problem of finding the sparsest

solution can be solved efficiently and exactly by minimizing an appropriate L1 norm

(Donoho, 2004, 2006). The convex nature of the L1 norm has encouraged much

development in optimisation strategies for L1 norm minimisation, relying on the

wide array of tools available from the theory of convex optimisation. The popularity

of the L1 norm has been further cemented by the rise in popularity of methods

such as the LASSO (Tibshirani, 1996) and compressed sensing (Candes et al., 2006;

Donoho, 2006).

3.2.2 Exponential Family PCA with Sparsity

We extend the exponential family PCA model discussed in section 2.2.2 using the

sparse optimisation methodology described above using the L1 norm. The resultant

training objective for a sparse generalised latent variable model is:

min
V,Θ

∑

n

ℓ (xn,Θvn) + α‖V‖1 + βR(Θ), (3.3)

where the loss function ℓ (xn,Θvn) = − ln p(xn|Θvn) is the negative log likelihood

function obtained using equation (2.28). The regularisation parameters α and β, con-

trol the degree to which the parameters V and Θ are penalised and the function

R(Θ) is any suitable regularisation function for the model parameters Θ. Impor-

tantly, equation (3.3) provides a unifying framework for sparse models with L1 reg-

ularisation. This objective function is specified generally and is applicable for a wide

choice of regularisation functions R(·), including the L1 norm. Two loss function that

can be obtained based on the choice of R(Θ) are:

Sparse MAP Loss. We use the loss function in equation (3.3) with R(Θ) =

− ln p(Θ|λ, ν), which makes use of the conjugate prior distribution specified by

equation (2.29). This corresponds to finding the maximum a posteriori (MAP)

solution. This model will be referred to as sparse EPCA (SEPCA).
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Sparse Parameter Loss. In addition to sparsity in V, it is possible to include sparsity

in Θ using the L1 norm using R(Θ) = ‖Θ‖1. While this may be an interesting

model, its behaviour will not be considered further here.

The objective function for both of these functions is convex in either of its arguments

with the other fixed, but is not convex in both arguments jointly. Similarly to the

optimisation described in 2.2.3, we use an alternating minimisation procedure, which

iteratively solves the following pair of optimisation problems:

minV− ln p(X|V,Θ) + α‖V‖1 (3.4)

minΘ− ln p(X|V,Θ) + βR(Θ). (3.5)

Since each individual optimisation remains convex, the extensive literature regarding

L1 norm regularisation can be referred to in solving these problems. The optimisation

of equation (3.4) has been solved for the case of the Gaussian likelihood using the

methods presented by Tibshirani (1996) in the LASSO. If a Bernoulli likelihood is

considered, the optimisation corresponds to an instance of the L1 regularised logistic

regression (Lee et al., 2006b; Schmidt et al., 2007). For the general setting, a number

of methods exist for solving this problem: it can be recast as an equivalent inequality

constrained optimisation problem and solved using a modified LARS algorithm (Lee

et al., 2006b), recast as a second order cone program or solved using a number of

smooth approximations to the regularisation term (Schmidt et al., 2007), amongst

others. The L1 projection method of Schmidt et al. (2007) is used here and can be

used in conjunction with any of the loss functions under study. Specific details of the

optimisation scheme are deferred to that work.

3.3 Sparse Bayesian Learning

As opposed to the optimisation framework considered in the previous section, where

one searches for the single best model parameters and variables, the Bayesian frame-

work averages the model parameters and variables according to their posterior prob-

ability distribution, given the observed data. In the Bayesian setting, learning with

sparsity involves the use of prior distributions that encourage sparsity. Prior distribu-

tions suitable for the purpose of sparse learning are referred to as sparsity-favouring

priors. A sparsity-favouring prior can be any distribution centred at zero with high

excess kurtosis, indicating that it is highly peaked with heavy tails or a distribution

with a delta-mass at zero. The set of sparsity-favouring priors includes distributions

such as the Normal-Gamma, Laplace (or double exponential) or Exponential distri-

butions. Furthermore, distributions such as the Horseshoe (Carvalho et al., 2010a) or

the spike-and-slab (Ishwaran and Rao, 2005) are suitable as sparse priors.
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Table 3.1: Mixing densities used in the scale-mixture construction of various
sparse priors.

Sparse Prior Mixing Density π(λ)

Student’s-t Inverse Gamma G−1
(
λ|ν2 , ν2

)

Laplace Exponential E(λ| 1ν )
Normal/Jeffrey’s Reciprocal 1/λ
Horseshoe Inverted Beta B′(λ|12 , 12)
Normal-Gamma Gamma G(λ|α, β2

2 )
Normal/Inverse-Gaussian Inverse-Gaussian iN (λ|α, β)
Normal/Exponential-Gamma Exponential-Gamma (1 + λ)−(c−1)

3.3.1 Continuous Sparsity Favouring Priors

There are numerous continuous prior distributions that have been used to encourage

sparsity in the statistical literature. In most cases, these distributions share the prop-

erty that they can be viewed as scale mixtures of Gaussian distributions (Andrews

and Mallows, 1974; West, 1987). The scale-mixture of Gaussians is expressed by the

following hierarchical specification for observed data x (Choy and Chan, 2008):

p(x|µ,σ2,λ) =
∏

d

p(xd|µd, σ2d, λd) (3.6)

xd|µd, σ2d, λd ∼ N
(
xd|µd, κ(λd)σ2d

)
(3.7)

λd ∼ π(λd), (3.8)

where κ(λd) is a positive function of mixing parameters and π(λd) is the mixing

density on R
+. λd is referred to as the global variance component and σ2d as the local

variance component. The scale mixture implies the following marginalisation:

xd|µd, σ2d ∼
∫ ∞

0
N
(
xd|µd, κ(λd)σ2d

)
π(λd)dλd. (3.9)

For the implied marginal density to be suitable as a sparse prior, it must be shown

that the resulting priors are peaked at zero and have tails that decay at a polynomial

rate (i.e. decay according to some power law). A multitude of options for the mixing

density are available that meet these requirements and yield priors suitable for sparse

learning. Table 3.1 lists various sparse priors that can be obtained, assuming κ(λd) =

λd and using the listed mixing density. Contours of constant value are also shown

for some commonly used sparse priors in figure 3.1.

Example 3.1: Normal-Gamma Distribution

Consider the Normal-Gamma scale-mixture distribution:

p(x) =

∫
N (x|0, λ)G

(
λ|α, β2

2

)
dλ, (3.10)
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Figure 3.1: Contours of penalty functions associated with several sparse priors.

where the Gamma density G
(
λ|α, β2

2

)
= (β2/2)α/2

Γ(α/2) (λ)α−1 exp
(
−β2

2 λ
)

, with

α, β > 0 are known constants. The marginal pdf for x 6= 0 is:

p(x) =
βα+

1
2

√
π2α−

1
2Γ (α)

|x|α− 1
2Kα− 1

2
(β|x|), (3.11)

where Kα− 1
2
(·) is the modified Bessel function of the second kind. This density

is a member of the class of generalised hyperbolic distributions, which includes

other distributions such as the Normal-Inverse Gaussian (Barndorff-Nielsen,

1978). The sparsity-favouring properties of the Normal-Gamma distribution

can be evaluated by examining its properties at zero and the tail behaviour of

equation (3.11):

lim
x→0

p(x) =

{
β

2
√
π

Γ(α− 1
2
)

Γ(α) for α > 1
2

∞ otherwise
(3.12)

p(x) ∝ |x|α−1 exp(−x) for x≫
∣∣∣
(
α− 1

2

)2 − 1
4

∣∣∣ , (3.13)

where the above two equations can be derived by using the asymptotic forms

of the Bessel function (NIST, 2010, eq. 10.30, 10.41). These two properties show

that the density is highly peaked at zero and has tails with polynomial decay,

and is thus suitable as a sparse prior.

A characteristic of these priors is that these continuous densities place no mass on

zero itself and the samples never contain exact zeroes. If we believe that that the

latent representation should contain exact zeroes, then a prior with a delta mass at

zero must be used.

3.3.2 Sparsity with Spike-and-Slab Priors

The second class of sparse priors that can be used are based on a discrete mixture

of point mass at zero, referred to as the ‘spike’ and any other distribution known as

the ‘slab’, giving the alternative name as a ‘spike-and-slab’ distribution (Mitchell and

Beauchamp, 1988; Ishwaran and Rao, 2005). Sparsity in the latent variables vnk, for

vn = [vn1, . . . , vnK ], is encoded by considering independent prior distributions given
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by the mixture:

p(vn|zn) =
∏

k

p(vnk|znk) (3.14)

p(vnk|znk) = (1− znk)δ0(vnk) + znkπ(vnk), (3.15)

where δ0 is the delta function at zero and π(vnk) is assumed to be a fixed unimodal

symmetric density, often a uniform or Gaussian distribution. Since this prior places

mass explicitly on zero, it is suitable as a sparse prior resulting in Bayesian inference

with exact zeroes in any samples obtained. The spike-and-slab distribution has

enjoyed application in a wide range of statistical problems including regression and

variable selection (Ishwaran and Rao, 2005; O’Hara and Sillanpäa, 2009).

For the practical use of this prior, we construct the the spike-and-slab using a

K-dimensional binary vector zn, which indicates whether an individual parameter

vnk is sampled with probability πk from the slab component or if it is to be sampled

from the spike. We use a hierarchical specification with Bernoulli indicator variables

and Beta priors for the spike/slab probability πk.

p(zn|π) =
∏

k

B(znk|πk) =
∏

k

πk
znk(1− πk)1−znk (3.16)

p(πk|e, f) = β(πk|e, f) =
1

B(e, f)
πk

e−1(1− πk)f−1. (3.17)

The Beta function is B(e, f) = Γ(e+ f)/(Γ(e)Γ(f)). For the choice of a Gaussian slab, the

spike decisions are combined with the slab to form the overall probability:

p(vn|zn,m,Σ) =
∏

k

N (vnk|znkmk, znkσ
2
k), (3.18)

where the mean of the Gaussian is mk and the diagonal covariance Σ has elements

σ2k. For this definition, when znk = 0, p(vnk) in equation (3.18) becomes a delta

function at zero, indicating that the spike has been chosen instead of the slab.

This construction is particularly interesting, since it can be interpreted as a

penalty on the number of non-zero elements, in the same manner that the L0 norm

would penalise model parameters. The expected L0 norm of v can be computed as:

card(vn) = E [‖vn‖0] = E

[
K∑

k=1

znk

]
=

K∑

k=1

E [znk] = K
e

e+ f
, (3.19)

where 1 ≤ card(vn) ≤ K − 1 for sparse representations of vn. Under suitable

scaling of the hyperparameters: e → e/K and f → f · (K − 1/K), the cardinality

card(vn) ∼ P(e/f) as K → ∞. This is obtained by recalling that in the limit, the

binomial distribution can be approximated by a Poisson distribution. This analy-
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Figure 3.2: Generic graphical model for learning in latent variable models with
sparsity.

sis gives insight into the behaviour of the prior as well as some guidance in setting

hyperparameter values.

3.3.3 Learning in Latent Variable Models with Sparsity

The classes of priors discussed in the previous two sections are easily incorporated

into the framework for generalised latent variable models. The modelling will focus

on the incorporation sparsity in the latent variable V only.

Figure 3.2 shows a generic form of the graphical model described in section

2.3.2, and is given again here for clarity. The plate notation represents replication of

variables and the dashed node ϕ represents any appropriate hyper-prior distribution

for the latent variables vn. The observed data forms a D×N matrix X, with columns

xn = [xn1, . . . , xnD]. N is the number of data points and D is the number of observed

dimensions. Θ is a D × K matrix with rows θk. V is an K × N matrix V, with

columns vn = [vn1, . . . , vnK ], where K is the number of latent factors.

The required conditional distributions are:

xn|vn,Θ ∼ Expon

(
∑

k

vnkθk

)
(3.20)

θk ∼ Conj (λ, ν) . (3.21)

The joint probability is thus:

p(X,Ω|Ψ) = p(X|V,Θ)p(Θ|λ, ν)p(V|ϕ), (3.22)

where Ω is the set of unknowns to be learnt and Ψ is the set of model hyperpa-

rameters. The model specification is completed by the choice of sparse prior for
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the latent variables V, of which the two classes of priors discussed will be consid-

ered separately here. The nature of these two classes require different approaches to

learning and here we focus solely on Markov chain Monte Carlo (MCMC) methods

for learning.

3.3.3.1 Learning with Continuous Priors

We consider the following candidate models:

Laplace Model. We use the Laplace or double exponential prior:

vn ∼
K∏

k=1

L(vnk|bk) =

K∏

k=1

1
2bk exp (−bk|vnk|) . (3.23)

This choice of model allows for a Bayesian analogue of the sparse EPCA model

described in section 3.2.2. This model will be referred to LXPCA. The equiv-

alence between this model and the sparse EPCA model described previously,

can be seen by comparing the log-joint probability probability using the Laplace

prior in equation (3.22) to the sparse MAP loss described for equation (3.3).

Exponential Model. We also use the exponential distribution:

vn ∼
K∏

k=1

E(vnk|bk) =

K∏

k=1

bk exp (−bkvnk) . (3.24)

This distribution has similar shrinkage properties to the Laplace. In addition,

since the distribution has support on the positive real line, it allows for non-

negative representations of the latent space, such that vnk ≥ 0. This model will

be referred to as NXPCA.

The above two model types have been considered for the case of sparse generalised

linear models for regression by Seeger et al. (2007). The hierarchical specification

is completed by placing a Gamma prior on the unknown rate parameters b, with

shared shape and scale parameters α and β respectively. The set of unknown

variables to be inferred is denoted as Ω = {V,Θ,b} and the set of hyperparameters

as Ψ = {α, β,λ, ν}.

The experience we have gained in developing the sampling scheme for the Bayesian

exponential family PCA model (BXPCA) is used here. We use Hybrid Monte Carlo

sampling, where the required potential energy function is: E(Ω|Ψ) = − ln p(X,Ω|Ψ).

Constrained parameters such as bk > 0 in both models above, and vnk ≥ 0 in the

exponential case are transformed to unconstrained parameters using the transforma-

tion bk = exp(ξk) and vnk = exp(χnk). The learning method is also adapted to handle

missing data using the method described for BXPCA in section 2.3.4.
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3.3.3.2 Learning with the Spike-and-Slab

For the discrete mixture prior using a Gaussian slab, we use the following model:

Spike-and-Slab Model. The prior distribution used is:

p(vn|zn,µ,Σ) =
∏

k

N (vnk|znkµk, znkσ2k), (3.25)

where the definition of zn is given by equation (3.16) and the construction of

the prior is described in section 3.3.2. The mean and variance of the Gaussian

slab component are µk and σ2k respectively. Here, the set of unknown variables

to be inferred is Ω = {Z,V,Θ,π,µ,Σ} and the set of hyperparameters Ψ =

{e, f,λ, ν}.

Since Z is discrete, the required sampling is more difficult. We develop a sampling

approach using Metropolis-within-Gibbs sampling, where each of the unknown vari-

ables are sequentially sampled using Metropolis-Hastings. The sampling proceeds

by iterating over the following steps:

1. Sample Z and V jointly using a pairwise sampling for the latent variable pair

(znk, vnk).

2. Sample Θ by slice sampling.

3. Sample µ, Σ and π by Gibbs sampling.

Sampling Z and V. Sampling the latent factors znk and vnk, involves the two step

procedure of deciding whether a latent factor contributes to the data or not

by sampling znk having integrated out vnk. All variables vnk associated with

the slab components are sampled using slice sampling. The decision to choose

either the spike or the slab involves the following probabilities:

p(znk = 0|X,π,V¬nk) and p(znk = 1|X,π,V¬nk), (3.26)

where V¬nk are current values of V, with vnk excluded. Based on this decision,

the latent variable is sampled from the spike or the slab component. Evaluating

these probabilities involves computing the following integrals:

p(znk = 0|X,π,V¬nk) ∝
∫
p(znk = 0, vnk = 0,X|V¬nk,π)dvnk

=(1− πk)p(X|V¬nk, vnk=0,Θ). (3.27)

p(znk = 1|X,π,V¬nk) ∝
∫
p(znk=1, vnk,X|V¬nk,π)dvnk

=πk

∫
p(X|V¬nk, vnk,Θ)N (vnk|µk, σ2k)dvnk. (3.28)

While computing (3.27) is easy, the integral in equation (3.28) is not tractable
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in general. While it may be computed for certain exponential families such

as the Gaussian, for other families the integral must be approximated. Any

approximation method can be used, such as Monte Carlo Integration or the

Laplace approximation. Laplace’s method is used here (MacKay, 2003, ch. 27).

The use of the Laplace method introduces an error due to the approximation of

the target distribution. This problem has been studied by Guihenneuc-Jouyaux

and Rousseau (2005) where the Laplace approximation is used in MCMC

schemes with latent variables such as in our case, and show that such an ap-

proach can behave well. Guihenneuc-Jouyaux and Rousseau (2005) show that

as the number of observations increases, the approximate distribution becomes

close to the true distribution, and describe a number of assumptions for this to

hold, such as requiring differentiability, a positive definite information matrix

and conditions on the behaviour of the prior at boundaries of the parameter

space.

It is possible to avoid this approximation altogether by using the pseudo-

marginals approach discussed by Andrieu and Roberts (2009), which is useful

in MCMC settings where we have a term, say p(z), that is difficult to compute,

such as equation (3.28). The idea underpinning the pseudo-marginal approach

is that if the difficult to compute term p(z) can be replaced by an easier to

compute unbiased estimator r(z) in the Metropolis-Hastings acceptance ratio

(e.g., by an importance sampling estimate as used by Beaumont (2003)), then

the Markov chain will have an equilibrium distribution that is exactly p(z).

Andrieu and Roberts (2009) explain in detail the workings of this approach and

the conditions for validity, making the pseudo-marginals method an appealing

methods for improving this step of the sampling scheme.

Slice Sampling of Θ. Both V and Θ can be sampled by slice sampling. The method

of slice sampling, described in section 1.5.3, is a general version of the Gibbs

sampler (Neal, 2003), and proceeds to sample all parameters in a co-ordinate-

wise fashion. Sampling requires the evaluation of the joint-probability of all

parameters of interest. To sample Θ, the required joint probability is:

ln p(X,Θ) = ln p(X|V,Θ) + ln p(Θ|λ, ν), (3.29)

which can be easily evaluated. A similar evaluation is needed for V.

Gibbs Sampling µ, Σ and π. The variables {µ, Σ} and π, have conjugate relation-

ships with the latent variables V and Z respectively. Gibbs sampling is a natural

choice since the full conditional distributions are easily derived. These full con-

ditionals are omitted here for brevity (Gilks et al., 1995). The full conditional

distributions that are required for π are derived in example 1.4.
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3.3.4 Implications of Bayesian Learning with Sparsity

The two classes of priors introduced: the continuous sparsity-favouring and the dis-

crete mixture priors, give rise to two notions of strong and weak sparsity.

Strong Sparsity. A vector ω is considered to be ‘strongly sparse’ if elements of ω

are exactly zero. The spike-and-slab prior places mass explicitly on zero and is

thus a prior suited to achieving this notion of sparsity in parameter learning.

We can also think of this in terms of the structure of a graph, where this notion

of sparsity expresses uncertainty in the connectivity structure of the graph.

Weak sparsity. A vector ω is considered to be ‘weakly sparse’ if none of its elements

are exactly zero, but which has a small number of elements with large entries,

and other elements close to zero. This implies that a weakly sparse vector ω

has a small Lp norm for small p or has entries which decay in absolute value

according to some power law (Johnstone and Silverman, 2004). When thinking

of graph structure, this type of sparsity assumes that the structure of the graph

is given and the uncertainty is in the strength of connections between nodes.

There remains no clear choice between using one type of sparsity over the other.

Certain practitioners may implicitly refer to sparsity as a strong sparsity as a matter

of definition. Using a representation with exact zeroes brings with it an easier

interpretation of coefficients in the model, as well as computational advantages in

terms of storing fewer elements in memory.

The rapid combinatorial growth of the solution set may be of concern when

using discrete mixture priors. This is especially of concern in the ‘large p’ paradigm

(West, 2003), particularly in applications concerned with the analysis of genomic

data where the dimensionality (D as used here) of the data is very large. Methods

for high-dimensional analysis in this setting were discussed by Carvalho et al. (2008).

These methods encode sparsity in the factor loadings Θ, which scale with D and

may become problematic when D is very large. In contrast, the models discussed in

this chapter simulate sparsity in the latent factors V, which scale with the number of

latent factors K. Since K ≪ D,N , the inference scheme presented here is less prone

to problems in simulating the configuration of sparse elements.

Continuous sparsity-favouring priors never place any mass on zero itself, resulting

in weak sparsity, with strong sparsity obtained only by thresholding. Practitioners

may, for philosophical reasons, be averse to including exact zeroes in model pa-

rameters and find it preferable to consider the continuous sparsity-favouring case

(Gelman et al., 2004, pp. 180). A further aspect of strong sparsity deals with model

averaging. Any model averaged coefficients will be non-zero, even with the use
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of discrete mixture priors, which makes the use of continuous priors seem favourable.

Both types of priors are immensely popular, having proven to be effective in a

number of applied settings. In both cases, the prior aims to place substantial mass

on or near zero, and to provide a mechanism by which model parameters that

contribute to explaining the observed data are not shrunk towards zero. Continuous

sparsity favouring priors enforce a global shrinkage on model parameters. It is

this property that induces sparsity by shrinking parameter values towards zero,

but which also results in shrinkage of parameters of relevance to the data. It is to

accommodate these parameters of relevance, that the need for heavy tailed priors

arises. Simultaneous global and local shrinkage is performed by the discrete mixture

prior, which has the ability to give both sparsity in the model parameters, while not

restricting the parameters that contribute to explaining the data. These operational

differences are important and will be examined in the experimental analysis.

3.4 Comparing Model Performance

We use the testing methodology described in section 2.4.1 to evaluate the perfor-

mance of the sparse models developed in this chapter. All the sparse methods dis-

cussed are tested using a test set consisting of 10% of the data elements. For fairness

in evaluation, we choose the regularisation parameters α and β, described for SEPCA

in section 3.2.2, by cross-validation using a validation data set chosen as 5% of the

data elements. This validation set is independent of the data that has been set aside

as training or testing data.

3.4.1 Analysis using Synthetic Data

As a synthetic benchmark data set, we use the block images data from Griffiths and

Ghahramani (2006). The data consists of 100 6×6 binary images, with each image xn

represented as a 36-dimensional vector. We generated the images with four latent

features, each being a specific type of block and the observed data is a combination

of a number of these latent features. We flipped each bit in the resulting data set

with a probability of 0.1, thus adding noise to each of the images. This data set

is useful as a benchmark since it consists of a number of latent factors, but only a

sparse subset of these factors may contribute to explaining any single data point.

This data is synthetic but was not generated from any of the models tested. The four

base images and representative training examples are shown in figure 3.3a.

Figure 3.3b shows the predictive probability (NLP) and root mean squared er-

ror (RMSE) on this benchmark data set. The sparse models we developed are
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Figure 3.3: (a) Row 1: Samples of the training data used. The first panel block
shows the base images used to construct the data. (b) Row 2: RMSE and NLP
for various latent dimensions on the block images data set.

compared to EPCA (Collins et al., 2002), BXPCA (Mohamed et al., 2009, c.f. chapter

2 here) and to binary ICA (Kaban and Bingham, 2006). A random predictor would

have an NLP = 100×36×10% = 360 bits. The models tested here have performance

significantly better than this. All models are able to find the appropriate number

of latent dimensions as either four or five. Models that choose five latent factors

tend to make specific allowances for a null factor, where none of the factors are

combined to make an image. The behaviour of BXPCA and EPCA is consistent

with the understanding of these models developed in the previous chapter. The

spike-and-slab model shows the best performance with smaller error bars.

3.4.2 Application to Real World Data

Robot Planning. The robot planning data set of Kollar and Roy (2009) consists of

tags of objects in N = 750 images taken by a robot-mounted camera in an office

area. The tags were acquired by hand annotation and indicate whether objects

such as bikes, computers screens or doors, appear in the images, with D = 23

of the most popular tags being used. Figure 3.4 shows the test RMSE for five

latent dimensions for all the methods discussed in this chapter.

SPECT Images. Data of cardiac Single Proton Emission Computed Tomography

(SPECT) images is used (UCI Data) and consists of N = 267 SPECT images

that have been pre-processed resulting in D = 22 binary attributes. We present

RMSE with five latent dimensions in figure 3.4.

Animal Descriptions. In a study by Kemp and Tenenbaum (2008), an adult partic-

ipant was asked to make binary judgements as to which of a set of D = 102

characteristics applied to N = 33 animals. The animal characteristics that were

evaluated included perceptual (‘is black’), anatomical (‘has feathers’), ecological
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Figure 3.4: Comparisons of RMSE obtained for various sparse methods using
three real world data sets for K = 5 latent dimensions.

(‘lives in a hole’) and behavioural features (‘travels in groups’). The RMSE on

held-out data for five latent factors is shown in figure 3.4. This data set will be

examined further in section 3.5.

In all three cases, the spike-and-slab has the best reconstruction performance on the

held out data.

The ‘p > n’ paradigm: The performance of the sparse methods presented are

also discussed for the case where the observed dimensionality D is larger than the

number of observations N .

Newsgroups Text. A subset of the popular 20 newsgroups data set was used (UCI

Data), which consists of documents and counts of the words used in each doc-

ument. We use N = 100 articles with D = 200 words, having a data sparsity

of 93%. Here, the model uses a Possion likelihood to model the word counts.

Figure 3.5a shows the performance of the spike-and-slab model and SEPCA.

Apart from the application of the model to count-based data, the results show

that the spike-and-slab model is able to deal effectively with the sparse data,

and provides effective reconstructions and good predictive performance on held

out data. S&S fixed in the figure 3.5a is the performance of the spike-and-slab

when its running time is fixed to that taken for the optimisation of sparse EPCA

and shows efficient performance in this setting. Table 3.2 shows that the num-

ber of non-zeroes in the reconstructions for various K, with the true number

of non-zeroes being 1436. SEPCA is very poor at learning the structure of this

sparse data set, whereas the spike-and-slab is robust to the data sparsity. This

aspect will be discussed further in the ensuing discussion.

The common lore regarding computation time is that MCMC methods are dra-

matically slower than optimisation methods. In general, MCMC methods do not

always scale poorly, even in comparison to optimisation methods, as demonstrated

by Salakhutdinov and Mnih (2008) for example. The cross-validation procedure
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Table 3.2: Number of non-zeroes in newsgroups data reconstruction for both
SEPCA and S&S. The true number of non-zeroes is 1436.

K 5 6 8 10

SEPCA 475 ± 36 483 ± 57 592 ± 207 934 ± 440

Spike-Slab 1446 ± 24 1418 ± 29 1400 ± 18 1367 ± 32
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Figure 3.5: Time matched performance analysis for: (a) newsgroups data using
a Poisson likelihood, and (b) hapmap data using a Bernoulli likelihood. S&S
fixed is the time matched spike-and-slab performance.

needed to set regularisation parameters α and β is computationally demanding due

to the need to execute the optimisation for many combinations of parameters. This

approach is also wasteful of data since a separate validation data set is needed to

make sensible choices for these parameters and to avoid model overfitting. While

individual optimisations may be quick, the overall procedure can take an extended

time and depends on the granularity of the grid over which regularisation values

are searched for. These parameters can be learnt in the Bayesian setting and have

the advantage that we obtain information about the distribution of the parameters,

rather than point estimates and can have greatly improved performance.

For the the newsgroups data, figure 3.5a demonstrates this trade-off between

running time and performance of the optimisation and the Bayesian approaches.

The comparison shows the running times of the spike-and-slab inference (S&S) for

200 iterations, and SEPCA run to convergence. The figure gives the impression that

the Bayesian spike-and-slab is slower by a factor of 2.5 for this data set. But the

performance when measured using predictive probability is dramatically better. We

adjusted the testing methodology to consider the consider the setting where we fixed

the running time for the spike-and-slab model – this running time being dictated by

the running time of the SEPCA optimisation method. The results are shown as S&S

fixed in figure 3.5a and show that even with a fixed time budget, MCMC performs

better in this setting. The same result is shown for the hapmap data in figure 3.5b,

with the Bayesian approach having a much lower NLP in the time matched case and

with fixed computation budget.
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Hapmap Data. The Hapmap data set consists of Single Nucleotide Polymorphisms

(SNPs) that indicate DNA sequence variations between individuals in a popula-

tion (Marchini et al., 2007). The data from N = 100 individuals using D = 200

positions is used. Figure 3.5b shows the performance of the spike-and-slab

model and SEPCA, using the time-matched methodology just described. The

spike-and-slab has similar reconstruction performance as SEPCA in terms of

RMSE, at low latent dimensionality, but much better performance as number of

latent factors K approaches the size of the data D. The graph of performance

on predictive probability remains highly comparable to SEPCA but shows over-

lapping error bars as K becomes close to D, which suggests that without the

time constraint further improvements can be made.

The spike-and-slab performs both a local and global shrinkage and has the ability to

adapt to the global sparsity but assesses locally the importance of latent variables.

Other priors such as the Laplace prior perform only a global shrinkage and must si-

multaneously learn the sparsity pattern and the contributions of the latent variables,

which results in a tradeoff between the two with reduced performance. Similar ob-

servations, particularly for the case of the Laplace distribution, have been made by

Scott and Berger (2006, pp. 156), noting that the Laplace lacks both enough mass near

zero and tails that are sufficiently heavy for robust estimation.

3.5 Study: Discerning Mental Models of Animals

The data set of human judgements of animal characteristics was described in section

3.4.2. The study by Kemp and Tenenbaum (2008) aimed to gain insight into the

mental models or structured forms used by humans in understanding related

concepts. One means of understanding this is to infer the set of underlying factors

that the human subject believes is shared by certain animals, but not by others.

These underlying factors provide insight into the structure used in understanding

the relationships between various animals, and that is an inherent part of the user’s

mental model of animals.

We use the spike-and-slab model to infer underlying factors for this data set.

A visualisation of the latent embedding is useful in understanding the structural

relationships involved. Our model with sparsity in the latent factors V is especially

appropriate for this study because it aims to describes the relationship between

the animals (observations) and the underlying factors. Figure 3.6 shows the 3-

dimensional embedding of the animals obtained using a single sample from the

Markov chain at convergence from the spike-and-slab model. The plot shows clear

groupings of animals: insects (Butterfly, Bee) in the bottom left and a separation of

terrestrial animals (Giraffe, Dog, Gorilla) from avian and aquatic animals (Whale,
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Figure 3.6: Visualisation of the animal embedding. The right-hand side plots
show 2D perspectives of the factors to depict the sparsity pattern.

Chicken). These groupings match norms associated with an adult understanding

of animals. These groupings are also similar to the structural forms discussed by

Kemp and Tenenbaum (2008, fig. 5), and show that the underlying factors are able

to provide a meaningful representation of the data.

Figure 3.7 shows results for various latent dimensions for NLP and RMSE, un-

der the testing methodology used throughout this chapter. For this data, the NLP

of a random classifier is 336 bits and the models have NLP values much lower

than this. Factors between 4 and 10 are appropriate number of factors to explain

the data. We applied the time-matched testing methodology to this data set as

another test of the run-time behaviour of the Bayesian spike-and-slab method in

relation to the optimisation-based approach. Figure 3.8 shows the running times

for the two methods and shows that even with a fixed time budget determined by

the optimisation based approach, the Bayesian method is able to produce improved

reconstructions. A more elaborate analysis of such data would involve responses

from multiple participants to investigate shared characteristics of mental models

across the set of participants. For this setting, tensor models of the type discussed in

chapter 5 would be appropriate.

3.6 Discussion

We examine some of the important considerations that arise from the approaches to

sparse learning developed in this chapter. Here we look at ways of including further
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Figure 3.8: Timing analysis for the human judgements data set.

structure into the sparse representations and the penalty functions that are used. We

also describe two related areas of research to which the sparse methods developed in

this chapter have a strong connection and can be integrated into.

3.6.1 Beyond L1 Penalisation

Other penalties beyond the L1 norm exist, though they are less widely used. The use

of these other penalties is motivated by the potential for discovering faster or more

powerful algorithms for sparse learning. The non-negative Garrote (Breiman, 1995)

is a method for variable selection that shrinks the least squares regression estimate

by multiplying them by shrinking factors, whose sum is constrained, rather than

the L1 norm as used in the Lasso. The development of the Lasso was inspired by

the non-negative Garrote, as a means of removing the reliance on the least squares

estimate. The Lasso does not satisfy the oracle properties: identifying the correct

subset of variables, and achieving the optimal estimation rate. The Lasso also

produces biased estimates for large coefficients. To overcome these shortcomings, the

adaptive Lasso (Zou, 2006) was designed, and achieves the oracle properties using a

weighted L1 penalty, employing different weights for each of the model coefficients;

the weights being data dependent. van de Geer and Bühlmann (2009) provide a

comprehensive review of the oracle results for the Lasso and the modifications and

conditions required to achieve them.
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One class of penalties beyond the L1 norm, are compound norms which com-

bine the L1 norm with additional constraints. The general objective (3.1) forms the

basis of these more complex objective functions. Examples that fall into this category

include the L1 optimisation over subsets of variables in either the group Lasso

(Yuan and Lin, 2006) or the fused Lasso (Tibshirani et al., 2005) or the inclusion of

smoothness properties using the total variation norm (Lustig et al., 2007). Consider

a D-dimensional vector x of parameters, the vector of differences ∆x with elements

(∆x)i = xi − xi−1. The fused Lasso penalty incorporates smoothness into the

parameter estimation and has the following form:

Fused Lasso: R(x) = α‖x‖1 + β‖∆x‖1, (3.30)

where α and β are regularisation parameters. A similar penalty for groups of

variables can be used, resulting in the group Lasso; or for the case of images, a

penalty based on image gradient, giving the total variation penalty.

Lp norms for the 0 < p < 1 case can also be used and give sparser solutions.

Equation (3.2) is not a true norm in this regime and the resulting quasi-norm is

non-convex. Notwithstanding these concerns, quasi-norms have been shown to be

useful in a number of settings (Chartrand, 2007; Kaban and Durrant, 2008).

The relevance vector machine (RVM) uses the hierarchical construction of the

Student’s-t distribution as a prior for sparse learning by maximising the marginal

likelihood, often referred to as type II maximum likelihood (Tipping, 2001). There

also exists a number of greedy approaches to sparse learning which do not consider

the L1 norm, such as Iterative Hard Thresholding (Blumensath and Davies, 2008) or

Rodeo (Lafferty and Wasserman, 2008), amongst others.

The construction of Bayesian methods congruent to a compound norm such as

equation (3.30) is not straightforward. To do this, a prior would be specified using

the Gibbs measure with the relevant energy function E(x) being the compound

norm. The Gibbs measure is :

p(x) =
1

Z
exp (−E(x)) . (3.31)

This idea has already been used in the specification of the Laplace distribution,

where the energy function E(x) = γ‖x‖1, and the partition function Z(γ) ensures

normalisation. For the case of the fused Lasso, the energy function would be given

by equation (3.30), and results in the normalising constant Z(α, β), where α, β are the

regularisation parameters introduced in equation (3.30), but is intractable. If α and β

are fixed then Z(α, β) is not needed for Bayesian inference. If we wish to learn α and
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β from data then it is essential that we know what this normalisation constant is.

Variational methods based on determining suitable bounds may be used in this case,

such as the approach taken by Marlin et al. (2009) for a group sparse priors. There

is a wide body of research for finding bounds for partition functions in the machine

learning literature, and whose exploration will provide Bayesian interpretations of

this interesting class of penalties.

Sparse optimisation methods are based mainly on the use of convex functions,

hence the popularity of the L1 norm. Submodular functions are the equivalent of

convex functions in discrete optimisation. Since problems in sparsity begin as a

discrete combinatorial problem, there is great interest in the use of submodular op-

timisation for sparse learning. The work on structured sparsity and the connections

between submodular optimisation and sparsity by Bach (2010) represents some of

the latest advances in this line of sparse learning.

3.6.2 Learning Compressed Sensing

Compressed sensing (or compressive sampling) (Candes et al., 2006; Donoho, 2006)

is an immensely popular area of research. Compressed sensing methods allow

reconstructions of data to be made from undersampled data and have the promise

of providing significant reductions in measurement times at lower costs for a wide

range of applications, from medical imaging to military surveillance. Compressed

sensing, at its core, uses sparsity to make effective use of limited measurements by

moving the measurement workload from the sensing apparatus to computation at

reconstruction time.

Compressed sensing is understood by considering a two phase system consist-

ing of an encoder and a decoder.

Encoder. The encoder describes the generative process by which samples are ac-

quired, and consists of two components: a sparsity and a measurement compo-

nent. These are expressed mathematically as:

Sparsity component: f = Ψ∗x

Measurement component: y = Φf

∴ y = ΦΨ∗x.

(3.32)

The signal of interest f ∈ R
N is said to be sparse in the basis given by Ψ, where

x = Ψf . x is the sparse representation of the signal. The sparsity basis is

assumed to be known in most cases and could be common bases such as the

Fourier or wavelet bases. Separate from this, is the measurement component

with low dimensional samples y ∈ R
M for M < N , and Φ is the measurement
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basis, which for compressed sensing is chosen as a random matrix.

Decoder. To recover the signal f , the decoder solves an L1 optimisation problem to

determine the sparse vector x, which is used with the known sparsity basis to

recover the signal. Let Φ′ = ΦΨ∗, then the optimisation is:

min ‖x‖1, subject to y = Φ′x. (3.33)

The setup of the compressed sensing problem is very different to the general setup

that we have discussed throughout this chapter. The models and results we have

developed consider a high dimensional data set (D dimensional), and use the

latent variable modelling approach to obtain a low dimensional representation (K

dimensional with K < D). For compressed sensing, the opposite is true, a low

dimensional data set (set of M undersampled measurements) is used to recover a

high dimensional signal of interest (N dimensional, N > M ). But, the components of

both settings that focus on determining the sparse representations are identical. As

such, the models discussed are immediately applicable to the compressed sensing

problem of determining a sparse representation of observed data. In the sparse

literature, the setup considered by compressed sensing is closely related to problem

of learning an overcomplete representation (Lewicki and Sejnowski, 1998).

Bayesian approaches to compressed sensing have been considered by Ji et al.

(2008) and Seeger (2008). Bayesian methods allow for noise in the measurements,

which is not a setting considered in the theory of compressed sensing. In addition,

information regarding the uncertainty of the reconstruction is obtained and Bayesian

methods provide a means with which to decide when a sufficient number of

measurements have been obtained (Ji et al., 2008). There is thus scope for much

wider applications of the approaches to sparse learning presented in this chapter.

One additional advantage of the methods discussed in this chapter is the abil-

ity to learn the measurement matrix Φ from the data as opposed to the use of a

random matrix supported by the compressed sensing literature. This is an area of

contention, since the randomly selected basis allows a non-adaptive, and hence fast

approach to reconstruction that lies at the core of compressed sensing. But Φ can

be learnt in advance from from a large database of signals from the application

domain, thus mitigating concerns regarding speed. In addition, Weiss et al. (2007)

demonstrate that in the expected setting of signals with measurement noise, learning

the basis Φ can provide significant improvements in signal reconstruction. The

results of Weiss et al. (2007) provide an initial motivation for a more concerted

investigation of the applicability of sparse learning methods to compressed sensing

and the development of highly scalable fast algorithms for the task.
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3.6.3 Infinite Dimensional Settings

The two classes of sparse Bayesian priors considered: the continuous sparsity-

favouring prior and the discrete mixture prior, were constructed using a finite

K-dimensional latent variable. We can also consider infinite dimensional generalisa-

tions of these two classes of priors wherein the theory of Bayesian non-parametric

methods applies. Bayesian non-parametric models are models on infinite dimen-

sional parameter spaces, but which use only a finite subset of the parameter

dimensions to explain a finite set of data (Orbanz and Teh, 2010). This is highly

desirable, since it allows the model complexity to adapt to the data. One model

specification problem that we have encountered thus far, is the specification of the

number of latent factors. Using non-parametric methods, the number of latent

factors can be inferred from the data, rather than needing to be specified beforehand.

The continuous sparsity-favouring priors discussed were based on the formu-

lation of a K-dimensional Gaussian scale-mixture representation, where the choice

of the mixing density gave rise to several priors with properties amenable for

sparse Bayesian learning. The Normal-Gamma and the Normal Inverse-Gaussian

were two such examples. If the properties of these distributions are considered as

K → ∞, then it can be shown that the resulting priors are Lévy processes. For the

Normal-Gamma, the infinite dimensional analogue was shown by Caron and Doucet

(2008) to be a variance-gamma process, where the parameters are the jumps of this

Lévy processes. Similarly, the Normal-Inverse Gaussian can be shown to correspond

to an infinite variation process. More recently, Polson and Scott (2010) showed that

in general, scale-mixture distributions with mixing densities that are self-similar

(closed under addition) are Lévy processes.

The spike-and-slab prior was constructed by considering a K-dimensional Bernoulli

vector with Beta priors. Taking the limit as K → ∞ gives rise to a non-parametric

prior known as the Indian Buffet Process (IBP) (Griffiths and Ghahramani, 2006). The

design of sparse models based on the IBP, corresponding to a non-parametric version

of the spike-and-slab model, was presented by Knowles and Ghahramani (2007,

2010). The IBP also has the practical advantage of allowing the latent dimensionality

K to be learnt directly from the data.

The philosophical dichotomy between strong and weak sparsity implied by

the two classes of prior, remains though. These two classes of non-parametric sparse

priors have not been discussed together in any detail in existing work, leaving scope

for such a treatment. An interesting line of thought is the unification of the classes

of discrete mixture, and continuous priors based on scale mixtures, with this idea

having been recently elaborated upon by Polson and Scott (2010).
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3.6.4 Sparsity: Assumption or Hypothesis

Throughout this chapter we have considered sparsity as an assumption, a property

inherent to the data. This assumption is not unreasonable, particularly given the

nature of the systems under study, as in the motivating examples described in

section 3.1. An ideal setting would avoid this assumption and view sparsity as a

hypothesis to be tested. This view would require mechanisms by which to quantify

the information content of observed data and allow the practitioner to conclude

whether a given data set warrants the use of sparse methods or not.

The spike-and-slab prior is also used in the area of Bayesian multiple testing,

though not with the motivation of learning sparse representations. Bayesian multiple

testing employs sparsity as a means of simultaneously testing the hypothesis

H0d : ωd = 0 against H1d : ωd 6= 0 for d = 1, . . . D for a parameter vector of interest ω.

Such a Bayesian ‘testimation’ procedure (Abramovich et al., 2007) can be achieved

in many ways, but the spike-and-slab has proven popular for this task (Scott and

Berger, 2006). The use of Bayesian methods in the multiple testing scenario is

promoted particularity because it allows for the data-driven characterisation of

underlying sparsity levels. Thus, the idea of sparsity as a hypothesis has been

considered, though the literature in the two areas do not often coincide.

The Bayesian non-parametric approach based on the IBP discussed above also

provides a means of achieving this simultaneous estimation and sparsity char-

acterisation, particularly for the case of latent variable models discussed in this

thesis. The spike-and-slab nature of the IBP, and the inherent ability to adjust the

latent dimensionality to that supported by the data make these methods especially

appealing. As previously referenced, some work already exists (Knowles and

Ghahramani, 2007), but there seems scope for both a wider study of non-parametric

Bayesian multiple testing (Ghosal and Roy, 2009) as well as stronger links between

multiple testing and sparse learning.

3.6.5 Re-thinking the Slab Distribution

The spike-and-slab is constructed in most work using a Gaussian distribution for

the slab, as is the case in this chapter. This is a suitable default choice, but there

remains little guidance as to choosing this slab distribution. As discussed for the

continuous sparsity priors, the tail behaviour of these priors is of central importance.

It may be that more robust inferences can be made in the spike-and-slab setting with

a heavy-tailed slab rather than a Gaussian. Johnstone and Silverman (2004) provide

the first analysis in this regard by considering a Laplace slab, as well as a slab based

on a scale-mixture prior. The use of a heavy tailed slab is also alluded to in other
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works (Griffin and Brown, 2010). Knowles and Ghahramani (2007) consider the non-

parametric Bayesian setting using the Indian Buffet Process with a Laplace slab. The

results of this work do not suggest that much is gained by using the Laplace slab,

but this may be attributable to deficiency of the slab choice. Thus, a much more

systematic study of alternative slab distributions is required.

3.7 Sparse Learning in Context

The development of modern views of sparsity are grounded in a number scientific

communities. The earliest thoughts regarding L1 penalisation are traced to geo-

physics with the work of Claerbout and Muir (1973) in conjunction with absolute

error loss functions, and Santosa and Symes (1986) using the least-squares loss

function. This work was followed by early results for the L1 minimisation problem

in statistics by Donoho and Stark (1989), leading up to the introduction of the

LASSO by Tibshirani (1996) for penalised regression. The development of the LASSO

saw the establishment of the L1 norm as a means of introducing sparsity in many

regression problems, and soon saw the widespread application of these ideas in

more specialised models such as the fused Lasso (Tibshirani et al., 2005), group

Lasso (Yuan and Lin, 2006), L1 regularised logistic regression (Lee et al., 2006b), and

in wider generalised linear models (Park and Hastie, 2007) as well as a strong focus

on the development of more efficient algorithms for learning (Efron et al., 2004; Lee

et al., 2006b; Schmidt et al., 2007; Duchi and Singer, 2009).

Concurrently in Bayesian learning, the ideas for sparsity were developed for

variable selection with the introduction of the spike-and-slab prior by Mitchell and

Beauchamp (1988) and subsequent authors (George and McCulloch, 1993; Ishwaran

and Rao, 2005). Bayesian methods for sparse regression have since been considered

at length, with O’Hara and Sillanpäa (2009) provide a review of Bayesian methods

for variable selection.

Sparse methods soon found application in a number of scientific areas includ-

ing source separation, image coding and in the new field of compressed sensing

(Candes et al., 2006; Donoho, 2006). We highlighted the connections between

compressed sensing and sparsity in the latent variable modelling framework in

section 3.6.2. Sparsity is invaluable in learning the connectivity structure in graphs

(Meinshausen and Bühlmann, 2006; Lee et al., 2006a), in high dimensional data

analysis in genomics (Srebro and Jaakkola, 2001; Carvalho et al., 2008) and in

financial modelling (Brodie et al., 2009; Carvalho et al., 2010b).

In unsupervised learning, the focus of this chapter, the optimisation of the L1

norm has lead to various versions of sparse PCA (Zou et al., 2004; d’Aspremont
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et al., 2005; Zass and Shashua, 2006). The wide body of literature on matrix

factorisation is also indirectly related (Airoldi et al., 2008; Srebro et al., 2005a).

These methods may yield fairly sparse factors, but as a by-product rather than

by construction. Methods for matrix factorisation designed with sparsity in mind

have also been considered such as those by Srebro and Jaakkola (2001); Dueck and

Frey (2004). Independent Components Analysis (ICA) (Jutten and Hérault, 1991;

Common, 1994) is very relevant and is a broad term used to refer to models similar

to factor analysis, but where the latent distribution is non-Gaussian. ICA now

has a wide associated literature and closely related to the problem of blind source

separation where sparsity is useful in separating speech signals from a mixed signal

sources. For ICA, the Laplace distribution or other heavy tailed distributions for

the latent variables are commonly used. This chapter has contributed to this broad

unsupervised model exploration by developing both the optimisation and Bayesian

approaches for sparsity in the generalised latent variable model setting, exploring

the various classes of priors available, developing new inference strategies, and

comparing and contrasting these methods for the first time. At the same time that

we developed the model for sparse EPCA in this chapter, Lee et al. (2009) described

a very similar idea, but in the context of a model for semi-supervised learning.

Continuous scale mixture priors are in widespread use: the Laplace is well studied

(Seeger et al., 2007; Park and Casella, 2008); the Normal-Jeffrey’s prior is discussed

by Figueiredo and Member (2003), the Normal-Gamma and the Normal-Inverse

Gaussian are described by Caron and Doucet (2008) and the Normal-Exponential

Gamma is described by Griffin and Brown (2005). Discrete mixtures are discussed

for genomic applications by West (2003) and Carvalho et al. (2008), considering

the use of spike-and-slab priors to introduce sparsity in Bayesian factor regression

models. This model combines latent factors with a set of response variables and

sparsity included in the factor loadings (parameters Θ, rather than V as used in

this chapter) for the problem of gene expression genomics. Inference in these factor

regression models is achieved through a similar paired sampling of latent indicator

and continuous variables as used in section 3.3.3.2. The work of Polson and Scott

(2010) represents the latest thinking in sparse learning, relating scale-mixture priors

and the specification of penalty functions to Lévy processes.
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3.8 Summary

In this chapter we introduced new models that include sparsity in generalised latent

variable models, providing an important new class of sparse models for data best

modelled by distributions other than the Gaussian. We provided new sampling

methods for sparse Bayesian learning using both continuous sparsity-favouring

priors and the spike-and-slab distribution. At the same time, this chapter has

provided the first comparison of optimisation and Bayesian approaches to sparsity.

The methods were compared on both synthetic and real world data comparing the

same models with sparsity in the latent factors V, and examining their predictive

performance on held out data. The spike-and-slab model was shown to provide

the best predictive performance on all data sets, a success attributed to its ability to

learn the underlying sparsity supported by the data, while not enforcing shrinkage

on parameters of interest.

We have also attempted to expose some of the more subtle issues relating to

sparse learning, such as considering strong and weak sparsity, optimisation and

Bayesian learning, thinking about penalties beyond the L1 norm and examining the

connections to various other fields. The discussion also provided a number of areas

for future work that will enhance the understanding and practical future application

of sparse methods.



Chapter 4

Binary PCA by Latent Gaussian

Dichotomisation

This chapter develops a simple and novel approach for modelling correlated binary

variables. We review existing approaches for learning correlation in models, and

describe a method for constructing correlated binary variables known as Gaussian

dichotomisation. The basic idea is to dichotomise (threshold) a correlated Gaussian

latent variable, resulting in a correlated binary vector. We derive moment-matching

equations and develop an efficient algorithm to learn the distribution of the latent

Gaussian, using this algorithm as part of a new method for binary PCA.

4.1 Generating Correlated Binary Variables

Data sets from a vast array of application areas including social networks, the web,

information retrieval, topic modelling and collaborative filtering, appear as large,

sparse binary data. There is a great interest in being able to learn and use correlation

when making predictions and recommendations based on these binary data sets.

The collaborative filtering task of providing movie recommendations, such as the

popular Netflix challenge (Netflix, 2009), is based on a binary data set of users’

viewing history. Knowledge of the correlation between movies aids in the suggestion

of new movies and can be particularly useful for users lacking an established

viewing history. In topic modelling applications, it is reasonable to expect that

articles on genetics are correlated with articles on disease and health, but unlikely

with x-ray astronomy (Blei and Lafferty, 2005). Models with correlation allow the

natural relationships expected in real data to be accounted for and are advantageous

since they allow fine-grained structure in data to be learnt, as well as more robust

inferences to be made by sharing statistical power between measurements.
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There are a number of approaches that can be used to generate correlated bi-

nary variables. Correlation can be introduced by incorporating an additional set

of hierarchical latent variables. In this setting, observed binary variables x are

assumed to be independent given additional latent variables v i.e. xi⊥⊥xj |v, and

marginalisation of the latent variables induces correlation in the binary variables

x. This approach provides a means of constructing wide classes of algorithms for

learning based on maximum-likelihood or fully Bayesian inference, and is used

in a number of settings. Factor analysis, which has been widely discussed in this

thesis, is one such example of inducing dependencies in observed data using a set

of hierarchical latent variables. The factor analysis model for observed data x with

latent variables v and the D ×K factor loadings matrix Θ is:

x = Θv + ǫ (4.1)

v ∼ N (0, I), ǫ ∼ N (0,Ψ). (4.2)

Ψ is forced to be diagonal, either Ψ = σ2I as used in equation (2.2), or

Ψ = diag(ψ1, . . . , ψD). Marginalisation of the latent variables gives the covari-

ance of the observed data as Σ = ΘΘ⊤ + Ψ. Factor analysis encodes correlation

between the elements of a high dimensional vector x, by dependence on a set of

lower dimensional latent variables v. These ideas can be extended to modelling

correlation between binary variables and latent variables, as has been demonstrated

by Doshi-Velez and Ghahramani (2009); Li and McCallum (2006) for correlated

non-parametric latent feature models and in models based on sigmoid networks and

deep learning (Hinton et al., 2006).

Correlation can be encoded directly into models, using distributions parame-

terised in terms of means and covariances. The correlated topic model (Blei

and Lafferty, 2005) makes use of a logistic-Normal distribution and transforms

draws from a normal distribution using the logistic sigmoid function, to represent

correlation amongst proportions of topics in the model, where the correlation is

encoded through the covariance matrix of the Gaussian distribution. For binary

data, this direct encoding approach has been popular with several methods available

that allow correlated binary data to be generated based on the specification of the

first two moments (Emrich and Peidmonte, 1991; Qaqish, 2003). We explore this

direct approach further in this chapter, using an approach known as Gaussian

dichotomisation.
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4.2 Gaussian Dichotomisation

Gaussian dichotomisation, first discussed by Pearson (1909), is the process of gener-

ating a dichotomous or binary variable x ∈ {0, 1}, by thresholding a Gaussian latent

variable v at zero. By combining an underlying regression model with covariates

y ∈ R
p for the latent response v, this process can be described as:

v = y⊤β + λ (4.3)

x =

{
1 if v > 0

0 otherwise,
(4.4)

where λ is the noise level. The model corresponds to a probit model if λ has a

Gaussian distribution, a logit model if the noise is a logistic distribution and the

complementary log-log model if the noise is a Gumbel distribution.

Thus a univariate dichotomisation simply involves the generation of an under-

lying univariate Gaussian distribution and thresholding realisations from this

Gaussian at zero to obtain binary variables. The multivariate case is obtained by

thresholding realisations from a multivariate Gaussian distribution instead. Consider

generating a correlated binary vector x ∈ {0, 1}D with given means ri and pairwise

covariance Σij for i, j = 1, . . . , D:

x ∼ CB(x|r,Σ) (4.5)

ri = E [xi] (4.6)

Σij = E [xixj ]− E [xi]E [xj ] . (4.7)

Assume that the correlated vector x has been generated by dichotomisation, i.e. that

there exists a latent Gaussian vector, which after thresholding generates the observed

data x.

v ∼ N (v|γ,Λ), (4.8)

xi = I(vi > 0) (i = 1, . . . , D). (4.9)

The dichotomisation of the latent Gaussian N (v|γ,Λ) changes the moments of the

resulting distribution, but these changes can be determined and accounted for. By

matching the moments of the latent Gaussian distribution (4.8) and the desired cor-

related binary distribution (4.5), the mapping between the two distributions can be

established as:

ri = Φ(γi) (4.10)

Σii = Φ(γi)Φ(−γi) (4.11)

Σij = Ψ(γi, γj ,Λij) = Φ2(−γi,−γj ,Λij)− Φ(γi)Φ(γj), (4.12)
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assuming that Λii = 1 without loss of generality, Φ is the standard cumulative uni-

variate Gaussian and Φ2(x, y, ρ) is the bivariate cumulative Gaussian with correlation

ρ. These equations are noted by a number of authors including Leisch et al. (1998);

Cox and Wermuth (2002) and Macke et al. (2009). For the case of a bivariate Gaussian,

the resulting assignment of mass to the four binary outcomes after dichotomisation

is illustrated in figure 4.1a.

4.2.1 Deriving the Moment Matching Equations

The derivation of equations (4.10) – (4.12) is not given in existing work, so it is in-

structive to consider their derivation here. The means ri are given by:

ri = p(xi = 1) = p(vi > 0) = p(vi − γi > −γi) = p(vi − γi < γi)

= Φ(γi), (4.13)

which proves equation (4.10), and the second-last step follows from the symmetry of

the Gaussian distribution. The variance Σii of the binary variable is:

Σii = ri(1− ri) = Φ(γi)(1− Φ(γi))

= Φ(γi)Φ(−γi), (4.14)

where the last step is obtained by recalling that 1 − Φ(γi) = Φ(−γi) for the standard

Gaussian, and proves equation (4.11). To compute the covariances Σij , recall that the

correlation between i and j is defined as ρ =
Λij

ΛiiΛjj
= Λij since Λii is assumed to be

unity, and that this correlation is bound between [-1,1].

Σij = cov(xi, xj) = p(xi = 1, xj = 1)− p(xi = 1)p(xj = 1) ∀i 6= j

= p(xi = 1, xj = 1)− rirj .

The second term in the above equation can be computed using the previous result of

equation (4.13). The first term is:

p(xi = 1, xj = 1) = p(vi > 0, vj > 0) = p(vi − γi > −γi, vj − γj > −γj)
= p(vi − γi > −γi, vj − γj > −γj)

=

∫ ∞

−γi

∫ ∞

−γj

N (vi − γi, vj − γj ,Λij)

= Φ2(−γi,−γj ,Λij),
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Figure 4.1: (a) Assignment of binary variables by dichotomisation of the bivari-
ate Gaussian distribution. (b) Relationship between the correlation coefficient
for the Binary random variables and the latent Gaussian response, ρCB and ρN
respectively.

where Φ2(·) is the bivariate Gaussian distribution with correlation Λij in the integra-

tion step. Combining terms equation (4.12) can be verified.

∴ Σij = Φ2(−γi,−γj ,Λij)− Φ(γi)Φ(γj)

= Ψ(γi, γj ,Λij). (4.15)

4.2.2 Solving the Equations

Solving the equations for the γi and Λij can be achieved by inverting the equations

(4.10) – (4.12). Given a desired mean vector r, we obtain the underlying Gaussian

mean using:

γi = Φ−1(ri). (4.16)

This is the probit function and can be expressed in terms of error functions for which

the inverse can be computed (based on known rational approximations). Determin-

ing Λij requires solving :

Σij −Ψ(γi, γj ,Λij) = 0,

which can be solved by bisection since the result in bound to the region [-1,1] and

the function is monotonic in Λij . The monotonicity can be seen since Φ2(x, y, ρ)

is strictly increasing in ρ for a given x, y. Once γ and Λ have been determined,

then sampling a correlated binary vector is as straightforward as sampling from a

multivariate Gaussian distribution.
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Figure 4.1b shows the relationship between the correlation for the binary ran-

dom variables ρCB , and the correlations for the latent Gaussian ρN , for various

mean probabilities. From the figure, it can be seen that dichotomisation is a process

that diminishes correlation. For low marginal probabilities ri, this effect is most

noticeable, where for a wide range of correlations for the latent Gaussian variable,

the resulting binary correlation is constant (dark blue curve). The effect is least

noticeable in the symmetric case with r1 = r2 = 0.5 (turquoise curve).

4.2.3 Restrictions on the Covariance Matrix

Caution must be taken when using Gaussian dichotomisation, since every symmetric

positive definite matrix that can be specified can not be used as a covariance matrix

for a correlated binary distribution. Restrictions on the covariance matrix are required

to ensure that none of the implied pairwise probabilities are negative. For two binary

random variables X and Y with means p and q respectively, the covariance between

the two binary variables is bound by:

max{−pq,−(1− p)(1− q)} ≤ cov(X,Y ) ≤ min{(1− q)p, (1− p)q}, (4.17)

where these bounds can be shown by looking at the bounds on the joint and

marginal probabilities in the definition of the covariance between X and Y .

For this case of two random variables, the bounds are well known (Leisch et al.,

1998; Macke et al., 2009). For more general settings with 3 or more random variables,

conditions for validity are shown by Chaganty and Joe (2006), who show that the

multivariate probit, which is the construction used in Gaussian dichotomisation, has

a wider coverage of covariance matrices compared to a number of other methods

for generating correlated binary variables. Gaussian dichotomisation can be used to

check the validity of a specified binary covariance matrix Σ: the covariance matrix

of an underlying Gaussian distribution Λ is computed using the dichotomisation

equations. If this covariance is positive-definite, then the initial covariance matrix is

a valid covariance matrix for binary variables.

4.2.4 Evaluating the Probability of a Binary Vector

Evaluating the probability of a correlated binary vector obtained by Gaussian di-

chotomisation requires the evaluation of the following integral:

pCB(x) =
1

(2π)N/2|Λ|1/2
∫ b1

a1

· · ·
∫ bp

ap

exp{−(x− γ)⊤Λ−1(x− γ)}, (4.18)
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where the limits of integration are:

ai = 0, bi =∞ if xi = 0;

ai = −∞, bi = 0 if xi = 0.

This integral must be evaluated numerically and for which a number of solutions

exist. The method of Genz (1992) (QSIMMVNDV) is one way, which may be more

efficient than others. The theses of Minka (2001) and Cunningham (2009) also pro-

vide new tools for evaluating these Gaussian probabilities based on the method of

expectation propagation (EP).

4.2.5 Sampling from a 3-dimensional Correlated Binary Vector

As a simple example, consider generating samples from a 3-dimensional correlated

binary vector x = [x1, x2, x3] with mean r and covariance Σ, with the following

marginal and pairwise probabilities:

p(x1 = 1) = 0.25; p(x2 = 1) = 0.5; p(x3 = 1) = 0.75;

p(x1 = 1, x2 = 1) = 0.1; p(x1 = 1, x3 = 1) = 0.125; p(x2 = 1, x3 = 1) = 0.4.

The pairwise probabilities imply the following covariance matrix or equivalent cor-

relation matrix:

Σ =




0.1875 −0.025 −0.0625
−0.025 0.2500 0.025

−0.0625 0.025 0.1875


 ρCB =




1 −0.1155 −0.3333
−0.1155 1 0.1155

−0.3333 0.1155 1


 .

Using the moment matching equations (4.10) – (4.12) the mean γ and the correlation

Λ of the latent Gaussian is:

γ = [−0.6745, 0.00, 0.6745]

Λ =




1 −0.1965 −0.5343
−0.1965 1 0.1965

−0.5343 0.1965 1


 .

Figure 4.2 shows 50 samples of the correlated binary vector generated by Gaussian

dichotomisation. The empirical correlation and probabilities obtained using 10,000

samples are given below, and are very close to the true values, verifying the correct-

ness of the sampling.

p̄(x1 = 1) = 0.2441; p̄(x2 = 1) = 0.5004; p̄(x3 = 1) = 0.7521;

p̄(x1 = 1, x2 = 1) = 0.0976; p̄(x1 = 1, x3 = 1) = 0.1229; p̄(x2 = 1, x3 = 1) = 0.3997.
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Figure 4.2: 50 correlated binary vectors obtained by Gaussian dichotomisation
for the 3-dimensional example.

Σ̄ =




0.1845 −0.0246 −0.0607
−0.0246 0.2500 0.0234

−0.0607 0.0234 0.1865


 .

4.3 The Principal Components Analysis of Binary Data

The process of Gaussian dichotomisation suggests a simple method for applying

Principal Components Analysis (PCA) to binary data using the moment-matching

equations (4.10) – (4.12). A simple algorithm is as follows:

1. Compute the empirical means r and covariance matrix Σ from the observed

binary data.

2. Compute the latent Gaussian correlation matrix Λ using equation (4.12).

3. Compute the principal components of Λ using the usual PCA algorithm. This

involves diagonalisation of Λ and using the eigenvectors corresponding to the

K-largest eigenvalues as the principal components. Efficient methods exist for

computing the top K eigenvectors.

The ease of this approach is demonstrated by the following two examples.

Binary Digits. We used the USPS digits data set to demonstrate the behaviour of our

PCA algorithm. The data consists of 1000 16 × 16 images of handwritten digit

’9’. We ran PCA to find 2 principal components. The underlying projection

onto the principal component space for the 2-dimensions is shown in figure 4.3,

and gives a representation of the writing styles of the digit. The reconstruction

of the images at four points in the style-space is shown on the left of the image.
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Figure 4.3: Visualisation of the embedding of the digit 9 data set. The images on
the right show the image reconstructions at the numbered points in the latent
space.

Binary Data with 4 clusters
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Figure 4.4: Visualisation of the embedding of data with four clusters. The images
on the left show the original data and the right image is the projection of the 800
data points in the 2-dimensional space.

Clustered Synthetic Data. We generated synthetic binary data consisting of 4 clus-

ters. Each observation is a 250 bit vector with 200 observations from each

cluster. The underlying projection onto the principal component space for 2-

dimensions is shown in figure 4.4 and shows clearly the existence of four clus-

ters in the data.

4.4 Discussion

The probability of the multivariate binary vector obtained by Gaussian dichotomisa-

tion is given by:

p(xn|γ,Λ) =

∫

BnD

. . .

∫

Bn1

N (vn|γ,Λ)dvn, (4.19)

where Bnd is in the interval (0,∞) if xnd = 1 and the interval (−∞, 0) if xnd = 0.

Based on this construction, it can be seen that this model is a multivariate probit
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construction. This latent variable construction can be used as the basis of Bayesian

inference based on Gibbs sampling, which will require the simulation from univari-

ate truncated Gaussian distributions and can be done efficiently. The details of this

approach were first discussed by Albert and Chib (1993) in the univariate setting,

followed by an analysis of the multivariate probit setting by Chib and Greenberg

(1998). Full details of the sampling procedure are deferred to that work. In an

alternative use, we have used the multivariate probit construction in this chapter

with moment-matching to obtain the Gaussian dichotomisation.

The specification described here was based on the use of dependence informa-

tion up to the second order, i.e. information of the covariance between binary

elements. Higher-order correlation can be considered and a general specification for

higher-order dependence between binary variables was given by Bahadur (1961). For

a binary vector x = [x1, . . . , xn], xi ∈ {0, 1}, define means αi and the standardised

scores zi:

αi = E(xi) = p(xi = 1) (4.20)

zi =
xi − αi√
αi(1− αi)

. (4.21)

The correlation between parameters of order 2 and higher are then defined as:

rij = E(zizj) i < j, (4.22)

rijk = E(zizjzk) i < j < k, (4.23)

. . . (4.24)

r12...n = E(z1z2 . . . zn). (4.25)

Based on these definitions, Bahadur’s joint distribution for x is:

p(x) = p[1](x) · f(x) (4.26)

p[1](x) =

n∏

i=1

αxi
i (1− αi)

1−xi (4.27)

f(x) = 1 +
∑

i<j

rijzizj +
∑

i<j<k

rijkzizjzk + . . .+ r12...nz1z2 . . . zn, (4.28)

where p[1](x) is the joint probability assuming that all xi are independent. The proof

of this formulation is given by Bahadur (1961). While this is an attractive specification

which takes into account higher order moments, it is computationally infeasible for

correlation-orders greater that 2 or 3. This implies that one must assume that all

higher order correlations are zero, thus this type of complete specification is also

limited. Similar to our experience with Gaussian dichotomisation, when higher order

correlations are ignored, the correlation parameters are not free to range between

[-1, 1] to ensure the validity of the probability distribution that is defined. There is a
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great deal of interest in learning higher order correlations and this remains an active

area of research.

Gaussian dichotomisation can also be used to generate correlated Poisson vec-

tors, using the property that Poisson vectors arise in limit of a Bernoulli process. This

idea simply considers the generation of correlated binary vectors using Gaussian

dichotomisation and summing the elements of the vectors to obtain a Poisson

distributed vector with correlated components. This can be seen by considering the

binary vectors xi and xj , each of length K, generated by Gaussian dichotomisation.

Based on these vectors, counts are defined as:

yi =

K∑

k=1

xik; yj =
K∑

k=1

xjk. (4.29)

The set of yi form a multivariate Binomial distribution. In the limit as K → ∞, a

multivariate Poisson distribution is obtained, which follows as an extension of the

limiting property for the Binomial distribution. The covariance between any two

entries is:

Cov(yi, yj) = Cov

(
K∑

k=1

xik,

K∑

k=1

xjk

)
=

K∑

k=1

Cov (xik, xjk) . (4.30)

Denoting p(xik = 1) = m and p(xjk = 1) = n, then a lower bound on the covariance

can be given as:

Cov(yi, yj) =
K∑

k=1

p(xik = 1, xjk = 1)−mn ≥
K∑

k=1

−mn. (4.31)

In the limit that K → ∞, the individual p(xik) → 0, which implies that the lower

bound on the covariance approaches zero from below. Thus, negative correlation be-

tween elements of correlated Poisson vectors obtained by Gaussian dichotomisation,

is not possible. More general settings for generating correlated count vectors can be

obtained by extending the ideas of Chib and Greenberg (1998) for multinomial re-

sponses using the multivariate probit construction, with such an approach described

by Macke et al. (2009).

4.5 Gaussian Dichotomisation in Context

The idea of Gaussian Dichotomisation stems from the ideas of Pearson (1909), and

appears in the literature under many names such as dichotomisation, thresholding

or clipping. The exploration of the moment-matching equations discussed here and

the inherent limitations of the method is a more recent development. The earliest
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description is the short paper by Emrich and Peidmonte (1991) and independently

followed by the working paper of Leisch et al. (1998). The most influential of

these descriptions though is given by Cox and Wermuth (2002). The derivation of

the moment-matching equation is uncomplicated, but is not described in any of

these existing works, and we have aimed to make the derivation explicit. Gaussian

dichotomisation has been used by Bethge and Berens (2007) in the study of natural

images, by a Macke et al. (2009) in the study of neural spike trains and in this chapter

for binary PCA. We have used Gaussian dichotomisation to develop a new method

for binary PCA. Restrictions on the validity of covariance matrices are thoroughly

dealt with in the paper by Chaganty and Joe (2006).

Seemingly unrelated regression models (SUR) (Zellner, 1962) arise when we

measure multiple responses for a group of items (or individuals). SUR models

provide a method for including correlation between observations by considering

a number of regression equations with correlated cross-equation error terms.

Correlation between binary variables are described by in number of papers, such as

those by Oman and Zucker (2001) and Qaqish (2003), as well as the approaches for

introducing correlation based on hierarchical specifications (Blei and Lafferty, 2005;

Hinton et al., 2006; Li and McCallum, 2006; Doshi-Velez and Ghahramani, 2009).

Learning correlations in binary data is of great interest in many diverse research

areas including computational neuroscience, social network analysis, collaborative

filtering, computational advertising and data mining, with many advances in the

construction of correlated binary distributions being made in these fields.

4.6 Summary

In this chapter we developed a moment-matching approach for learning correla-

tion in binary data. Gaussian dichotomisation was described, which is based on

thresholding an underlying Gaussian variable at zero to obtain a correlated binary

vector. We derived fully the key equations for determining the moments of a latent

Gaussian distribution and demonstrated the method using an example to highlight

its features. Using Gaussian dichotomisation, we developed a simple algorithm

for the principal components analysis of binary data. The multivariate probit

construction that underlies Gaussian dichotomisation was also described in relation

to popular Bayesian inference approaches in this setting.

The connections to generating multivariate counts were described briefly and

is an interesting direction for further research in the development of models for

count data. Another avenue for future work based on Gaussian dichotomisation is in

the development of fast algorithms for the analysis of large and sparse binary data.



Chapter 5

Probabilistic Models for Tensor

Factorisation

This chapter develops latent variable models for multi-way or tensor data. A latent

variable model for tensor factorisation decomposes an observed tensor data set into

latent factors that expresses the underlying information content in the data. When a

data set has a natural multi-way structure, it is sensible to conserve this structure in

the data analysis, as opposed to rearranging the data into a matrix or 2-way data set

and employing matrix factorisation techniques. Using a tensor model, we are able to

maintain spatial and other implicit structure in the natural representation of the data

– structure that is often lost when representing a tensor as a matrix. In particular,

we develop a probabilistic model for non-negative decompositions of tensor data,

building on a cornerstone of tensor modelling, a model known as parallel factor

analysis. We describe a hierarchical model for non-negative tensor factorisation and

Bayesian approaches for inference using MCMC. We will also review the existing

approaches for tensor modelling and lay a foundation for new developments in this

important area of research.

5.1 From Matrix to Tensor Factorisation

Typical data analysis problems focus on a matrix X of the form:

observations × measurements, with each row xn corresponding to indepen-

dently collected data and the columns corresponding to the various measurements

of relevance to the study. The models discussed in chapter 2 focused on a matrix

factorisation, where intuitively, this is the process of decomposing the 2-way data set

X into two factors V and Θ.
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A tensor X is a multi-dimensional array often referred to as a P -way data set or

a P th-order tensor, with P array dimensions. A first-order tensor is a vector, a

second-order tensor is a matrix and thereafter tensors are referred to as higher-order

tensors. Each of the P array dimensions is called a mode of the tensor. There are

numerous application areas that routinely produce data in tensor form. In time

series modelling, the collection of data over time results in a natural 3-way data set

of observations × measurements × time. In chemistry, fluorescence spectroscopy

generates data of intensities arranged as samples × emission wavelengths × excitation

wavelengths and is used to identify constituent compounds in testing samples.

In neuroscience, neuro-imaging studies using MRI generate data of pixel values

arranged as subjects × sessions × voxels (horizontal co-ordinates × vertical co-ordinates ×
slice depth). Similarly to the matrix case, such P -way tensors can be decomposed into

P factors for each of the tensor modes. In this chapter we explore the generalisation

of latent variable models to multi-way or tensor data. Latent variable methods for

tensors are of interest since this approach allows for concise descriptions of the

data to be learnt, allows for prediction of any missing values and has the ability

to take into account spatial and temporal relationships between observations. The

construction of models for tensors follows as a natural extension of the modelling

techniques employed in the preceding chapters of this thesis.

Tensors require an additional set of indices to distinguish each of the tensor

modes. Throughout this chapter, a tensor will be denoted by a calligraphic symbol.

A P -mode tensor X of dimensions M1 × . . . ×Mp × . . . ×MP , will be decomposed

into P -factors with the pth factor denoted by the matrix U(p), having dimensions

K × Mp. K is the number of the latent factors. The columns of U(p) are u
(p)
r for

r = 1, . . . ,Mp. The symbol ⊗ is the vector outer product. For X = a ⊗ b ⊗ c

with column vectors a,b, c of size I, J,K respectively, X is a tensor of dimensions

I ×J ×K with elements xijk = aibjck. The tensor obtained in this manner is referred

to as a third-order rank-one tensor.

5.1.1 Models for Multi-way Data

Modelling approaches for tensors can be grouped into two broad classes. The CP

decompositions are models based on the polyadic representation of a tensor, i.e. ex-

pressing the tensor as the sum of a finite number of rank-one tensors. This class of

models is also referred to as canonical decomposition (CANDECOMP) or as parallel

factor analysis (PARAFAC) (Harshman, 1970), hence the joint naming CP. The Tucker

decompositions (Tucker, 1966) are a form of higher order principal components analy-

sis, sometimes referred to as higher order SVD, N -mode factor analysis, or N -mode

principal components analysis (Kolda and Bader, 2007; Acar and Yener, 2009).
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Figure 5.1: Approaches to tensor decomposition for 3-way arrays: (a) CP decom-
position, (b) Tucker decomposition.

CP Decompositions. Consider a third-order tensor X ∈ R
I×J×K . The tensor can be

approximated using the following decomposition:

X =
∑R

r=1 ar ⊗ br ⊗ cr (5.1)

xijk =
∑R

r=1 airbjrckr (in elementwise form)

where ar ∈ R
I , br ∈ R

J , cr ∈ R
K , for r = 1, · · · , R for some positive integer R.

This reconstruction is shown pictorially in figure 5.1a. It is sometimes useful

to represent this using the shorthand X ≈ JA,B,CK, where A is a factor matrix

referring to the combination of the vectors from the rank-one components, i.e.

A = [a1 a2 · · · aR], and likewise for B and C. While the definition of

equation (5.1) has been restricted to 3-way arrays for clarity, the definition can

be easily extended to general P -mode tensors. In general, the factor matrices are

not subject to any constraints, and variations of the CP model can be obtained

by imposing additional constraints on the model factors and by considering

different types of algorithms for learning.

Tucker Decompositions. For an I × J ×K tensor X , the Tucker model is a decom-

position of the form of equation (5.2) and is shown pictorially in figure 5.1b.

X =
∑R1

l=1

∑R2
m=1

∑R3
n=1 σlmn(al ⊗ bm ⊗ cn) (5.2)

xijk =
∑R1

l=1

∑R2
m=1

∑R3
n=1 σlmnailbjmckn (in elementwise form)

where i = 1 . . . , I, j = 1 . . . , J, k = 1 . . . ,K. Here, al ∈ R
I , bm ∈ R

J and

cn ∈ R
K for all l,m, n and R1 ≤ I , R2 ≤ J , R3 ≤ K, are the number of

components (i.e. columns) in the factor matrices A,B and C respectively. The

tensor S = (σlmn) ∈ R
R1×R2×R3 , is called the core tensor, and its entries show the

level of interaction between the different components. If R1, R2, R3 are smaller

than I, J,K, then the core tensor can be thought of as a compressed version

of X . The CP model is a special case of the Tucker decomposition in which

R1 = R2 = R3 = R and the core tensor is equal to the identity tensor. In

the general Tucker setting, there are no constraints on the vectors al,bm, cn,

however one may impose constraints if needed. If the al,bm, cn are columns

from orthogonal matrices A, B, C, then the Tucker decomposition is known as

the Higher-Order Singular Value Decomposition (HOSVD) (Lathauwer et al.,

2000).
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5.1.2 Learning with Non-negativity Constraints

Non-negativity constraints are one popular type of restriction on the tensor factors,

with numerous applications of non-negative models in food science and image pro-

cessing. Non-negativity is a natural constraint in many application areas: when data

reflects colour intensities, counts or spectral amplitudes, negative numbers have no

physical interpretation. Non-negativity constraints also have the tendency to gener-

ate sparse representations as a by-product (Lee and Seung, 1999), which enhances the

interpretability of these models. The CP class of models is used for a P -way tensor

of dimensions M1 × . . .×MP :

X ≈∑K
k=1 u

(1)
k ⊗ u

(2)
k ⊗ · · · ⊗ u

(P )
k = JU(1),U(2), · · · ,U(P )K (5.3)

subject to u
(p)
ik > 0, i = 1, . . . ,Mp, k = 1, . . . ,K, p = 1, . . . , P.

where u
(p)
k is the kth column of the pth factor U(p), and latent dimensionality K.

Maximum likelihood learning of the tensor factors under a Gaussian noise model

minimises the reconstruction error:

min
{u(p)

k }

1

2

∥∥∥X −
K∑

k=1

P⊗

p=1

u
(p)
k

∥∥∥
2

F
, s.t. u

(p)
k ≥ 0, (5.4)

where ‖ · ‖2F is the squared Frobenius norm, which is the sum of squares of all ten-

sor elements. Two methods that achieve this are Positive Tensor Factorisation (PTF)

(Welling and Weber, 2001) and non-negative tensor factorisation (NTF) (Shashua and

Hazan, 2005). PTF learns parameters using multiplicative updates, which is an ex-

tension of the multiplicative-update learning that is used in non-negative matrix fac-

torisation (example 2.5) to the case of tensor factors. NTF uses an EM-algorithm for

learning.

5.2 A Bayesian Non-negative Tensor Factorisation

5.2.1 Model Construction

Consider a general non-negative tensor factorisation where the observed data is a

P -way array, X ∈ R
M1×···×MP and the dimensions of each mode are denoted by

M1, . . . ,MP . Let M = {1, . . . ,M1} × · · · × {1, . . . ,MP } be the index set over all

elements in X and let m = (m1, . . . ,mP ) be a P -tuple index inM. For convenience,

the total number of elements in X is denoted by M =
∏

pMp.
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Figure 5.2: Graphical model of Bayesian NTF. The shaded node represents an
observed variable, and the plates represent repeated variables.

We seek the following decomposition:

X ≈ X̂ =
K∑

k=1

u
(1)
k ⊗ · · · ⊗ u

(P )
k =

K∑

k=1

P⊗

p=1

u
(p)
k , (5.5)

with each element of X̂ computed as:

x̂m =
K∑

k=1

P∏

p=1

u
(p)
kmp

. (5.6)

This approximates X as the sum of K rank-1 tensors that are outer products of P

non-negative vectors, u
(p)
k ∈ R

Mp

+ . The elements of the non-negative vectors are u
(p)
kmp

,

where mp is used as an index for co-ordinates of the P -tuple index m. The vectors

u
(p)
k are the tensor factors, and can be viewed as latent variables in a probabilistic

setting. We use a latent variable modelling approach and describe our generative

process for non-negative tensor data in figure 5.2.

We model an observed data point xm as a Gaussian likelihood with mean x̂m

given by the decomposition of equation (5.6) and variance ϑ,

p(xm|{u(p)kmp
}, ϑ) = N (xm|x̂m, ϑ). (5.7)
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The prior on the data variance is an inverse Gamma distribution with shape and scale

parameters α and β respectively,

p(ϑ|α, β) = G−1 (ϑ|α, β) = βα

Γ(α)
ϑ−(α+1) exp

(−β
ϑ

)
. (5.8)

For each data point, we draw the corresponding latent variables u
(p)
kmp

from a rectified

Gaussian distribution with unknown mean µ
(p)
kmp

and variance v
(p)
kmp

,

p
(
u
(p)
kmp

)
= NR

(
u
(p)
kmp
|µ(p)kmp

, v
(p)
kmp

)
(5.9)

=

√
2

πv
(p)
kmp

erfc


−µ

(p)
kmp

√

2v
(p)
kmp




exp

(
−

(u
(p)
kmp
− µ(p)kmp

)2

2v
(p)
kmp

)
H(u

(p)
kmp

), (5.10)

where H(·) is the Heaviside unit step function: H(z) = 1 if z > 0, H(z) = 0 otherwise.

If the prior over u
(p)
kmp

had been a Gaussian, appropriate conjugate priors for

the mean v
(p)
kmp

and the variance v
(p)
kmp

would be a Gaussian and inverse Gamma

respectively. These priors are not conjugate to the rectified Gaussian and instead we

choose a convenient joint conjugate prior density:

p(µ
(p)
kmp

, v
(p)
kmp
|µµ, vµ, a, b) =

1

c

√
v
(p)
kmp

erfc


 −µ

(p)
kmp√

2v
(p)
kmp


N (µ

(p)
kmp
|µµ, vµ) G−1

(
v
(p)
kmp
|a, b

)
,

where c is a normalisation constant. With this prior µ
(p)
kmp

and v
(p)
kmp

decouple and the

posterior conditional densities are Gaussian and inverse Gamma respectively.

We denote the set of unknown variables by Ω =
{
{u(p)

k }, ϑ, {µ
(p)
k }, {v

(p)
k }
}

,

and the set of hyperparameters Ψ = {α, β, a, b, µµ, vµ}. Following from the graphical

model and equations (5.7) – (5.11) the joint probability is:

p(X ,Ω) = p(X|{u(p)
k }, ϑ)p(ϑ|α, β)p({uk}|{µ(p)

k }, {v
(p)
k })× p({µ

(p)
k }|mµ, vµ)p({v(p)k }|a, b)

∝ ϑ−
M
2 −α−1

∏

m∈M
exp





1
2ϑ


xm −

K∑

k=1

P∏

p=1

u
(p)
kmp




2


× exp
(
−β
ϑ

) K∏

k=1

P∏

p=1

Mp∏

mp=1



exp


−

(u
(p)
kmp
− µ(p)kmp

)2

2v
(p)
kmp


H(u

(p)
kmp

)

× exp


−

(µ
(p)
kmp
− µµ)2

2vµ


 (v

(p)
kmp

)−(α+1) exp

(
−b

v
(p)
kmp

)
 . (5.11)
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5.2.2 Model Properties

5.2.2.1 A Model for Bayesian NMF

The Bayesian NTF model we described in the previous section also provides a model

for a Bayesian non-negative matrix factorisation (NMF). For a two-mode tensor, i.e.

a matrix, the CP decomposition used in equation (5.5) reduces to a more familiar

matrix decomposition with non-negatively constrained factors:

X̂ = U(1)U(2)⊤ s.t. U(1) ≥ 0,U(2) ≥ 0 (5.12)

The specification presented here is based on a rectified Gaussian likelihood rather

than the Poisson likelihood that is used in NMF (Lee and Seung, 1999) (described in

example 2.5). In the limit as µ√
2v
→ −∞, the rectified Gaussian NR(x|µ, v) becomes

an Exponential distribution E(x| − µ
v ), which is useful for inference in non-negative

models using variational methods (Harva and Kaban, 2005), and shows the connec-

tions between this specification and the types of non-negative models based on the

exponential distribution described previously (section 3.3.1; Seeger, 2008).

5.2.2.2 Permutation Indeterminacy

The NTF model has a permutation indeterminacy that must be taken into account

when using the model for practical applications. The rank-one tensors which form

the tensor product can be re-ordered arbitrarily, such that:

X = JU1, . . . ,UM K = JU1Π, . . . ,UMΠK (5.13)

for any K ×K permutation matrix Π.

The ordering of variables is irrelevant for parameter learning and for problems

in prediction, since only the tensor reconstructions are considered and is identified

under any permutation. But permutation is of concern when meaning is to be

assigned to the latent factors. To ensure that this label switching is accounted for

one of the approaches to handling this label switching, discussed previously in

section 2.3.3, can be employed. A non-negative tensor factorisation has a number

of useful properties over the unconstrained decomposition. In particular Lim and

Comon (2009) show that a non-negative PARAFAC always has a solution, and study

the conditions for this to hold. They consider several measures of proximity for

the minimisation problem (5.5), showing that several norms as well as Bregman

divergences result in the existence of an optimal solution.
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5.2.3 Inference by MCMC

Posterior inference can be performed using MCMC techniques. We use two previ-

ously described MCMC methods for learning: Gibbs sampling and Hybrid Monte

Carlo (HMC) sampling. Both methods were described in section 1.5.

Gibbs Sampling. The required full conditional distributions for Gibbs sampling can

be obtained using the joint distribution of equation (5.11). The conjugate priors

specified makes this process uncomplicated. We describe the Gibbs sampling

steps in more detail here, since they were omitted in previous chapters. For

each conditional posterior distribution, the posterior parameters are denoted

by the same symbols as their prior parameters, with a bar. The notation

Ω\u(p)kmp
represents exclusion, where all parameters in the set Ω are used except

u
(p)
kmp

.

The conditional distribution for u
(p)
kmp

is a rectified Gaussian:

p(u
(p)
kmp
|X ,Ω\u(p)kmp

) = NR(u
(p)
kmp
|µ̄(p)kmp

, v̄
(p)
kmp

) (5.14)

v̄
(p)
kmp

=

(
1

ϑ

∑

m∈M

∏

p′ 6=p

(
u
(p′)
kmp′

)2
+

1

v
(p′)
kmp′

)−1

µ̄
(p)
kmp

= v̄
(p)
kmp

{
1

ϑ

∑

m∈M

(∑

k′ 6=k

∏

p

u
(p)
kmp
−xm

)
×
∏

p′ 6=p

u
(p′)
kmp′

+
µ
(p)
kmp

v
(p)
kmp

}
. (5.15)

The conditional posterior distribution of the data variance is an inverse Gamma

distribution, p(ϑ|X,θ\ϑ) = G−1(ϑ|ᾱ, β̄), with shape and scale:

ᾱ = α+ M
2 , β̄ = β + 1

2χ
2, (5.16)

where χ2 = ‖X − X̂‖2F is the sum of squared errors. The conditional posterior

distribution for µ
(p)
kmp

is Gaussian, p(µ
(p)
kmp
|X,θ\µ(p)kmp

) = N (µ
(p)
kmp
|m̄µ, v̄µ), with

variance and mean:

v̄µ =

(
1

v
(p)
kmp

+
1

vµ

)−1

, m̄µ = v̄

(u(p)kmp

v
(p)
kmp

+
mµ

vµ

)
. (5.17)

The conditional posterior distribution for v
(p)
kmp

is an inverse Gamma,

p(v
(p)
kmp
|X,θ\v(p)kmp

) = G−1(v
(p)
kmp
|ā, b̄), with shape and scale parameters:

ā = a+
1

2
, b̄ = b+

1

2
(u

(p)
kmp
− µ(p)kmp

)2. (5.18)
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Hybrid Monte Carlo Sampling. We used HMC extensively in the previous chapters,

and the application here follows the general approach previously described. For

Bayesian NTF, the parameters u
(p)
kmp
≥ 0, ϑ > 0 and v

(p)
kmp

> 0 can be transformed

to unconstrained variables using the transformations: u
(p)
kmp

= exp(ũ
(p)
kmp), ϑ =

exp(ϑ̃), and v
(p)
kmp

= exp(ṽ
(p)
kmp

). After the inclusion of the Jacobian of the change

of variables, the log joint probability obtained, which is the HMC Potential

energy function, is:

L =
1

2 exp(ϑ̃)

∑

m∈M


xm −

K∑

k=1

P∏

p=1

exp(ũ
(p)
kmp

)




2

+

(
M

2
+ α

)
ϑ̃+

β

exp(ϑ̃)
(5.19)

+

K∑

k=1

P∑

p=1

MP∑

mp=1

{(
exp(ũ

(p)
kmp

)− µ(p)kmp

)2
+ 2b

2 exp(ṽ
(p)
kmp

)
+

(µ
(p)
kmp
− µµ)2

2vµ
+ aṽ

(p)
kmp
− ũ(p)kmp

}
.

The derivatives required to complete the sampling procedure can be computed

using the above joint probability for each of the unknown variables.

5.2.4 Experimental Performance

The Bayesian NTF model is evaluated using two data sets, using the testing method-

ology used throughout this thesis. The model is compared to the performance of the

non-negative PARAFAC model of Bro and Jong (1999), which is able to deal with

missing data using built-in EM iterations (Tomasi and Bro, 2002).

Synthetic Data. A synthetic 3-way data set was generated with three underlying

factors resulting in a 50 × 50 × 3 tensor. The predictive performance using

RMSE and NLP on held-out data is shown in figure 5.3. Both models per-

form well for small latent dimensionality K, but PARAFAC begins to overfit

the data as highlighted by the trend towards zero training RMSE and increas-

ing test RMSE. We examine the mixing properties of the sampler, which was

run for 5 latent factors and 10,000 iterations, using the hairiness index Ĥ and

the potential scale reduction factor R̂ (see 1.5.4) for samples of the reconstruc-

tion product JU(1),U(2),U(3)K. Figure 5.4 shows representative hairiness plots

for three parameters, a histogram of the hairiness index at the end of the chain

for all parameters, and a histogram of the potential scale reduction factors ob-

tained using 5 chains for all parameters (with dispersed starting points drawn a

uniform distribution). The hairiness plots show good mixing of the parameters

with 94% of the hairiness indices within the confidence bounds, and almost all

parameters with an R̂ < 1.1, and together give no reason to suspect a lack of

mixing in the Markov chain.
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Figure 5.3: Performance of PARAFAC and Bayesian NTF using synthetic data
for a varying number of latent factors.
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Figure 5.4: Analysis of mixing behaviour of the Bayesian non-negative tensor
factorisation for the synthetic data. (a) - (c) Hairiness plots for 3 parameters. (d)
Histogram of hairiness indices. (e) Histogram of PSRF values.

Colour of Beef. We use data from measurements collected in the study of colour

changes in beef during storage under different conditions. The conditions are:

storage time, temperature, time of light exposure and oxygen content, resulting

in a 6-way tensor of storage × temperature × oxygen × light × muscle × repli-

cate. The performance of both PARAFAC and the probabilistic NTF model in

data reconstruction were compared, and are shown in figure 5.5. Non-negative

PARAFAC predicts missing data well for model orders K = 2 and K = 3 in

accordance with previous results on this data set (Bro and Jakobsen, 2002). For

larger model orders however, PARAFAC tends to overfit the data. Our NTF

model predicts missing data equally well or better at all model orders and does

not overfit.

5.3 Amino Acid Fluorescence Application

Fluorescence spectroscopy is a technique used in the analysis of organic compounds

and is used in the study of the properties and composition of compounds, in

tracking bio-chemical reactions or in determining the conformal state of proteins.

This analysis typically results in tensor data, since a number of samples are excited

by light at a range of frequencies and the resultant emission spectra are recorded.
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Figure 5.5: Performance of PARAFAC and Bayesian NTF for the colour of beef
data for varying number of latent factors.

Figure 5.6: Fluorescence spectra of the five mixtures under study.

For this particular study, five organic solutions are analysed, each sample containing

different amounts of the amino acids tyrosine, tryptophan and phenylalanine in a

solvent. Each sample was excited at 61 wavelengths (240 – 300 nm in 1 nm intervals)

and emission intensities are recorded at 201 wavelengths (250 - 450 nm in 1 nm

intervals). This results in a tensor of 5 samples × 61 excitation levels × 201 emission

levels. Figure 5.6 shows the fluorescence spectra of the 5 samples. This can be seen a

blind source separation problem, where data from a set of mixed sources is obtained

and the task is to identify the constituent sources. Thus, with the fluorescence data

from a set of solutions containing different proportions of amino acids, the task is to

identify the individual amino acids in the solutions.

This data is inherently non-negative, making the use of our Bayesian NTF

model applicable. Learning was performed with K = 3 latent factors. The three

factors obtained are: U(1),U(2),U(3) corresponding to the tensor modes for the

samples, excitation wavelengths and emission wavelengths respectively. U(1) gives

insight into the proportion of the three amino acids used in each of the five samples.

U(2) gives insight into the absorption response of the three amino acids at the 61

excitation levels, and U(3) gives insight regarding the fluorescence response of three

amino acids at the 201 emission wavelengths. We run the Bayesian non-negative

tensor factorisation model for 15,000 iterations using the first half as burn-in. We

analyse the mixing of this chain as before, using the hairiness index Ĥ and potential

scale reduction factor R̂ on the reconstruction product JU(1),U(2),U(3)K, and is

shown in figure 5.7. From this analysis, almost all parameters lie within the hairiness
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Figure 5.7: Mixing analysis for the amino acid fluorescence application. (a)
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used and the error bars represent the variation in the coefficient when averaged
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confidence bounds and have a PSRF less than 1.1, which give us no reason to suspect

problems with mixing in the Markov chain.

The loadings obtained from the NTF analysis correspond to relative excitation

or emission coefficients. Such a three-way data analysis cannot be done by multiple

bilinear data analysis. We show the loading plot obtained for each of the latent

factors in figure 5.8, which plots the coefficients in each of the the latent factors for

each of the three latent dimensions (indicated by different colours). We observe

an induced sparsity in the sample loadings, since all but one of the coefficients is

non-zero in each of samples 1,2 and 3 (figure 5.8a). This sparsity aids interpretation

and shows that the first three samples consist almost exclusively of one amino acid,

whereas the last two samples are mixtures of all three.

Based on these plots, the biochemist examining these factors would be able to

deduce what the constituent amino acids used in the 5 samples are. The red curve
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Figure 5.9: Amino acid data analysis using Bayesian NMF showing coefficients
of the latent factors. (a) Emission-Excitation factor. (b) Coefficients for each of the
five samples used. (c) The excitation profile at the corresponding peak emission
in (a) averaged over samples over all excitation wavelengths considered. (d) The
emission profile obtained at the peak excitation obtained in (a) averaged over
samples over all emission wavelengths considered.

would be identified as Tyrosine since its emission and excitation profiles correspond

to the known chemical properties for this amino acid, i.e peak excitation at 274

nm and emission at 303 nm. Similarly, the blue curve would be identified as

Phenylalanine and the purple curve as Tryptophan (Berg et al., 2002, §3.1). This

kind of analysis has become increasingly important since these techniques are used

as diagnostics for the conformational states of proteins. In addition, the Bayesian

approach gives a measure of the uncertainty of the emission or excitation coefficients,

which gives insight into the environmental conditions of the solution. The small

uncertainty region in these plots is indicative of the relative homogeneity of the

solutions and minimal uncertainty in the peak excitation levels of the amino acids

under study.

The importance of using a tensor based approach to modelling such naturally

multi-way data can best be appreciated by considering the result and effort that

would be needed using an equivalent matrix factorisation method, in this case

a Bayesian non-negative matrix factorisation (NMF). The Bayesian NTF model is

equivalent to a Bayesian NMF model when two-mode data is used, discussed in

section 5.2.2.1. For NMF, the data must first be collapsed from a P × Q × R tensor

into a P × QR matrix, or collapsing by another mode - this process is referred to as

matricisation. If K latent factors are to be estimated, matrix factorisation requires the

computation of Nnmf = (P + QR) ×K latent variables, whereas the corresponding

tensor factorisation requires only Nntf = (P + Q + R) × K latent variables. Since

K < P,Q,R, this is a significant reduction in parameters to be estimated. For the

amino acids study, the tensor approach requires only 1, 325 parameters compared to

36, 798 parameters for NMF.
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We show the results produced by NMF in figure 5.9. These results are similar to

those shown in figure 5.8 for NTF. To perform this analysis, we matricised the data

to a 5 × 12261 matrix and assumed K = 3 latent factors. Using one sample chosen

from the chain at convergence, the two matrix factors obtained are shown in figure

5.9(a),(b). Figure 5.9(a) shows only the first row of the 3 × 12261 factor matrix U1

and was reshaped to the 201× 61 matrix to aid visualisation. Since the emission and

excitation modes were flattened, NMF provides a joint emission-excitation factor.

Figure 5.9(b) shows the composition loadings of the five samples and matches the

corresponding factor produced by NTF. To obtain separate profiles for the emission

and excitation behaviour, we search for the peak excitation mode and fix this when

plotting the excitation behaviour, and similarly for the emission behaviour. These

results are shown in figure 5.9(c),(d), which match the general trends observed

in the NTF results, but are very noisy. The tensor model allowed a direct way of

visualising these factors, provided smoother factors and required less effort both

computationally and in visualising the results, and is preferable for the analysis of

such naturally 3-way data.

5.4 Discussion

Recently, Chu and Ghahramani (2009) presented the probabilistic Tucker model,

which is a generative specification of the Tucker model, as opposed to the generative

description of the CP model we considered here. In addition to the advantages that

a probabilistic CP model gives: allowing missing data to be handled easily and ac-

counting for uncertainty in the observed data, a probabilistic Tucker model provides

a basis upon which other models can be built and generalised. Since the CP model is

a special case of the Tucker model, this model provides an important general purpose

model for the analysis of tensor data. The probabilistic Tucker model embeds the

Tucker decomposition in a linear Gaussian framework for estimation, which allows

the core tensor to be integrated out and learning is achieved by MAP estimation us-

ing gradient descent. Bayesian learning is not widely considered in the literature for

tensor decompositions. We developed one of the first fully Bayesian models for non-

negative tensor factorisation in Schmidt and Mohamed (2009), and have expanded

on this work here. A fully Bayesian exploration of the probabilistic Tucker model

and the improvements that this may bring is thus one avenue of further development.

A probabilistic CP or Tucker model can also be used as the basis upon which

tensor models generalised to the exponential family can be developed, using the

approach discussed in chapter 2. In such a setting, marginalisation of the core

tensor will not be possible, resulting in a harder inference problem. Inference in

tensor models other than MAP/ML or MCMC have also not been considered and

variational inference approaches may be one interesting avenue of exploration.
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5.5 Tensor Factorisation in Context

The origin of tensor factorisations can be traced to problems in linear algebra, in

particular to the work of Hitchcock (1927), followed by models for multi-way data

by Cattell (1944). Tensor decompositions truly came into being after the work of

Tucker (1966) in developing the Tucker model and by Harshman (1970) with the

PARAFAC model. Interestingly, these models were developed in psychometrics,

the same field from which Factor Analysis was borne. Tensor decompositions

soon became established as a powerful method for analysis in chemometrics,

with the work of Bro (Bro and Jong, 1999; Bro and Jakobsen, 2002) quite promi-

nent. There are many variants of both Tucker and CP models and these are well

described in the review papers by Kolda and Bader (2007) and Acar and Yener (2009).

Non-negative tensor factorisation came to prominence following the popularity

of non-negative matrix factorisation (Paatero and Tapper, 1994; Lee and Seung,

1999). Welling and Weber (2001) discuss a positive matrix factorisation that uses

multiplicative updates similar to those used for NMF by Lee and Seung (1999).

Cichocki et al. (2007) present an NTF algorithm based on minimising alpha and beta

divergences, and Shashua and Hazan (2005) present an EM algorithm for problems

in computer vision. Hazan et al. (2005) show in a related paper that the use of tensor

approaches for image analysis is better suited to handling spatial redundancy than

using NMF with vectorised images.

We developed one of the first fully Bayesian approaches to learning in non-

negative tensor factorisations using MCMC methods in Schmidt and Mohamed

(2009) and in this chapter. Porteous et al. (2008) present models for parametric and

non-parametric Bayesian tensor factorisation. The parametric model is constructed

by considering P interacting LDA models (Blei et al., 2003) for each of the P tensor

modes. A non-parametric version is obtained by considering the non-parametric

analogue of the LDA model, which is the Hierarchical Dirichlet process (HDP).

The model is briefly described, but no evaluation or other discussion is presented,

requiring further work in this area. Other recent developments in probabilistic mod-

elling for tensors include the probabilistic Tucker models of Chu and Ghahramani

(2009) who discuss an EM algorithm for learning. A Bayesian tensor model has also

been used for modelling relational data (Sutskever et al., 2009), which can be seen

as Bayesian adaptation of the Tucker 2 modelling approach (Acar and Yener, 2009),

using a prior specification based on the Chinese Restaurant Process.
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5.6 Summary

In this chapter we developed generalisations of latent factor models to multi-way

or tensor data sets. Models for tensor data allow the natural relationships in the

data to be maintained and provide a means of learning concise descriptions of data.

We focussed on the construction of models for non-negative tensor decompositions

based on the CP-decomposition framework, and described approaches to fully

Bayesian learning. Our model decomposes an observed n-way data set into n

factor matrices, which represent an underlying description for each of the tensor

modes. We demonstrated the robustness of the Bayesian approach and highlighted

the importance and practicality of non-negative representations of data with an

application in fluorescence spectroscopy.

We discussed the relationship between the non-negative tensor factorisation

described in this chapter and the more familiar non-negative matrix factorisation,

along with the wide set of existing work in this area. A natural extension of

these ideas, is the construction of tensor models generalised to the exponential

family. This can also be coupled with an investigation of alternative approximate

inference schemes. The applicability of tensor models has thus far been restricted to

applications in chemometrics, though this is a diverse area of applied science. The

application to research fields such as those in relational learning are still open, and

there remains much unexplored territory for the application of tensor models.
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Discussion and Conclusion

Models for matrix factorisation have become an essential tool in a wide variety of

research areas, whether this be in online rental settings for movie recommendation,

in research environments for the analysis of gene expression data, or in food science

in deciding the storage and transport conditions for various foods. In this thesis,

we have made a number of advances in probabilistic models for matrix and tensor

factorisation that allow us to apply these methods to the new and diverse application

areas that are increasingly found. We recap our contributions here.

We developed a Bayesian model for matrix factorisation in chapter 2 that is

generalised to the exponential family, which allows modelling of data that may be

counts, binary, non-negative or a heterogeneous set of these data types. This unifying

model for unsupervised learning plays a complementary role to the generalised

linear models for regression. We have also shown that a number of popular models

in use are special cases of the generalised latent variable model. Our results showed

that the Bayesian exponential family PCA model produces better results than a

corresponding maximum likelihood approach, avoids overfitting and produces

useful predictions in a number of settings. We also developed a new post-processing

strategy for dealing with factor identifiability, allowing samples to be generated from

which meaningful averages can be computed. The Scotch data analysis showed a

typical application in marketing, the use of the generalised model in the analysis of

binary purchasing data and the insight obtained after post-processing samples for

identifiability.

In chapter 3 we developed both optimisation and Bayesian approaches to learning

latent representations with sparsity. We extended the exponential family framework

by specifying a generic loss function and optimisation algorithm that allowed

generalised learning with sparsity using the L1 norm. We extended the exponential

family framework in a second way by developing new sparse Bayesian latent variable
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models and novel inference procedures, considering both scale-mixture priors and

discrete mixture priors. Importantly, we provided the first comparison of sparse

learning using these three approaches: optimisation using the L1 norm, sparse

Bayesian learning with continuous sparsity-favouring priors and spike-and-slab

priors. Our results show that the spike-and-slab has the best performance on held

out data on all data sets and produces accurate reconstructions even with restricted

running times. We demonstrated these methods in a diverse set of applications

including text modelling, robot planning and psychology showing the flexibility of

the sparse models developed.

In chapter 4 we developed a novel and simple approach for Binary PCA based

on dichotomising underlying Gaussian variables. We derived fully the equations

that match moments between correlated binary variables and latent Gaussian vari-

ables, and demonstrated its application with a simple example. The algorithm allows

for sampling of correlated binary variables with desired means and covariances and

gives insight into the implications of dichotomising a Gaussian distribution. We

subsequently developed a binary PCA algorithm that combines Gaussian dichotomi-

sation with existing approaches for computing principal components, resulting in a

new binary PCA algorithm.

We showed that latent variable modelling techniques can be naturally extended to

data sets that are represented as a multi-dimensional arrays or tensors in chapter 5.

We developed the first fully Bayesian non-negative tensor factorisation model and

described its properties and two MCMC sampling algorithms. We demonstrated

the effectiveness of our model in a fluorescence spectroscopy application, where

maintaining the tensor structure of the data coupled with Bayesian inference led to

cleaner and more interpretable results.

A number of significant themes have underpinned the development of this thesis.

Our overarching theme has been that of Bayesian statistical approaches to latent

variable modelling and inference. The Bayesian approach emphasised accounting for

uncertainty and averaging over model parameters, rather than searching for a single

parameter setting. This Bayesian thinking established intuitive approaches to model

development based on the specification of hierarchical Bayesian models, which were

used to specify generative processes of data. Bayesian inference overcame problems

with data over-fitting and the limitations of maximum likelihood methods, allowed

for a straightforward approach to dealing with missing data, and in all the settings

considered gave better predictive performance than maximum likelihood approaches.

A second theme, has been that of unification. We developed a unification of

various models for unsupervised learning in the exponential family PCA method
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described in chapter 2, using the shared properties of the exponential family of

distributions. We showed that this model encompasses a number of existing models

including non-negative matrix factorisation (Paatero and Tapper, 1994; Lee and Se-

ung, 1999), probabilistic latent semantic analysis (Hofmann, 1999) and logistic PCA

(Tipping, 1999; Schein et al., 2003). Similarly, the generic loss function we described

in chapter 3 provided a unification of various approaches to sparse modelling, such

as the Lasso (Tibshirani, 1996) and regularised logistic regression (Lee et al., 2006b;

Schmidt et al., 2007). The unification of many continuous sparsity-favouring priors

was also described based on the scale-mixture of Gaussians, and provides a means

with which to reason and explore the various continuous sparse priors available.

Finally, we showed the unification of matrix and tensor factorisation approaches in

chapter 5.

A third theme has been the consideration of structure in data. One advantage

of Bayesian methods is the ability to include prior information into the model

specification, and it is through this prior specification that structure in the data

can be explored. Wide classes of models and structural assumptions are spanned

by considering various priors for the latent representation, such as factor analysis

(chapter 2; Spearman, 1904; Bartholomew and Knott, 1999), mixture models (New-

comb, 1886; Titterington et al., 1985), partial membership models (Heller et al., 2008)

and latent feature selection (chapter 3); see table 1.1. We also considered correla-

tion in data (chapter 4), and learning non-negative representations of data (chapter 5).

We have shown that latent variable models are applicable to a wide range of

applications. Emphasis was placed throughout this thesis on exploratory analysis

and the visualisation of data using the inferred latent representation. We addressed

problems such as collaborative filtering, recommendation and advertising using la-

tent variable models for the task of missing data imputation and data reconstruction

(chapter 2). We explored data from psychological experiments and used our new

models to obtain insight into the factors contributing to decision making (chapter 3).

We also explored the application of factor models in monitoring food quality (chapter

5). The analysis of binary data is also a theme carried throughout, with coverage of

various approaches to handling such data either by Gaussian dichotomisation using

the probit construction (chapter 4), or based on Bernoulli likelihoods giving the logit

representation (chapter 2).

Sampling based approaches to learning have also featured strongly. Gibbs

sampling is restricted to conjugate cases where full conditional distributions can be

derived (chapter 5), whereas the auxiliary variable samplers used are much more

widely applicable (chapters 1, 2, 3). Both Hybrid Monte Carlo and slice sampling

required the evaluation of the joint probability to be implemented successfully, and
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are well suited to the non-conjugate models explored in this thesis. Other approaches

to inference are also of relevance though they have not been explored here. These

include alternative approaches based on moment-matching, such as that discussed

in chapter 4, and other approximate inference such as variational approximations.

Sparsity also presents a number of interesting future research directions. A

full theoretical understanding of the priors obtained using the scale-mixture of

Gaussians construction is needed, as well as new methods for encoding structure in

the sparse representations that are learnt. Aspects of sparsity in the non-parametric

Bayesian setting can be further explored and would allow for highly flexible models

to be developed. Tensor models have promise for the analysis of relational data,

where relationships between entities are naturally represented by a data tensor.

The concluding comments of each chapter made mention of the various other

opportunities for future work.

In this thesis, we have contributed to the methodology, learning and applica-

tions of latent variable models. We described generalisation in its widest sense:

generalisation of the types of data that are modelled, generalisation of the types of

priors that are used and the generalisation of the data structures that are considered.

We developed models for various facets of this generalisation. We described new

exponential family generalisations that allow for the analysis of many diverse types

of data. Sparsity in latent representations was explored to allow for latent factor

selection, and we extended the number of latent factors used to model tensor

data. The models presented are flexible enough to allow useful predictions to be

made, provide insight into the underlying structure of the data, have highlighted

the inherent relationships between models popular in the day-to-day analysis of

data; and demonstrate the practical use and advantages of Bayesian methods in

unsupervised statistical settings.

The more than a century-long history of latent variable models is evidence of

the indelible impact this class of models has had on statistics. Despite their long

history, research into latent variable models remains active, and this thesis has made

a number of contributions in advancing this important area of research.



References

F. Abramovich, V. Grinshtein, and M. Pensky. On optimality of Bayesian testimation

in the normal means problem. Annals of Statistics, 35(5):2261–2286, 2007. (page 77)

E. Acar and B. Yener. Unsupervised multiway data analysis: A literature survey. IEEE

Transactions on Knowledge and Data Engineering, 21:6–20, 2009. (pages 94 and 107)

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic

blockmodels. Journal of Machine Learning Research, 9:1981–2014, 2008. (page 79)

J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomous response

data. Journal of the American Statistical Association, 88(422):669–679, 1993. (page 90)

D. F. Andrews and C. L. Mallows. Scale mixtures of normal distributions. Journal of

the Royal Statistical Society. Series B (Methodological), 36(1):99–102, 1974. (page 58)

C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte

Carlo computations. Annals of Statistics, 37(2):697–725., 2009. (page 64)

C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC

for machine learning. Machine Learning, 50:5–43, 2003. (page 12)

C. Archambeau, N. Delannay, and M. Verleysen. Robust probabilistic projections.

In Proceedings of the 23rd International Conference on Machine Learning (ICML), pages

33–40, 2006. (page 52)

K. S. Azoury and M. K. Warmuth. Relative Loss Bounds for On-Line Density Estima-

tion with the Exponential Family of Distributions. Machine Learning, 43(3):211–246,

2001. (page 8)

F. Bach. Structured sparsity-inducing norms through submodular functions. In Neural

Information Processing Systems (NIPS), 2010. (page 74)

R. R. Bahadur. Studies in Item Analysis and Prediction, volume VI of Stanford Mathemat-

ical Studies in the Social Sciences, chapter ”A representation of the joint distribution

of responses to n dichotomous items”, pages 158 – 168. Stanford University Press,

1961. (page 90)



114 References

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman diver-

gences. Journal of Machine Learning Research, 6:1705–1749, 2005. (page 8)

O. Barndorff-Nielsen. Hyperbolic distributions and distributions on hyperbolae.

Scandinavian Journal of Statistics, 5(3):151–157, 1978. (page 59)

D. J. Bartholomew and M. Knott. Latent variable models and factor analysis, volume 7 of

Kendall’s library of statistics. Arnold, 2nd edition, 1999. (pages 23 and 111)

M. S. Bartlett. Multivariate analysis. Supplement to the Journal of the Royal Statistical

Society, 9(2):pp. 176–197, 1947. URL http://www.jstor.org/stable/2984113.

(page 28)

M. J. Beal. Variational Algorithms for approximate Bayesian inference. PhD thesis, Uni-

versity of Cambridge, 2003. (page 48)

M. A. Beaumont. Estimation of population growth or decline in genetically monitored

populations. Genetics, 164(3):1139–1160, 2003. (page 64)

J. M. Berg, J. L. Tymoczko, and L. Stryer. Biochemistry. W. H. Freeman and Co., 5th

edition, 2002. (page 105)

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, 1st edition, 1994. (page 12)

A. Beskos, N. Pillai, G. Roberts, J.-M. Sanz-Serna, and A. Stuart. Optimal tuning of

hybrid Monte Carlo. http://arxiv.org/abs/1001.4460, 2010. (page 16)

M. Bethge and P. Berens. Near-maximum entropy models for binary neural resp-

resentations of natural images. In Neural Information Processing Systems (NIPS),

volume 21, 2007. (page 92)

P. J. Bickel and K. A. Doksum. Mathematical statistics: Basic ideas and selected topics,

volume I. 2001. (pages 37 and 38)

C. M. Bishop. Bayesian PCA. In Neural Information Processing Systems (NIPS), pages

382–388, 1999. (pages 36 and 51)

C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and

Statistics. Springer, August 2006. (pages 12, 25, 32, and 33)

D. Blei and J. Lafferty. Correlated topic models. In Advances in Neural Information

Processing Systems (NIPS), volume 18, 2005. (pages 81, 82, and 92)

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine

Learning Research, 3:993 – 1022, 2003. (pages 51 and 107)

T. Blumensath and M. E. Davies. Iterative thresholding for sparse approximations.

Journal of Fourier Analysis and Applications, 14(5–6):629–654, 2008. (page 73)

http://www.jstor.org/stable/2984113


References 115

S. Boyde and L. Vandenberge. Convex Optimization. Cambridge University Press,

2004. (page 31)

L. M. Bregman. The relaxation method of finding the common point of convex sets

and its application to the solution of problems in convex programming. USSR

Computational Mathematics and Physics, 7:200 – 217, 1967. (page 8)

L. Breiman. Better subset regression using the nonnegative garrote. Technometrics, 37:

373–384, November 1995. (page 72)

N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed

models. Journal of the American Statistical Association, 88(421):9–25, 1993. (page 27)

R. Bro and M. Jakobsen. Exploring complex interactions in designed data using

GEMANOVA. Journal of Chemometrics, 16(6):294–304, May 2002. (pages 102 and 107)

R. Bro and S. D. Jong. A fast non-negativity-constrained least squares algorithm.

Journal of Chemometrics, 11(5):393–401, 1999. (pages 101 and 107)

J. Brodie, I. Daubechies, C. D. Mol, D. Giannone, and I. Loris. Sparse and stable

Markowitz portfolios. Proceedings of the National Academy of Science, 106(30):12267–

12272, 2009. (pages 54 and 78)

S. P. Brooks and G. O. Roberts. Convergence assessment techniques for Markov Chain

Monte Carlo. Statistics and Computing, 8:319 – 335, 1998. (pages 19 and 20)

W. Buntine and A. Jakulin. Discrete components analysis. In Subspace, Latent Structure

and Feature Selection, volume 3940/2006, pages 1–33. Springer (LNCS), 2006.

(page 51)

E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal re-

construction from highly incomplete frequency information. IEEE Transactions on

Information Theory, 52(2):489–509, February 2006. (pages 56, 74, and 78)

F. Caron and A. Doucet. Sparse Bayesian nonparametric regression. In Proceedings of

the 25th International Conference on Machine Learning (ICML). 2008. (pages 76 and 79)

C. Carvalho, N. Polson, and J. G. Scott. The Horseshoe estimator for sparse signals.

Biometrika, 97(2):465 – 480, 2010a. (page 57)

C. M. Carvalho, J. Chang, J. E. Lucas, J. R. Nevins, Q. Wang, and M. West. High-

dimensional sparse factor modeling: Applications in gene expression genomics.

Journal of the American Statistical Association, 103(484):1438–1456, 2008.

(pages 53, 54, 65, 78, and 79)

C. M. Carvalho, H. Lopes, and O. Aguilar. Dynamic stock selection strategies: a

structured factor model framework. In Bayesian Statistics 9, 2010b. (pages 54 and 78)



116 References

O. Caster, G. Noren, D. Madigan, and A. Bate. Large-scale regression-based pattern

discovery: The example of screening the WHO global drug safety database. In

Proceedings of the KDD Workshop on Mining Medical Data, 2008. (page 54)

R. Cattell. “Parallel proportional profiles” and other principles for determining the

choice of factors by rotation. Psychometrika, 9(4):267–283, December 1944. (page 107)

N. R. Chaganty and H. Joe. Range of correlation matrices for dependent Bernoulli

random variables. Biometrika, 93(1):197 – 206, 2006. (pages 86 and 92)

R. Chartrand. Exact reconstructions of sparse signals via nonconvex minimization.

IEEE Signal Processing Letters, 14:707–710, 2007. (page 73)

S. Chib and E. Greenberg. Analysis of multivariate probit models. Biometrika, 85(2):

347–361, 1998. (pages 90 and 91)

S. B. Choy and J. S. Chan. Scale mixtures distributions in statistical modelling. Aus-

tralian & New Zealand Journal of Statistics, 50(2):135–146, 2008. (page 58)

W. Chu and Z. Ghahramani. Probabilistic models for incomplete multi-dimensional

arrays. In Proceedings of the 12th International Conference on Artificial Intelligence and

Statistics (AISTATS), 2009. (pages 106 and 107)

A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S. Amari. Non-negative tensor

factorization using alpha and beta divergences. In IEEE conference on Acoustics,

Speech and Signal Processing (ICASSP), pages III–1393 – III–1396, 2007. (page 107)

J. Claerbout and F. Muir. Robust modeling with erratic data. Geophysics, 38:826–844,

1973. (page 78)

D. Clarkson. Estimating the standard errors of rotated factor loadings by jackknifing.

Psychometrika, 44(3):297–314, September 1979. (page 43)

M. Collins, S. Dasgupta, and R. Schapire. A generalization of PCA to the exponential

family. In Advances in Neural Information Processing (NIPS), volume 14, pages 617 –

624. 2002. (pages 28, 30, 31, 51, and 67)

P. Common. Independent component analysi – a new concept? Signal Processing, 36:

287 – 314, 1994. (page 79)

M. K. Cowles and B. P. Carlin. Markov chain Monte Carlo convergence diagnostics: A

comparative review. Journal of the American Statistical Association, 91:883–904, 1996.

(page 20)

D. R. Cox and N. Wermuth. On some models for multivariate binary variables parallel

in complexity with the multivariate Gaussian distribution. Biometrika, 89(2):462–

469, 2002. (pages 84 and 92)



References 117
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