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Calogero-Moser models can be generalised for all of the finite reflection groups. These
include models based on non-crystallographic root systems, that is the root systems of the
finite reflection groups, H3, H4, and the dihedral group I2(m), besides the well-known ones
based on crystallographic root systems, namely those associated with Lie algebras. Universal
Lax pair operators for all of the generalised Calogero-Moser models and for any choices
of the potentials are constructed as linear combinations of the reflection operators. The
consistency conditions are reduced to functional equations for the coefficient functions of the
reflection operators in the Lax pair. There are only four types of such functional equations
corresponding to the two-dimensional sub-root systems, A2, B2, G2, and I2(m). The root
type and the minimal type Lax pairs, derived in our previous papers, are given as the
simplest representations. The spectral parameter dependence plays an important role in the
Lax pair operators, which bear a strong resemblance to the Dunkl operators, a powerful tool
for solving quantum Calogero-Moser models.

§1. Introduction

Generalised Calogero-Moser models are integrable many-particle dynamical sys-
tems based on finite reflection groups. Finite reflection groups include the dihedral
groups I2(m) and H3 and H4 together with the Weyl groups of the root systems
associated with Lie algebras, called crystallographic root systems. Integrability of
classical Calogero-Moser models based on the crystallographic root systems 1), 2) is
shown in terms of Lax pairs. The root and the minimal type Lax pairs derived
in our previous papers 3) provide a universal framework for these Calogero-Moser
models, including those based on exceptional root systems and the twisted mod-
els. On the other hand, a theory of classical integrability for the models based on
non-crystallographic root systems has been virtually non-existent. This is in sharp
contrast with the quantum counterpart. Dunkl operators, which are useful for solv-
ing quantum Calogero-Moser models, were first explicitly constructed for the models
based on the dihedral groups. 4)

In this paper we present a Lax pair in an operator form for generalised Calogero-
Moser models, which applies universally to the models based on non-crystallographic
root systems as well as those based on crystallographic ones. This Lax pair, as
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500 A. J. Bordner, E. Corrigan and R. Sasaki

expected, bears a strong resemblance to the Dunkl operators 4), 5) and the reflection
operators play a central role. The spectral parameter dependence is also essential,
in contradistinction to the auxiliary role in the conventional formalism. 2) When
suitable representation spaces are chosen, the universal Lax pair reproduces the root
type and the minimal type Lax pairs for the models based on the crystallographic
root systems. This provides another clue that the quantum and classical integrability
of the generalised Calogero-Moser models are closely connected. We hope that this
Lax pair operator formalism will cross-fertilise the fruitful subject of the quantum
and classical Calogero-Moser systems and related ones such as Toda systems.

For the general background and the motivations of this paper and the phys-
ical applications of the Calogero-Moser models with various potentials to lower-
dimensional physics, ranging from solid state to particle physics and supersymmetric
gauge theories, we refer to our previous papers 3) and references therein.

This paper is organised as follows. In §2 we summarise the basic concepts of
the finite reflection groups in order to set the stage and to introduce appropriate
notation. In §3 the generalised Calogero-Moser models are defined with various
choices of root systems and potentials. Section 4 is the main body of the paper.
The Lax operators L and M are defined as a linear combination of the reflection
operators ŝρ for all the roots ρ. The coefficient functions depend on the dynamical
variables and on the spectral parameter in a rather symmetrical way. Consistency
of the Lax pair can be proved quite easily. The Lax equation is at most quadratic
in the reflection operators, ŝρŝσ, which becomes an identity operator for ρ = σ,
ŝ2
ρ = 1, and a two-dimensional rotation operator for ρ �= σ. The linear (ŝ1

ρ) and
the constant (ŝ0

ρ) parts give the canonical equations of motion of the generalised
Calogero-Moser models. The quadratic part ŝρŝσ, ρ �= σ, imposes the consistency
conditions, which are decomposed into those corresponding to two-dimensional sub-
root systems containing ρ and σ. As shown in Table I, there are only four types of
two-dimensional root systems, A2, B2, G2, and I2(5) for all of the Coxeter groups
except for the dihedral group I2(m) which can have many for some values ofm. Thus
the functions appearing in the Lax pair operator (except for those for I2(m)) need to
satisfy at most two functional equations. The solutions are derived in the Appendix.
In §5 various possible representations of the Lax pair operator are discussed. The
minimal type and the root type Lax pairs are derived as two simplest examples in
§6. Various sum rules utilised in previous papers are derived as restrictions of the
general functional equations derived in §4. Some comments and discussion are given
in §7. Details of the derivation of the solutions are relegated to the Appendix. Two
types of solutions, the untwisted and twisted solutions, are derived. The consistency
conditions of all of the untwisted solutions are attributed to one functional identity,
(A.12), of the Weierstrass σ function. Twisted solutions are obtained as proper linear
combinations of the untwisted ones.

§2. Root systems and finite reflection groups

We now review some facts about root systems and their reflection groups in
order to introduce notation. 6) We consider only reflections in Euclidean space.
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Generalised Calogero-Moser Models and Universal Lax Pair Operators 501

A root system ∆ of rank r is a set of vectors in Rr which is invariant under reflections
in the hyperplane perpendicular to each vector in ∆. In other words,

sα(β) ∈ ∆, ∀α, β ∈ ∆, (2.1)

in which
sα(β) = β − 2(α · β/|α|2)α. (2.2)

Dual roots are defined by α∨ = 2α/|α|2, in terms of which

sα(β) = β − (α∨· β)α. (2.3)

The orbit of β ∈ ∆ is the set of root vectors resulting from the action of the reflections
on it {sα(β), α ∈ ∆}. The set of positive roots ∆+ may be defined in terms of a
vector V ∈ Rr, with V · α �= 0, ∀α ∈ ∆, as those roots α ∈ ∆ such that α · V > 0.
A unique set of r simple roots Π is defined such that they span the root space and
the coefficients {aj} in β =

∑r
j=1 ajαj for β ∈ ∆+, {αj ∈ Π, j = 1, · · · , r} are all

positive.
The set of reflections {sα, α ∈ ∆} generates a group, known as a Coxeter group.

It is generated by products of sα with α ∈ Π subject to the relations

(sαsβ)m(α,β) = 1, α, β ∈ Π. (2.4)

The set of positive integers m(α, β) uniquely specify the Coxeter group with m(α, α)
= 1, ∀α ∈ Π. For example, for two-dimensional crystallographic root systems A2,
B2, and G2, the integer m(α, β) is 3, 4, and 6, respectively. Thus sαsβ is a two-
dimensional rotation by an angle ±2π/3, ±π/2, and ±π/3, respectively. This fact
will be used in later sections. We consider here only those Coxeter groups with a
finite number of roots in Euclidean space, called the finite reflection groups.

The root systems for finite reflection groups may be divided into two types: crys-
tallographic and non-crystallographic root systems. Crystallographic root systems
satisfy the additional condition

α∨· β ∈ Z, ∀α, β ∈ ∆. (2.5)

These root systems are associated with simple Lie algebras: {Ar, r ≥ 1}, {Br, r ≥
2}, {Cr, r ≥ 2}, {Dr, r ≥ 4}, E6, E7, E8, F4, and G2 and {BCr, r ≥ 2}. The
Coxeter groups for these root systems are called Weyl groups. The remaining non-
crystallographic root systems are H3, H4, and the dihedral group of order 2m,
{I2(m), m ≥ 4}.

Weyl chambers are defined as the open subsets of Rr that result from removing
the reflection hyperplanes Hα, α ∈ ∆, Hα ≡ {q ∈ Rr, α∨· q = 0}. The action of the
reflection group on the Weyl chambers is transitive and free, i.e., any Weyl chamber
may be obtained from another by the action of an element of the reflection group
and this element is unique. The principal Weyl chamber is defined as the one whose
points q satisfy q · α > 0, ∀α ∈ ∆+. For crystallographic root systems this implies
that all points in the principal Weyl chamber have positive Dynkin labels.
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502 A. J. Bordner, E. Corrigan and R. Sasaki

Definitions and properties of the crystallographic root systems may be found
in many references, see for example. 7) The concept of weights may be defined for
these root systems. For crystallographic root systems, any positive root is a sum
of simple roots in Π with positive integer coefficients. The set of weights Σ, which
lie on a lattice, is the set of vectors such that if Λ ∈ Σ then α∨· Λ is an integer for
any α ∈ ∆. Fundamental weights Λ(j) are vectors which form a dual basis to the
corresponding dual simple roots α∨

j , i.e., α
∨
j ·Λ(k) = δjk, j, k = 1, · · · , r. Any weight

Ψ ∈ Σ may be expressed as a sum of fundamental weights with integer coefficients,
Ψ =

∑r
j=1 ajΛ

(j). The coefficients {aj , j = 1, · · · , r} are called the Dynkin labels of
Ψ .

We now briefly describe the non-crystallographic root systems. The dihedral
group of order 2m, I2(m), is the group of orthogonal transformations that preserve
a regular m-sided polygon in two dimensions. It consists of m rotations (through
multiples of 2π/m) and m reflections. The angle between adjacent roots is π/m and
a possible basis for the roots, if all are chosen to have the same length |αj |2 = 1, is

αj = (cos(jπ/m), sin(jπ/m)) , j = 1, · · · , 2m. (2.6)

For odd m all of the roots are in the same orbit of the reflection group but for even
m there are two orbits, one consisting of the αj with odd j and the other with even
j . This then allows two different coupling constants and potential functions for the
I2(m) Calogero-Moser model for even m.

The reflection group of type H4 is the symmetry group of a regular 120-side
solid, with dodecahedral faces, in R4. It is a group of order 14400. The group of
type H3 is a subgroup of H4 and is the symmetry group of the icosahedron (with 20
faces) in R3. It is a group of order 120. Define

a ≡ cos
π

5
=
1 +

√
5

4
, b ≡ cos

2π
5
=

−1 +√
5

4
. (2.7)

Then a choice of simple roots for H4 is the following:

α1 =
(
a,−1

2
, b, 0

)
, α2 =

(
−a,

1
2
, b, 0

)
,

α3 =
(
1
2
, b,−a, 0

)
, α4 =

(
−1
2
,−a, 0, b

)
. (2.8)

The full set of roots of H4 in this basis may be obtained from (1, 0, 0, 0), (1
2 ,

1
2 ,

1
2 ,

1
2),

and (a, 1
2 , b, 0) by even permutations and arbitrary sign changes of coordinates. These

120 roots form a single orbit. A subset of (2.8), {α1, α2, α3} is a choice of simple
roots for the H3 root system. In this basis, the full set of roots for H3 results from
even permutations and arbitrary sign changes of (1, 0, 0) and (a, 1

2 , b). These 30 roots
also form a single orbit.

§3. Generalised Calogero-Moser models

A generalised Calogero-Moser model is a Hamiltonian system associated with
a root system ∆ of rank r. Quantum versions of these models are also integrable,
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Generalised Calogero-Moser Models and Universal Lax Pair Operators 503

at least for certain choices of ∆ and potential function. 8) The dynamical variables
are the coordinates {qj} and their canonically conjugate momenta {pj}, with the
Poisson brackets

{qj, pk} = δjk, {qj , qk} = {pj , pk} = 0, j, k = 1, · · · , r. (3.1)

These will be denoted by vectors in Rr

q = (q1, · · · , qr), p = (p1, · · · , pr). (3.2)

The Hamiltonian for the Calogero-Moser model is

H =
1
2
p2 +

∑
α∈∆

g2
|α|

|α|2 V|α|(α · q), (3.3)

in which the real coupling constants g|α| and potential functions V|α| are defined on
orbits of the corresponding finite reflection group, i.e., they are identical for roots in
the same orbit. This then ensures that the Hamiltonian is invariant under reflections
of the phase space variables about a hyperplane perpendicular to any root

q → sα(q), p → sα(p), ∀α ∈ ∆ (3.4)

with sα defined by (2.3).
The Lax pair operator that we will construct in later sections will apply for the

following potentials (g|α| = g for all roots in simply laced models and g|α| = gL for
long roots and g|α| = gS for short roots in non-simply laced models):
1. Untwisted elliptic potential This applies to all of the crystallographic root
systems and the potential function is

V|α|(α · q) = ℘(α · q|{2ω1, 2ω3}), for all roots, (3.5)

in which ℘ is the Weierstrass ℘ function with a pair of primitive periods
{2ω1, 2ω3}. Throughout this paper we adopt the convention that the Weier-
strass ℘, ζ, and σ functions have the above standard periods, unless otherwise
stated.

2. Twisted elliptic potential This applies to all of the non-simply laced root
systems. Except for the G2 model, the potential functions are

V|α|(α · q) =



℘(α · q|{2ω1, 2ω3}), for long roots,

℘(α · q|{ω1, 2ω3}), for short roots.
(3.6)

That is, the potential for short roots has one half of the standard period in one
direction, which we choose to be ω1. For the G2 model,

V|α|(α · q) =



℘(α · q|{2ω1, 2ω3}), for long roots,

℘(α · q|{2ω1
3 , 2ω3}), for short roots.

(3.7)

In this case the potential for short roots has one third of the standard period
in one direction, which we choose to be ω1. The cases of BCr system and the
extended Br, Cr, and BCr systems will be discussed separately in later sections.
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504 A. J. Bordner, E. Corrigan and R. Sasaki

3. Trigonometric and hyperbolic potentials This applies to all crystallographic
systems and the potential functions are

V|α|(α · q) =



a2/sin2 a(α · q),

a2/sinh2 a(α · q),
for all roots, (3.8)

in which a is an arbitrary real constant.
4. Rational potential This applies to all of the generalised Calogero-Moser mod-
els including those based on the dihedral group I2(m), H3, and H4 and the
potential function is

V|α|(α · q) = 1
(α · q)2 , for all roots. (3.9)

These models are also integrable if a confining harmonic potential

1
2
ω2q2 (3.10)

is added to the Hamiltonian.
Some remarks are in order. (i) For all of the root systems and for any choice of

the potential, the generalised Calogero-Moser model has a hard repulsive potential
∼ 1

(α·q)2 near the reflection hyperplane Hα = {q ∈ Rr, α∨· q = 0}. This repulsion
potential is classically insurmountable. Thus the motion is always confined within
one Weyl chamber. In other words, the spatial ordering of the particles is unchanged
during the time evolution. This simplifying feature is a basic cornerstone of the
solvability. The coupling constants g2

|α| (with a scale 1/|α|2) are measures of the
strength of the repulsive potentials. (ii) The trigonometric, hyperbolic, and the
rational potentials are obtained from the elliptic potential as one or both periods
tend to infinity. The Lax pairs for these degenerate potentials can be obtained from
the one for the elliptic potential by taking the corresponding limit. Thus we do not
write down the Lax pairs for degenerate potential cases except for the models based
on the non-crystallographic root systems, for which only the rational potentials are
integrable. (iii) For all of the Lax pairs based on any root systems and any choice of
the potential, except for the rational potential with the harmonic confining potential
(3.10), one can introduce an additional complex parameter ξ (spectral parameter),
which appears in the equation for the spectral curve. 9), 10) (iv) Independent conserved
quantities Tr(Lk) to be obtained from a Lax equation L̇ = [L,M ] occur at such
k = 1 + exponent of the corresponding crystallographic root systems. For the non-
crystallographic root systems, they arise at k = 2, m for the dihedral group I2(m),
k = 2, 6, 10 for H3 and k = 2, 12, 20, 30 for H4. These are the degrees at which
Coxeter invariant polynomials exist. 6)

§4. Lax pair and functional equations

Here we construct a Lax pair for the generalised Calogero-Moser models in an
operator form acting on an as yet unspecified vector space and derive the necessary
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Generalised Calogero-Moser Models and Universal Lax Pair Operators 505

and sufficient conditions for the consistency of the Lax equations. The Lax pair (4.5)
contains operators as well as functions x|ρ|(u,w), y|ρ|(u,w), which are related to the
chosen potential (3.5)–(3.9). The consistency of the Lax pair requires that x|ρ|(u,w)
satisfy certain functional equations (4.27) and (A.7), which are closely related with
those required for the commutativity of Dunkl operators. 4), 5) Verification that the
solutions (4.34), (4.37), (4.38), (4.41), (4.44) and (4.45) satisfy the functional equa-
tions will be presented in the Appendix.

The operators appearing in the Lax pair for a generalised Calogero-Moser model
associated with a root system ∆ are naturally the reflection operators {ŝα, α ∈ ∆}
of the root system. They act on a set of Rr vectors Γ = {µ(k) ∈ Rr, k = 1, · · ·},
which is closed under the action of the reflection group. The totality of the vectors
in Γ forms the representation space V . A general construction of the representation
space, and some explicit cases will be presented in the subsequent two sections.
Another set of operators {Ĥj , j = 1, · · · , r} is necessary. If Ĥj acts on a vector
µ(k) ∈ Γ , the j-th component is returned:

Ĥjµ
(k) = µ

(k)
j µ(k).

These form the following operator algebra:

[Ĥj, Ĥk] = 0, (4.1)

[Ĥj, ŝα] = αj(α∨· Ĥ)ŝα, (4.2)
ŝαŝβ ŝα = ŝsα(β), (4.3)

(ŝαŝβ)m(α,β) = 1. (4.4)

The first relation (4.1) implies that the operators {Ĥj , j = 1, · · · , r} form an abelian
subalgebra and relations (4.3) and (4.4) are just those for the finite reflection group
associated with the root system ∆. The set of integers m(α, β) are those appearing
in the Coxeter relations (2.4) which characterise the reflection group.

Next we describe the Lax pair and the corresponding Hamiltonian for the gen-
eralised Calogero-Moser model for the root system ∆. The Lax operators are

L = p · Ĥ +X, X = i
∑
ρ∈∆+

g|ρ| (ρ∨· Ĥ)x|ρ|(ρ · q, (ρ∨· Ĥ)ξ) ŝρ,

M = i
∑
ρ∈∆+

g|ρ| y|ρ|(ρ · q, (ρ∨· Ĥ)ξ) ŝρ. (4.5)

The function y|ρ| is defined by

y|ρ|(u,w) ≡
∂

∂u
x|ρ|(u,w). (4.6)

The variable u takes care of the dynamical variable dependence and w is for the
spectral parameter dependence. Furthermore, it is required that x|ρ|(u,w) is odd:

x|ρ|(−u,−w) = −x|ρ|(u,w) (4.7)
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506 A. J. Bordner, E. Corrigan and R. Sasaki

so that L andM are independent of the choice of positive roots∆+. This also implies
that the sums in (4.5) may be extended to a sum over all roots if an additional factor
of 1/2 is included in front of the sums since the summands are even under ρ → −ρ.
The function x|ρ|(u,w) is assumed to have a simple pole at u = 0 with unit residue

lim
u→0

ux|ρ|(u,w) = 1. (4.8)

This condition is related with the unit strength of the repulsive potential near the
reflection hyperplane mentioned earlier.

Before proving the consistency of this Lax pair we calculate the Hamiltonian
and find the corresponding equations of motion. The Hamiltonian for the theory is
defined in terms of a representation of the operator L of (4.5) by

H =
1

2CR
Tr(L2), (4.9)

where the constant CR, which depends on the representation, is defined by

Tr(ĤjĤk) = CR δjk. (4.10)

The resulting Hamiltonian is then

H =
1
2
p2 +

∑
ρ∈∆

g2
|ρ|

|ρ|2 V|ρ|(ρ · q) + C, (4.11)

in which C is independent of the dynamical variables q and p and therefore unim-
portant for the classical theory. The potential functions are given in (3.5)–(3.9).
The function x|ρ| and the potential function V|ρ| are related (except for the confining
harmonic potential (3.10), which has to be added separately) simply as

x|ρ|(u,w)x|ρ|(−u,w) = −V|ρ|(u) + C|ρ|(w), (4.12)

i.e., the product gives a sum of a function of only u and a function of only w. It
is easy to show that all of the functions x|ρ|(u,w) which lead to a consistent Lax
equation, (4.34), (4.37), (4.38), (4.41), (4.44) and (4.45), satisfy this property.

The equations of motion following from this Hamiltonian are

q̇j =
∂H
∂pj

= pj , (4.13)

ṗj = −∂H
∂qj

= − ∂

∂qj


∑
ρ∈∆

g2
|ρ|

|ρ|2V|ρ|(ρ · q)



=
∑
ρ∈∆

g2
|ρ|

|ρ|2ρj
[
y|ρ|(ρ · q, w)x|ρ|(−ρ · q, w)− x|ρ|(ρ · q, w)y|ρ|(−ρ · q, w)

]
. (4.14)

Because of (4.12) the last expression in (4.14) is independent of w.
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The Lax equation
L̇ = [L,M ] (4.15)

may be divided into three parts as

d

dt
X = [p · Ĥ,M ], (4.16)

d

dt
(p · Ĥ) = [X,M ]diagonal, (4.17)

0 = [X,M ]off-diagonal. (4.18)

We next prove, in turn, that each of these equations is consistent with the equations
of motion (4.13).

The left-hand side of (4.16) is

d

dt
X = i

∑
ρ∈∆+

g|ρ| (ρ∨· Ĥ) y|ρ|(ρ · q, (ρ∨· Ĥ)ξ) (ρ · q̇) ŝρ (4.19)

and the right-hand side is

[p · Ĥ,M ] =
[
p · Ĥ, i

∑
ρ∈∆+

g|ρ| y|ρ|(ρ · q, (ρ∨· Ĥ)ξ) ŝρ
]
,

= i
∑
ρ∈∆+

g|ρ| y|ρ|(ρ · q, (ρ∨· Ĥ)ξ) [p · Ĥ, ŝρ],

= i
∑
ρ∈∆+

g|ρ| y|ρ|(ρ · q, (ρ∨· Ĥ)ξ) (ρ∨· Ĥ) (ρ · p) ŝρ,

=
d

dt
X. (4.20)

The third line follows from the commutation relation (4.2) and the last line follows
from the equation of motion q̇ = p.

The left-hand side of (4.17), after using the equations of motion (4.13), is

d

dt
(p · Ĥ) =

∑
ρ∈∆

g2
|ρ|

|ρ|2 (ρ · Ĥ)
[
y|ρ|(ρ · q, w)x|ρ|(−ρ · q, w)− x|ρ|(ρ · q, w)y|ρ|(−ρ · q, w)

]
.

(4.21)
The summand x|ρ|(u,w)y|ρ|(−u,w)− x|ρ|(−u,w)y|ρ|(u,w) is independent of the pa-
rameter w. The commutator [X,M ] reads

[X,M ] = −
[ ∑
ρ∈∆+

g|ρ| (ρ∨· Ĥ)x|ρ|(ρ · q, (ρ∨· Ĥ)ξ) ŝρ,
∑
σ∈∆+

g|σ| y|σ|(σ · q, (σ∨· Ĥ)ξ)ŝσ
]
,

= −
∑

ρ,σ∈∆+

g|ρ|g|σ|
[
(ρ∨· Ĥ)x|ρ|(ρ · q, (ρ∨· Ĥ)ξ) y|σ|(σ · q, (sρ(σ)∨· Ĥ)ξ)ŝρŝσ

−y|σ|(σ · q, (σ∨· Ĥ)ξ) (sσ(ρ)∨· Ĥ)x|ρ|(ρ · q, (sσ(ρ)∨· Ĥ)ξ) ŝσŝρ
]
.

(4.22)
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Since ŝρŝσ and ŝσ ŝρ are rotations (except for ρ = σ, ŝ2
ρ = 1) they do not leave any

real vectors in the rotation plane invariant. Thus [X,M ] is decomposed into the
diagonal (ρ = σ) and the off-diagonal (ρ �= σ) parts. The diagonal part gives the
equation of motion

[X,M ]diagonal =
∑
ρ∈∆+

g2
|ρ|(ρ

∨· Ĥ)
[
y|ρ|(ρ · q, (ρ∨· Ĥ)ξ)x|ρ|(−ρ · q, (ρ∨· Ĥ)ξ)

−x|ρ|(ρ · q, (ρ∨· Ĥ)ξ) y|ρ|(−ρ · q, (ρ∨· Ĥ)ξ)
]
,

(4.23)

=
d

dt
(p · Ĥ). (4.24)

Finally, (4.18) will lead to the functional equations which must be satisfied by the
functions x|ρ|(u,w) in the Lax pair. Relabeling the roots in the second summation
of (4.22) gives the general operator form for the functional equation

0 = [X,M ]off-diagonal

=
∑

ρ�=σ∈∆+

g|ρ|g|σ|
[
(ρ∨· Ĥ)x|ρ|(ρ · q, (ρ∨· Ĥ)ξ)y|σ|(σ · q, (sρ(σ)∨· Ĥ)ξ)

−(sρ(σ)∨· Ĥ)y|ρ|(ρ · q, (ρ∨· Ĥ)ξ)x|σ|(σ · q, (sρ(σ)∨· Ĥ)ξ)
]
ŝρŝσ.

(4.25)

This shows that the consistency condition involving all of the roots is decomposed
into a sum of two-dimensional ones corresponding to a fixed rotation R̂ψ ≡ ŝρŝσ in
each two-dimensional plane. Since the coefficient of R̂ψ ≡ ŝρŝσ in this equation must
separately vanish, this may be decomposed into the functional equations

0 =
∑

ρ�=σ∈Φ+, Rψ=sρsσ

g|ρ|g|σ|
[
(ρ∨· µ)x|ρ|(ρ · q, (ρ∨· µ)ξ)y|σ|(σ · q, (sρ(σ)∨· µ)ξ)

−(sρ(σ)∨· µ)y|ρ|(ρ · q, (ρ∨· µ)ξ)x|σ|(σ · q, (sρ(σ)∨· µ)ξ)
]
,

(4.26)

in which µ is a generic vector in Γ . This equation must be satisfied for a fixed
rotation Rψ = sρsσ and all roots appearing in it are in the two-dimensional sub-root
system Φ = {κ, κ ∈ (∆ ∩ span (ρ, σ)} with positive roots Φ+ ≡ Φ ∩ ∆+. The only
possible two-dimensional root systems Φ are A1×A1, A2, B2, G2, and I2(m). Table I
shows the two-dimensional sub-root systems appearing in the root systems of finite
reflection groups. The A1×A1 root system has been omitted since its corresponding
functional equation is trivially satisfied for any function and therefore does not give
any constraint on the functions x|ρ|(u,w). It should be stressed that the functional
equations are determined by the two-dimensional sub-root systems only and not by
where they are embedded in the entire root system. Thus, as seen from Table I, each
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Table I. Two-dimensional sub-root systems.

A1 × A1 is not included. †: k divides m.

Root System Sub-root Systems

Ar, r > 1 A2

Br, r ≥ 2 A2,B2

Cr, r ≥ 2 A2,B2

Dr, r > 3 A2

BCr, r ≥ 2 A2,B2

E6,E7,E8 A2

F4 A2,B2

G2 A2,G2

I2(m) I2(k)
†

H3 A2, I2(5)

H4 A2, I2(5)

function x|ρ| must satisfy at most two
functional equations, except for the
models based on the dihedral groups.

The functional equation in (4.26)
may be further simplified to

0 = µ ·Rψ/2
∂

∂q
f(q, µ), (4.27)

in which

f(q, µ) =
∑

ρ�=σ∈Φ+, Rψ=sρsσ

×g|ρ| g|σ|
(σ∨· ρ)
|σ∨· ρ| x|ρ|(ρ · q, (ρ∨· µ)ξ)

×x|σ|(σ · q, (sρ(σ)∨· µ)ξ) (4.28)

and Rψ/2 is a rotation by an angle ψ/2 with Rψ = sρsσ. It has the following action
on any pair of roots ρ, σ ∈ Φ+ which satisfy Rψ = sρsσ

Rψ/2 ρ = −|ρ|
|σ|

(σ∨· ρ)
|σ∨· ρ| sρ(σ),

Rψ/2 σ =
|σ|
|ρ|

(σ∨· ρ)
|σ∨· ρ| ρ. (4.29)

Using these relations, the simplified form of the functional equation (4.27) may be
proven. First substitute the definition of f(q, µ) in (4.28) into (4.27) to obtain

0 =
∑

ρ�=σ∈Φ+, r=sρsσ

g|ρ|g|σ|
(σ∨· ρ)
|σ∨· ρ|

×
[
(µ ·Rψ/2 ρ)y|ρ|(ρ · q, (ρ∨· µ)ξ)x|σ|(σ · q, (sρ(σ)∨· µ)ξ)
+ (µ ·Rψ/2 σ)x|ρ|(ρ · q, (ρ∨· µ)ξ) y|σ|(σ · q, (sρ(σ)∨· µ)ξ)

]
. (4.30)

Since the coupling constants g|α| are arbitrary and are constants on the orbits they
may be rescaled as g|α| → 2g|α|/|α| for all α ∈ Φ. Performing this rescaling of the
coupling constants and using the action of Rψ/2 in (4.29), the previous equation
becomes

0 =
∑

ρ�=σ∈Φ+, r=sρsσ

g|ρ|g|σ|
2

|ρ||σ|

×

 |ρ|
|σ|(−sρ(σ) · µ)y|ρ|(ρ · q, (ρ∨· µ)ξ)x|σ|(σ · q, (sρ(σ)∨ · µ)ξ)

+
|σ|
|ρ| (ρ · µ)x|ρ|(ρ · q, (ρ∨ · µ)ξ) y|σ|(σ · q, (sρ(σ)∨ · µ)ξ)


. (4.31)
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510 A. J. Bordner, E. Corrigan and R. Sasaki

This is the same as the earlier form of the functional equation in (4.26), after using
the definition α∨ = 2α/|α|2.

We next present the functional equations for the two-dimensional root systems,
A2, B2, G2, and I2(m), and state their solutions. The proofs that the solutions
satisfy the relevant functional equations are contained in the Appendix.

We first consider the functional equation for the A2 root system with simple
roots α and β. We choose R2π/3 = sαsβ and the functional equation (4.25) becomes

0 = µ ·Rπ/3
∂

∂q
fA2(q, µ) (4.32)

in which fA2(q, µ) is defined by

fA2(q, µ) = x((α+ β) · q, (α+ β)∨· µ)x(α · q,−β∨· µ)
+x(β · q, β∨· µ)x((α+ β) · q, α∨· µ)
−x(α · q, α∨· µ)x(β · q, (α+ β)∨· µ). (4.33)

The subscripts on the function x is omitted since all roots are in the same orbit and
hence only one function appears. Also the spectral parameter ξ is absorbed into
µ by redefinition: µ → µ/ξ. We look for solutions to this functional equation, as
well as the ones for other root systems, which are valid for arbitrary vectors q and µ.
Therefore these solutions are valid in any representations. In certain representations,
such as the minimal and the root type representations discussed in §6, there is a
larger class of solutions. The functional equation arising from the rotation R−2π/3

is equivalent to that given above. A simple solution to (4.32) satisfying the residue
condition (4.8) is

x(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u], (4.34)

in which b is an arbitrary complex parameter. The potential function in the resulting
Hamiltonian (3.3), V (u) = ℘(u), is the Weierstrass elliptic function with the set of
primitive periods 2ω1 and 2ω3. The limits as one or both periods diverge yield the
potential functions a2/ sin2(au) and a2/ sinh2(au) or 1/u2, respectively. 3)

Functional equation (4.26) for the B2 root system may be written in terms of
the short and long simple roots, α and β, respectively. We choose Rπ/2 = sαsβ in
(4.25) and the resulting functional equation is

0 = µ ·Rπ/4
∂

∂q
fB2(q, µ) (4.35)

in which

fB2(q, µ) =− xS(α · q, α∨· µ)xL(β · q, (2α+ β)∨· µ)
+ xS((α+ β) · q, (α+ β)∨· µ)xL((2α+ β) · q,−β∨· µ)
+ xS(α · q,−(α+ β)∨· µ)xL((2α+ β) · q, (2α+ β)∨· µ)
+ xS((α+ β) · q, α∨· µ)xL(β · q, β∨· µ). (4.36)
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In this case there are two sets of elliptic function solutions for the long and short
root functions, xL and xS , respectively. The solutions along with the corresponding
potential functions are

xL(u,w) = xS(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u],

VL(u) = VS(u) = ℘(u), (4.37)

for the untwisted solution and

xL(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u],

xS(u,w) =
σ(w/2− u|{ω1, 2ω3})

σ(w/2|{ω1, 2ω3})σ(u|{ω1, 2ω3}) exp
[(

b+
e1

2

)
wu

]
,

=
xL(u,w/2)xL(u+ ω1, w/2)

xL(ω1, w/2)
,

VL(u) = ℘(u), VS(u) = ℘(u|{ω1, 2ω3}), (4.38)

for the twisted solution. Here e1 ≡ ℘(ω1) and b is an arbitrary complex constant.
Next we consider the functional equation (4.26) for the G2 root system with

short and long simple roots α and β, respectively. We choose Rπ/3 = sαsβ in (4.26)
and the functional equation is

0 = µ ·Rπ/6
∂

∂q
fG2(q, µ), (4.39)

in which

fG2(q, µ) =− xS(α · q, α∨· µ)xL(β · q, (3α+ β)∨· µ)
+ xS(α · q,−(2α+ β)∨· µ)xL((3α+ β) · q, (3α+ β)∨· µ)
+ xS((2α+ β) · q, (2α+ β)∨· µ)xL((3α+ β) · q,−(3α+ 2β)∨· µ)
+ xS((2α+ β) · q,−(α+ β)∨· µ)xL((3α+ 2β) · q, (3α+ 2β)∨· µ)
+ xS((α+ β) · q, (α+ β)∨· µ)xL((3α+ 2β) · q,−β∨· µ)
+ xS((α+ β) · q, α∨· µ)xL(β · q, β∨· µ). (4.40)

As before, xS and xL are the functions for short and long roots, respectively. The
elliptic function solutions to (4.39) along with the corresponding potential functions
VS(u) and VL(u) are the untwisted ones in (4.37) and the following twisted ones

xL(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u],

xS(u,w) =
σ(w/3− u|{2ω1/3, 2ω3})

σ(w/3|{2ω1/3, 2ω3})σ(u|{2ω1/3, 2ω3}) exp[(b+
2
3
℘(2ω1/3))wu]

=
xL(u,w/3)xL(u+ 2ω1/3, w/3)xL(u+ 4ω1/3, w/3)

xL(2ω1/3, w/3)xL(4ω1/3, w/3)
exp[bw u],

VL(u) = ℘(u), VS(u) = ℘(u|{2ω1/3, 2ω3}). (4.41)
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512 A. J. Bordner, E. Corrigan and R. Sasaki

Here again, b is an arbitrary complex parameter. The short and long root functions
also satisfy the A2 functional equation (4.32) separately, as expected.

Finally, we consider the functional equation (4.26) for the I2(m) root system.
The 2m roots are labelled in order of increasing angle by {α1, · · · , α2m} with ∆+ =
{αj , j = 1, · · · ,m} and αj+m = −αj for j = 1, · · · ,m. For example, choosing all
roots to have the same length |αj | = 1, a possible basis is given in (2.6). Unlike the
crystallographic root systems, there is, in general, more than one functional equation.
The functional equation (4.26) corresponding to Rψ = sρsσ with ψ = 2πN/m, N =
1, · · · , [m/2] is

0 = µ ·RNπ/m
∂

∂q
fNI2(m)(q, µ) (4.42)

with

fNI2(m)(q, µ) =
m∑
j=1

g|j| g|j+N | x|j+N |(αj+N · q, α∨
j+N·µ)x|j|(αj · q,−α∨

j+2N·µ). (4.43)

In contrast to the previous cases, the coupling constants are included in the functional
equation since they do not factor out, in general. Because of the many functional
equations (4.42) to be satisfied, only rational solutions are allowed in this case. For
odd m, I2(m) roots are all in a single orbit and only one coupling constant and
function are possible. The solution to (4.42) in this case is

x(u,w) =
(
1
u
− 1

w

)
exp[b uw]. (4.44)

However, I2(m) for even m has two orbits: one the set {αj} with odd j and the other
with even j. It is possible to have two independent coupling constants and functions
in this case. The corresponding functions are denoted xO and xE , respectively and
the solution of (4.42) is

xO(u,w) =
(
1
u
− 1

w

)
exp[b uw],

xE(u,w) =
(
1
u
− c

w

)
exp[b uw], (4.45)

in which b and c are arbitrary complex constants.
For the other non-crystallographic root systems H3 and H4, the two-dimensional

sub-root systems are A2 and I2(5). Thus the solution (4.44) satisfies all of the
functional equations for the consistency of the Lax pair.

At the end of this section, let us show the Lax pair operator formulation for
the rational potential with a confining harmonic force. This applies, as before, to
all of the root systems including the non-crystallographic ones. This is a simple
generalisation of the Lax pairs given in Ref. 2), which were constructed for the
vector representations of the classical root systems, Ar, Br, Cr, Dr, and BCr.

Let us start from the Lax operator for the rational potential without spectral
parameter:

L = p · Ĥ +X, X = i
∑
ρ∈∆+

g|ρ| (ρ∨· Ĥ)x(ρ · q) ŝρ, (4.46)
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M = i
∑
ρ∈∆+

g|ρ| y(ρ · q) ŝρ,

x(ρ · q) = 1
ρ · q , y(ρ · q) = − 1

(ρ · q)2 = −x(ρ · q)2. (4.47)

It corresponds to the following Hamiltonian and the equations of motion:

Tr(L2) ∝ Hr =
1
2
p2 +

∑
α∈∆

g2
|α|

|α|2
1

(α · q)2 , (4.48)

L̇ = [L,M ]⇔ q̇ = p, ṗ = 2
∑
α∈∆

g2
|α|

|α|2
α

(α · q)3 . (4.49)

If a confining harmonic potential is added to the Hamiltonian

Hω =
1
2
p2 +

1
2
ω2q2 +

∑
α∈∆

g2
|α|

|α|2
1

(α · q)2 , (4.50)

the equations of motion read

q̇ = p, ṗ = −ω2q + 2
∑
α∈∆

g2
|α|

|α|2
α

(α · q)3 . (4.51)

It is elementary to see that the above equations can be written in an operator form

L̇ = [L,M ]− ω2Q, Q̇ = p · Ĥ = L−X, (4.52)

in which L and M are the same as (4.46) and Q is defined by

Q = q · Ĥ. (4.53)

It is easy to verify that
[Q,M ] = −X. (4.54)

This property is valid only for the rational potential without spectral parameter.
Next let us introduce a pair of non-hermitian operators L± by

L± = L± iωQ. (4.55)

Their time evolution equations read

L̇± = L̇± iωQ̇

= [L,M ]− ω2Q± iω(L−X)
= [L± ∓ iωQ,M ]− ω2Q± iω(L−X)
= [L±,M ]− ω2Q± iω(L± ∓ iωQ)
= [L±,M ]± iωL±. (4.56)

If we define hermitian operators L1 and L2

L1 = L+L−, L2 = L−L+, (4.57)
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514 A. J. Bordner, E. Corrigan and R. Sasaki

they satisfy Lax-like equations

L̇j = [Lj,M ], j = 1, 2. (4.58)

From these we can construct conserved quantities

Tr(Lk1) = Tr(Lk2), k = 1, 2, · · · , (4.59)

as before. It is elementary to check that the first conserved quantities give the
Hamiltonian (4.50)

Tr(L1) = Tr(L2) ∝ Hω. (4.60)

This then completes the derivation of the Lax pairs for all of the generalised Calogero-
Moser models.

§5. Representations of the Lax operators

We next consider representations of the operator algebra (4.1)–(4.4) for operators
{Ĥj , j = 1, · · · r} and {ŝα, α ∈ ∆} that appear in the Calogero-Moser Lax pair
(4.5). In general, the representation of an algebra consists of a vector space V and
a mapping from elements of the algebra to GL(V ), e.g., ŝα → R(ŝα). When a basis
is chosen for V then R(ŝα) becomes a matrix in GL(d), where d is the dimension
of V . First define a monomial PΩ(t) =

∏N
j=1(v

(j) · t) in an auxiliary vector variable
t ∈ Rr associated with a set Ω of vectors {v(j) ∈ Rr, j = 1, · · ·N}. The basis vectors
of V , for a representation RΩ of the algebra (4.1)–(4.4), are monomials resulting
from the orbit of PΩ(t) under the reflection group, i.e., PΩ(sα(t)) with α ∈ ∆.∗) All
of the monomials in V therefore have the same degree N . A similar representation
for only the reflection generators ŝα with Ω a sub-root system of ∆ was introduced
by MacDonald for irreducible representations of the Weyl groups. 11), 12) The action
of the operators on the basis vectors in V is

ŝα

N∏
j=1

(v(j) · t) =
N∏
j=1

(sα(v(j)) · t),

Ĥl

N∏
j=1

(v(j) · t) =

 N∑
j=1

v
(j)
l


 N∏
j=1

(v(j) · t). (5.1)

Note that the representation matrices {R(Ĥl), l = 1, · · · , r} are all diagonal in this
basis.

All of the previous versions of Lax pairs for the Calogero-Moser models, namely
the minimal and root type Lax pairs, result from (4.5) in a representation RΩ with
Ω a single vector, i.e., (5.1) with N = 1. 3) In the case of N = 1, the vectors in V ,
upon which the representation matrices act, may be denoted in a simple manner as
|µ〉 with

|µ〉 ≡ (µ · t). (5.2)
∗) More generally, the vector space for the representation is Sym(W ∗), the symmetric algebra

on the r-dimensional dual vector space W ∗.
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For the minimal type Lax pair, the representation has |µ〉 ∈ V with µ being a
weight in the same Weyl orbit as the highest weight of a minimal representation of
the corresponding Lie algebra. For the root type Lax pair, the vectors µ in V are
labelled by all of the roots for the simply laced root systems and either the short or
long roots for the non-simply laced root systems. All of the µ which label the basis
vectors of V are then in a single Weyl orbit, as required. It will be demonstrated in
§6 that the Lax pairs in these representations agree with those given in Ref. 3).

There is a simple relation between the geometry of the root system and the
dimension of the RΩ representations for Ω a single vector. The vectors µ labelling
the |µ〉 ∈ V are generated by the orbit of a single vector µ0 under the action of
the finite reflection group. The vector µ0 may also be assumed, without loss of
generality, to be in the principal Weyl chamber or its boundary. The dimension of
the representation depends only on which reflection hyperplanes, if any, contain the
vector µ0. Let Φ0 be the set of indices j such that Φ0 ≡ {j, µ0 · αj = 0, αj ∈ Π}.
For crystallographic root systems Φ0 are the Dynkin labels of µ0 which are equal to
zero. Then sαj (µ0) = µ0 for j ∈ Φ0 or the isotropy group I0 of µ0 is generated by
reflections about simple roots αj ∈ Π for which j ∈ Φ0. Therefore the number of
elements in the orbit of µ0 under the reflection group W , and hence the dimension of
the representation, is D = |W |/|I0|. Since the isotropy group is the direct product of
the reflection groups corresponding to the connected parts of the Coxeter diagram for
the original root system, after deleting those vertices corresponding to the indices
j not contained in I0, |I0| may be computed as the product of the orders of the
reflection groups of the corresponding Coxeter sub-diagrams.

As a first example, we calculate the dimensions of the minimal and root type
representations of the algebra in (4.1)–(4.4) and hence the Lax pairs for A5. There
are three inequivalent minimal representations with µ0 = Λ(1), Λ(2), or Λ(3). For µ0 =
Λ(1), the vector representation, the isotropy group I0 = WA4 so D = |WA5 |/|WA4| =
6!/5! = 6. For the antisymmetric product of two vector representations, µ0 = Λ(2),
I0 = WA1 × WA3 so we obtain D = 6!/(2!4!) = 15. For the antisymmetric product
of three vector representations, µ0 = Λ(3), I0 = WA2 × WA2 so we obtain D =
6!/(3!3!) = 40. Finally, for the root representation, choose µ0 = Λ(1) + Λ(5), which
is the highest root. Then I0 = WA3 and D = |WA5|/|WA3| = 6!/4! = 30. As an
aside, we note that the highest dimensional representation of the Lax pair for A5 has
µ0 = a1Λ

(1) + a2Λ
(2) + a3Λ

(3) + a4Λ
(4) + a5Λ

(5) with all non-vanishing coefficients
aj , j = 1, · · · , 5. Since the dimension of the representation depends only on which
Dynkin labels are non-zero, these coefficients aj may be chosen to be 1, without loss
of generality. Then the isotropy group is trivial and we obtain D = 6!, which has not
been previously described. In fact, even among the representations RΩ with N = 1,
most of the matrices for the Lax pairs had not been described before.

As a second example, let us evaluate the dimensions of some lower-dimensional
Lax pairs for the E8 model. Let us take µ0 = Λ(1) and µ0 = Λ(7) corresponding to
the two end points of the two longer forks of the E8 Dynkin diagram. For µ0 = Λ(1)

the isotropy group I0 = WE7 and D = |WE8 |/|WE7 | = 240. This gives the root type
Lax pair. For µ0 = Λ(7) the isotropy group I0 = WD7 and D = |WE8 |/|WD7| = 2160.
This gives the second smallest Lax pair for the E8 model and its weights are a part
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of the 3875 representation.
For the non-crystallographic root systems, the root type Lax pairs with dimen-

sions 2m for I2(m), 30 for H3 and 120 for H4 give the smallest dimensional Lax pair
matrices.

§6. Minimal and root type Lax pairs

As examples of representations of the Lax operators, we consider those repre-
sentations that yield the minimal and root type Lax pairs previously reported in
Ref. 3). The functional equations associated with these representations are also de-
rived by restricting those given in §4. These are the same as those given in our
previous papers, which we denote as sum rules. In this section we consider only the
crystallographic root systems.

Minimal type Lax pairs are associated with minimal representations of the Lie
algebras. All of the fundamental representations of Ar, the spinor representation of
Br, the vector representation of Cr, and the vector, spinor and anti-spinor representa-
tions of Dr, the 27 and 27 of E6 and the 56 of E7 are the minimal representations.
All weights in a minimal representation are in a single Weyl orbit. The vectors
|µ〉 ∈ V of the representation are {|µ〉, µ ∈ Σmin}, in which Σmin is the set of
weights of the minimal representation. They are characterised by the condition

ρ∨· µ = {0,±1}, ρ ∈ ∆, µ ∈ Σmin. (6.1)

On the other hand the vectors |µ〉 ∈ V of the root type Lax pairs are {|α〉, α ∈
∆} for a simply laced root system ∆. The set of basis vectors of the two possible
root type representations for a Lax pair associated with a non-simply laced root
system are {|α〉, α ∈ ∆S}, the set of short roots, and {|α〉, α ∈ ∆L}, the set of long
roots. Let us collectively denote by ∆R the set of basis vectors of various root type
representations:

∆R =




∆, for simply laced models, all roots,
∆L, for non-simply laced models, long roots,
∆S , for non-simply laced models, short roots.

The roots are characterised by the condition

ρ∨· α = {0, ±1, ±2}, ρ, α ∈ ∆, (6.2)

except for the G2 case in which ±3 are also possible.
The fact that the eigenvalues of the operator ρ∨· Ĥ are restricted to these values

(6.1) and (6.2) simplifies the representation of the Lax pair operator (4.5) drastically.
Especially at the zero eigenvalue of ρ∨·Ĥ the functions x|ρ| and y|ρ| take the following
simple forms:

lim
w→0

w x|ρ|(u,wξ) =



−1/ξ, untwisted,
−2/ξ, twisted short roots,
−3/ξ, twisted short roots, G2,

(6.3)
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lim
w→0

y|ρ|(u,w) = −V|ρ|(u) +D|ρ|, (6.4)

in which D|ρ| are constants possibly depending on the orbits, that is, DL and DS for
the non-simply laced cases.

With the basis vectors of V , upon which the representation matrices act, labelled
by a single vector, as in (5.2), the matrix elements of the minimal and root type Lax
pairs are

L|ν〉 =
∑

µ∈Σmin

R(L)µν |µ〉, M |ν〉 =
∑

µ∈Σmin

R(M)µν |µ〉, µ, ν ∈ Σmin, (6.5)

L|β〉 =
∑
α∈∆R

R(L)αβ|α〉, M |β〉 =
∑
α∈∆R

R(M)αβ |α〉, α, β ∈ ∆R, (6.6)

where L and M are the Lax operators defined in (4.5). Hereafter we adopt simplified
notation Lµν (Lαβ) and Mµν (Mαβ) for the matrix elements R(L)µν (R(L)αβ ) and
R(M)µν (R(M)αβ ). For an arbitrary function f(u) we have the following matrix
element for the minimal type

f(ρ∨· Ĥ)ŝρ|ν〉 =
∑

µ∈Σmin

{
f(−1)δµ−ν,−ρ + f(0)δµ,νδρ·µ,0 + f(1)δµ−ν,ρ

}
|µ〉, (6.7)

and for the root type (except for the G2 case)

f(ρ∨· Ĥ)ŝρ|β〉 =
∑
α∈∆R

{
f(−2)δα−β,−2ρ + f(−1)δα−β,−ρ + f(0)δα,βδρ·α,0

+f(1)δα−β,ρ + f(2)δα−β,2ρ
}
|α〉. (6.8)

The G2 case can be handled in a similar way.
By combining (6.3), (6.4) and (6.7), (6.8) it is straightforward to derive the

matrix representations of the minimal and root type Lax pairs. For the minimal Lax
pair we obtain

Lµν = p · µ δµ,ν + i
∑
ρ∈∆

g|ρ|x|ρ|(ρ · q, ξ)δµ−ν,ρ +Amδµ,ν , (6.9)

Mµν = i


 ∑
ρ∈∆, ρ∨·µ=1

g|ρ|V|ρ|(ρ · q)

 δµ,ν + i

∑
ρ∈∆

g|ρ|y|ρ|(ρ · q, ξ)δµ−ν,ρ +Bmδµ,ν ,

(6.10)

in which Am is a constant and Bm contains the dynamical variables q. Both have
no effect on the Lax equation and can thus be omitted. They are

Am =
i

2
(gLNm

L + gSN
m
S ), for untwisted,

i

2
(gLNm

L + 2gSNm
S ), for twisted,

Bm =
i

2
(gLNm

L DL + gSN
m
S DS)− i

2

∑
ρ∈∆

g|ρ|V|ρ|(ρ · q),

in which Nm
L (Nm

S ) is the number of long (short) roots α ∈ ∆ such that α ·µ = 0 for
a given µ ∈ Σmin. The integer Nm

L (Nm
S ) is well-defined since all vectors labelling
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the basis elements in V for the representation are in a single Weyl orbit and hence
any other vector, say ν = w(µ) for w an element of the Weyl group. This implies
that α · ν = 0 if and only if w(α) · µ = 0 and so Nm

L is the same for any choice of
µ ∈ Σmin. When the Am and Bm terms are dropped, the above Lax pair (6.9) and
(6.10) has the same form as that given in our previous paper. 3)

For the root type Lax pair we obtain

Lαβ = p · α δα,β + i
∑
ρ∈∆

g|ρ|
[
x|ρ|(ρ · q, ξ)δα−β,ρ + 2x|ρ|(ρ · q, 2ξ)δα−β,2ρ

]
+Arδα,β,

(6.11)

Mαβ = i


g|α|V|α|(α · q) +

∑
∆
ρ=α−σ,σ∈∆

g|ρ|V|ρ|(ρ · q)

 δα,β

+i
∑
ρ∈∆

g|ρ|
[
y|ρ|(ρ · q, ξ)δα−β,ρ + y|ρ|(ρ · q, 2ξ)δα−β,2ρ

]
+Brδα,β. (6.12)

As in the minimal case Ar is a constant and Br contains the dynamical variables q.
Both have no effect on the Lax equation and can be omitted. They are

Ar =
i

2
(gLN r

L + gSN
r
S), for untwisted,

i

2
(gLN r

L + 2gSN r
S), for twisted,

Br =
i

2
(gLN r

LDL + gSN
r
SDS)− i

2

∑
ρ∈∆

g|ρ|V|ρ|(ρ · q),

in which N r
L (N r

S) is the number of long (short) roots α ∈ ∆ such that α · β = 0
for a given β ∈ ∆ (∆L, ∆S). When the Ar and Br terms are dropped and with the
following identification:

xL(u, ξ) ≡ x(u, ξ), xS(u, ξ) ≡ x(u, ξ) or x(1/2)(u, ξ),

xL(u, 2ξ) ≡ xd(u, ξ), xS(u, 2ξ) ≡ xd(u, ξ) or x
(1/2)
d (u, ξ), (6.13)

the above Lax pair (6.11) and (6.12) has the same form as that given in our previous
paper. 3)

The restrictions on the eigenvalues of the operator (6.1) and (6.2), simplify the
functional equations, too. Let us examine the A2 functional equation (4.32) by
adopting the variables u, v, ξ1, and ξ2 defined in (A.8). We impose a condition
ξ1 = ξ = −ξ2, so that the restriction of the minimal representation (6.1) is satisfied.
The limit formulas (6.3) and (6.4) yield the so called first sum rule of Ref. 3)

x(u, ξ) y(v, ξ)− y(u, ξ)x(v, ξ) + x(u+ v, ξ)[V (v)− V (u)] = 0. (6.14)

Here the suffix |ρ| is omitted since all the roots participating in the A2 functional
equation belong to the same orbit. Likewise, let us impose a condition ξ1 = 2ξ,
ξ2 = −ξ, so that the restriction of the root type representation (6.2) is satisfied. The
limit formulas (6.3) and (6.4) yield the so called second sum rule of Ref. 3)

0 = x(u+ v, ξ)y(u, ξ)− y(u+ v, ξ)x(u, ξ)
+2 [x(u, 2ξ)y(v, ξ)− y(−v, ξ)x(u+ v, 2ξ)]
+x(−v, ξ)y(u+ v, 2ξ)− y(u, 2ξ)x(v, ξ). (6.15)
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One may also verify that all of the functional equations in Ref. 3) which must
be satisfied by the functions x|ρ|(u,w) appear as various restrictions of the operator
equation in (4.27), although we will not derive them here. Since the functional
equations for the minimal and root type representations are restricted, their solution
spaces are larger than that for a generic representation. For example, these functional
equations have the same solutions as the general solutions given in §4, except that the
exponential factor is changed from exp[bw u] to exp[b(w)u], in which an arbitrary
function b(w) need not be linear in w.

§7. Comments and discussion

Firstly, let us comment on the relation between our work and the paper on elliptic
Dunkl operators by Buchstaber, Felder, and Veselov. 5) From the commutativity of
Dunkl operators they derived a functional equation (9) of Ref. 5), which was closely
related to our equations fA2 = 0, fB2 = 0, fG2 = 0. But their equation did not
contain the spectral parameter dependence explicitly. They obtained what would
amount to our untwisted solution for the fA2 = 0 functional equation. This gives a
clue that the classical and quantum integrability of the generalised Calogero-Moser
models are closely connected. Secondly, some remarks about the Calogero-Moser
models based on Br, Cr, and BCr root systems. The short roots of Br, the long roots
of Cr, and the long and short roots of BCr, when restricted to any two-dimensional
plane, form only an A1 × A1 sub-root system. This means that their short root
function xS(u,w) (and/or xL(u,w)) in these models are required to satisfy the B2

functional equation only but not the A2 one. Thus the solution space is larger than
that of the other models. This in turn allows more potential function terms (one more
for Br, and Cr and two more for BCr) with independent coupling constant(s) in the
Hamiltonian without breaking integrability. We call these models extended twisted
models. The root type and minimal type Lax pairs for the extended models are given
in Refs. 3) and 13). The Lax pair operators for the extended twisted models can be
constructed in a similar way as is given in this paper. Thirdly, a few words about the
structure of the functions x|ρ|(ρ ·q, (ρ∨·µ)ξ) and their functional equations (4.26) and
(4.27), and the self-duality of the two-dimensional crystallographic root systems. The
coefficients in the functional equation (4.26), i.e., ρ∨·µ and sρ(σ)∨·µ, etc., come from
the second argument of the function x|ρ|(ρ·q, (ρ∨·µ)ξ). Namely, they are co-roots. On
the other hand, the gradient operator, ∂/∂q, in (4.27) supplies the coefficient from
the first argument of the function x|ρ|(ρ · q, (ρ∨·µ)ξ), that is the roots. The operator
R±π/4 in the B2 case and R±π/6 in the G2 case rotates a short root into a long
root position and vice versa. In other words, the rotation operator Rψ/2 in (4.27)
performs the necessary conversion from the roots to the co-roots. This is possible
because of the well-known self-duality of the two-dimensional crystallographic root
systems, A2, B2, and G2, under α ↔ α∨ = 2α/α2. As a final remark, let us comment
on the integrability of the generalised Calogero-Moser models. As is well known, the
existence of the independent involutive conserved quantities as many as the degrees
of freedom is necessary and sufficient for the Liouville integrability. To the best of
our knowledge, the involution of the conserved quantities for the models based on
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the exceptional root systems and the non-crystallographic root systems as well as all
the twisted models is yet to be demonstrated.
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Appendix A
Solutions to Functional Equations

In this appendix we demonstrate that the solutions (4.34), (4.37), (4.38), (4.41),
(4.44) and (4.45) given in §4 satisfy the functional equations for the consistency of
the Lax pair

0 = µ ·Rψ/2
∂

∂q
f(q, µ). (A.1)

We do not give a proof that these solutions are the most general ones. First let us
remark on a symmetry of the solutions of (A.1) such that if x|ρ|(u,w) is a solution
then

xnew
|ρ| (u,w) ≡ x|ρ|(u,w) exp[b uw], ∀b ∈ C, (A.2)

is also a solution. Therefore, it is necessary to prove (A.7) only for one representative
function x|ρ|(u,w) among those related by the symmetry (A.2). Assume that the
function x|ρ|(u,w) satisfies (A.1) with f(q, µ) defined by (4.28). The corresponding
expression in (4.28) for the new solution xnew

|ρ| (u,w) ≡ x|ρ|(u,w) exp[b uw] will be
denoted as f(q, µ)new. Then

f(q, µ)new =
∑

ρ�=σ∈Φ+, Rψ=sρsσ

g|ρ| g|σ|
{
x|ρ|(ρ · q, (ρ∨· µ)ξ)x|σ|(σ · q, (sρ(σ)∨· µ)ξ)

× exp [b ξ ((ρ · q)(ρ∨· µ) + (σ · q)(sρ(σ)∨· µ)
)]}

. (A.3)

The exponent is proportional to

q · µ− q · sσ (sρ(µ)) ≡ q · µ− q ·R−ψµ.

Two pairs of roots (ρ, σ) and (ρ′, σ′) which appear in different terms of (A.3) are
related by sρsσ = sρ′sσ′ , which implies also

sσsρ = sσ′sρ′ = R−ψ. (A.4)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/3/499/1851082 by guest on 21 August 2022



Generalised Calogero-Moser Models and Universal Lax Pair Operators 521

Therefore the exponential factor in (A.3) is common to all terms and may be factored
out of the sum. The functional equation (A.1) for f(q, µ)new then is

µ ·Rψ/2
∂

∂q
f(q, µ)new

= µ ·Rψ/2
∂

∂q
(f(q, µ) exp [bξ(q · µ− q ·R−ψµ)])

= bξf(q, µ) exp [bξ(q · µ− q ·R−ψµ)]
(
µ ·Rψ/2µ− µ ·R−ψ/2µ

)
= 0. (A.5)

Here the orthogonality of rotation operators

µ ·Rψ/2µ− µ ·R−ψ/2µ = 0, R−ψ/2 = RTψ/2 (A.6)

is used. This then demonstrates that the transformed function x|ρ|(u,w)new satisfies
the functional equation if the original function x|ρ|(u,w) does.

Next we show in turn that all of the solutions given in §4 satisfy

fG(q, µ) = 0, G = A2, B2, G2, (A.7)

which is a sufficient condition for the solutions of (A.1). Note that this is a nec-
essary and sufficient condition for the commutativity of the corresponding Dunkl
operators. 5)

A.1. A2 solution (4.34)

Defining the variables

u = α · q, v = β · q,
ξ1 = α∨ · µ, ξ2 = β∨ · µ, (A.8)

fA2(q, µ) becomes

fA2(q, µ) = x(u+ v, ξ1 + ξ2)x(u,−ξ2) + x(v, ξ2)x(u+ v, ξ1)− x(u, ξ1)x(v, ξ1 + ξ2).
(A.9)

By substituting the solution

x(u,w) =
σ(w − u)
σ(w)σ(u)

(A.10)

it reads, after extracting a common denominator,

fA2(u, v, ξ1, ξ2) =
[
σ(ξ1 + ξ2 − u− v)σ(ξ2 + u)σ(v)σ(ξ1)

+σ(ξ2 − v)σ(ξ1 − u− v)σ(u)σ(ξ1 + ξ2)

−σ(ξ1 − u)σ(ξ1 + ξ2 − v)σ(u+ v)σ(ξ2)
]

/ [σ(u)σ(v)σ(u+ v)σ(ξ1)σ(ξ2)σ(ξ1 + ξ2)] . (A.11)
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The expression in the numerator may be shown to vanish, by using the following
identity (see page 153 of Ref. 14) and Eq. (5·1) of Ref. 15))

0 = σ(z − u1)σ(z + u1)σ(u2 − u3)σ(u2 + u3)
+σ(z − u2)σ(z + u2)σ(u3 − u1)σ(u3 + u1)
+σ(z − u3)σ(z + u3)σ(u1 − u2)σ(u1 + u2) (A.12)

with the choice of variables

z = ξ2 +
1
2
(ξ1 − v), u1 = u− 1

2
(ξ1 − v),

u2 =
1
2
(ξ1 + v), u3 =

1
2
(ξ1 − v). (A.13)

This implies that fA2(q, µ) = 0 for the function in (A.10) and after including the sym-
metry of solutions (A.2), the more general function in (4.34) also gives fA2(q, µ) = 0
and therefore the A2 functional equation is satisfied.

A.2. B2 untwisted solution (4.37)

Next we turn to the functional equation arising from the B2 sub-root system.
This, as well as the functional equation associated with the G2 root system, admits
two types of solutions, the untwisted and the twisted ones. By using the same
definitions of the variables u, v, ξ1, and ξ2 as in (A.8), except for the fact that α and
β are the short and long simple roots of B2, respectively, the expression for fB2(q, µ)
becomes

fB2(u, v, ξ1, ξ2) =− xS(u, ξ1)xL(v, ξ1 + ξ2)
+ xS(u+ v, ξ1 + 2ξ2)xL(2u+ v,−ξ2)
+ xS(u,−ξ1 − 2ξ2)xL(2u+ v, ξ1 + ξ2)
+ xS(u+ v, ξ1)xL(v, ξ2). (A.14)

Substituting in the untwisted solutions

xL(u,w) = xS(u,w) =
σ(w − u)
σ(w)σ(u)

(A.15)

this becomes

fB2(u, v, ξ1, ξ2) =
[
−σ(ξ1 − u)σ(ξ1 + ξ2 − v)σ(u+ v)σ(2u+ v)σ(ξ2)σ(ξ1 + 2ξ2)

+σ(ξ1 + 2ξ2 − u− v)σ(ξ2 + 2u+ v)σ(u)σ(v)σ(ξ1)σ(ξ1 + ξ2)
+σ(ξ1 + 2ξ2 + u)σ(ξ1 + ξ2 − 2u− v)σ(v)σ(u+ v)σ(ξ1)σ(ξ2)

+σ(ξ1 − u− v)σ(ξ2 − v)σ(u)σ(2u+ v)σ(ξ1 + ξ2)σ(ξ1 + 2ξ2)
]

/ [σ(u)σ(v)σ(2u+ v)σ(ξ1)σ(ξ2)σ(ξ1 + ξ2)σ(ξ1 + 2ξ2)] .
(A.16)

Let us denote the numerator by gB2(u, v, ξ1, ξ2). Gathering terms, one obtains

gB2(u, v, ξ1, ξ2) = σ(2u+ v)σ(ξ1 + 2ξ2)
[
−σ(ξ1 − u)σ(ξ1 + ξ2 − v)σ(u+ v)σ(ξ2)
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+σ(ξ1 − u− v)σ(ξ2 − v)σ(u)σ(ξ1 + ξ2)
]

+σ(v)σ(ξ1)
[
σ(ξ1 + 2ξ2 − u− v)σ(ξ2 + 2u+ v)σ(u)σ(ξ1 + ξ2)

+σ(ξ1 + 2ξ2 + u)σ(ξ1 + ξ2 − 2u− v)σ(u+ v)σ(ξ2)
]
. (A.17)

Using the identity (A.12) for the expression in the first set of brackets with the choice
of variables

z = −v +
1
2
(−u+ ξ1 + ξ2), u1 =

1
2
(u− ξ1 + ξ2),

u2 =
1
2
(u+ ξ1 + ξ2), u3 =

1
2
(−u+ ξ1 + ξ2), (A.18)

and for the expression in the second set of brackets with the variables

z =
1
2
(u+ ξ1 + 3ξ2), u1 =

1
2
(3u+ 2v − ξ1 − ξ2),

u2 =
1
2
(u+ ξ1 + ξ2), u3 =

1
2
(−u+ ξ1 + ξ2), (A.19)

gives

gB2(u, v, ξ1, ξ2) = −σ(2u+ v)σ(ξ1 + 2ξ2)σ(v)σ(ξ1 + ξ2 − u− v)σ(ξ1)σ(ξ2 + u)
+σ(v)σ(ξ1)σ(ξ2 + u)σ(ξ1 + 2ξ2)σ(ξ1 + ξ2 − u− v)σ(2u+ v)

= 0. (A.20)

Including the possible symmetry transformations (A.2) of the function (A.15) this
then proves that fB2(q, µ) = 0 for the general elliptic untwisted solution of (4.37).

The untwisted solution (4.37) of the G2 functional equation (4.39) may be proven
again using only the σ function identity (A.12). Since the method of proof is essen-
tially the same as for the B2 functional equation we omit the details of the proof.

A.3. B2 twisted solution (4.38)

We next demonstrate that the twisted solution in (4.38) satisfies the B2 func-
tional equation (4.35). First we define a particular untwisted solution x0(u,w) of
(4.37) by assigning a special value of the constant b = η1/ω1

xS(u,w) = xL(u,w) = x0(u,w) ≡ σ(w − u)
σ(w)σ(u)

exp[(η1/ω1)w u], (A.21)

where η1 is defined in terms of the Weierstrass ζ function as η1 ≡ ζ(ω1). The value
of b is chosen so that x0(u,w) is periodic in the ω1 direction

x0(u+ 2ω1, w) = x0(u,w). (A.22)

Adding a constant vector to q does not affect the equation fB2(q, µ) = 0 so q is
shifted as

q → q +
2ω1Λ

(α)

|α|2 , (A.23)
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in which Λ(α) is the fundamental weight dual to the simple short root α, i.e.,

α∨ · Λ(α) = 1, β∨ · Λ(α) = 0. (A.24)

Then the equation fB2(q, µ) = 0 reads

0 =− x0(α · q + ω1, α
∨ · µ)x0(β · q, (2α+ β)∨ · µ)

+ x0((α+ β) · q + ω1, (α+ β)∨ · µ)x0((2α+ β) · q,−β∨ · µ)
+ x0(α · q + ω1,−(α+ β)∨ · µ)x0((2α+ β) · q, (2α+ β)∨ · µ)
+ x0((α+ β) · q + ω1, α

∨ · µ)x0(β · q, β∨ · µ), (A.25)

where the periodicity of x0(u,w), (A.22), is used. This simply means that

xL(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u],

xS(u,w) =
σ(w − u− ω1)
σ(w)σ(u+ ω1)

exp[η1 w + bw u], (A.26)

satisfy the equation fB2(q, µ) = 0. Since xL(u,w) here is the same function as in
(4.37), any linear combinations of xS(u,w) from the untwisted solution in (4.37)
and in (A.26) also satisfy the B2 functional equation. Requiring that the linear
combination should satisfy the A2 functional equation and that it has a simple pole
with unit residue at u = 0, we obtain

x0
S(u,w) =

[
σ(w − u)
σ(w)σ(u)

+
σ(w − u− ω1)
σ(w)σ(u+ ω1)

exp[η1 w]

]
exp[bw u]. (A.27)

This expression for x0
S(u,w) has the following monodromies in u and w:

x0
S(u+ ω1, w) = x0

S(u,w) exp [(−η1 + b ω1)w] ,
x0
S(u+ 2ω3, w) = x0

S(u,w) exp [2(−η3 + b ω3)w] ,
x0
S(u,w + 2ω1) = x0

S(u,w) exp [2(−η1 + b ω1)u] ,
x0
S(u,w + 4ω3) = x0

S(u,w) exp [4(−η3 + b ω3)u] . (A.28)

It also has the following poles and zeros in the fundamental regions of u and w:
simple poles at u = 0 and w = 0 with residues 1 and −2, respectively, and a zero
at u = w/2. It may also be shown that the twisted solution to the B2 functional
equation xS(u,w) in (4.38) has the same monodromies and poles. This implies that
the ratio x0

S(u,w)/xS(u,w) is an elliptic function in both u and w and has no poles
and therefore is a constant. Since the residues are the same at all the poles, the ratio
is equal to one and x0

S(u,w) is, in fact, the same as the twisted solution in (4.38).

A.4. G2 twisted solution (4.41)

The proof that the twisted solutions (4.41) to the G2 functional equation (4.39)
follow from the untwisted solutions proceeds in a similar manner. We start from the
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particular untwisted solution xS(u,w) = xL(u,w) = x0(u,w) satisfying fG2(q, µ) =
0, with the periodicity (A.22), and shift q as

q → q +
4ω1Λ

(α)

3|α|2 , (A.29)

in which Λ(α) is the fundamental weight dual to the simple short root α. We obtain

0 = x0(α · q + 2ω1

3
, α∨ · µ)x0(β · q, (3α+ β)∨ · µ)

+x0(α · q + 2ω1

3
,−(2α+ β)∨ · µ)x0((3α+ β) · q, (3α+ β)∨ · µ)

+x0((2α+ β) · q + 4ω1

3
, (2α+ β)∨ · µ)x0((3α+ β) · q,−(3α+ 2β)∨ · µ)

+x0((2α+ β) · q + 4ω1

3
,−(α+ β)∨ · µ)x0((3α+ 2β) · q, (3α+ 2β)∨ · µ)

+x0((α+ β) · q + 2ω1

3
, (α+ β)∨ · µ)x0((3α+ 2β) · q,−β∨ · µ)

+x0((α+ β) · q + 2ω1

3
, α∨ · µ)x0(β · q, β∨ · µ). (A.30)

Shifting q again by the same amount, or in one step

q → q +
8ω1Λ

(α)

3|α|2 , (A.31)

gives the following equation

0 = x0(α · q + 4ω1

3
, α∨ · µ)x0(β · q, (3α+ β)∨ · µ)

+x0(α · q + 4ω1

3
,−(2α+ β)∨ · µ)x0((3α+ β) · q, (3α+ β)∨ · µ)

+x0((2α+ β) · q + 2ω1

3
, (2α+ β)∨ · µ)x0((3α+ β) · q,−(3α+ 2β)∨ · µ)

+x0((2α+ β) · q + 2ω1

3
,−(α+ β)∨ · µ)x0((3α+ 2β) · q, (3α+ 2β)∨ · µ)

+x0((α+ β) · q + 4ω1

3
, (α+ β)∨ · µ)x0((3α+ 2β) · q,−β∨ · µ)

+x0((α+ β) · q + 4ω1

3
, α∨ · µ)x0(β · q, β∨ · µ), (A.32)

where the periodicity of x0(u,w), (A.22), is also used. Adding (A.30) and (A.32)
together and using the symmetry of solutions in (A.2) implies that the following
functions are solutions to the G2 functional equation (4.39):

xL(u,w) =
σ(w − u)
σ(w)σ(u)

exp[bw u],

xS(u,w) =

[
σ(w − u− 2ω1

3 )
σ(w)σ(u+ 2ω1

3 )
exp[(2/3)η1 w]
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+
σ(w − u− 4ω1

3 )
σ(w)σ(u+ 4ω1

3 )
exp[(4/3)η1 w]

]
exp[bw u]. (A.33)

Again, since xL(u,w) is the same function as in (4.37) an arbitrary linear combination
of the xS(u,w) from (4.37) and (A.33) also satisfies the G2 functional equation.
Requiring that the linear combinations should satisfy the A2 functional equation
and that it has a simple pole with unit residue at u = 0, we obtain

x0
S(u,w) =

[
σ(w − u)
σ(w)σ(u)

+
σ(w − u− 2ω1

3 )
σ(w)σ(u+ 2ω1

3 )
exp[(2/3)η1 w]

+
σ(w − u− 4ω1

3 )
σ(w)σ(u+ 4ω1

3 )
exp[(4/3)η1 w]

]
exp[bw u]. (A.34)

This function has the following monodromies:

x0
S

(
u+

2ω1

3
, w

)
= x0

S(u,w) exp
[
2
3
(−η1 + b ω1)w

]
,

x0
S(u+ 2ω3, w) = x0

S(u,w) exp [2(−η3 + b ω3)w] ,
x0
S(u,w + 2ω1) = x0

S(u,w) exp [2(−η1 + b ω1)u] ,
x0
S(u,w + 6ω3) = x0

S(u,w) exp [6(−η3 + b ω3)u] . (A.35)

The following properties of x0
S(u,w) can be shown. It has poles and zeros in the

fundamental regions of u and w: simple poles at u = 0 and w = 0 with residues 1
and −3, respectively, and a zero at u = w/3. Since it may be shown that the twisted
solution xS(u,w) to the G2 functional equation in (4.41) has the same monodromies,
poles and zeros as x0

S(u,w), by the same argument as in the B2 case given above,
x0
S(u,w) = xS(u,w) and the solutions derived above are the same as the twisted
solutions in (4.41).

A.5. Dihedral solutions (4.44) and (4.45)

Next, it will be shown that the solutions (4.44) and (4.45) satisfy the dihedral
I2(m) functional equations (4.42) for odd or even m, respectively. We assume that
all roots are of the same length, even for an even integer m, since they may be made
so by a redefinition of the coupling constants. First consider the case of an odd
integer m and arbitrary N = 1, · · · , [m/2]. Substituting the functions

x(u,w) =
(
1
u
− 1

w

)
(A.36)

in (4.43) for fNI2(m)(q, µ) and redefining ξ → ξ|αj |2/2 gives

fNI2(m)(q, µ) = g2
m∑
j=1

x(αj+N · q, (αj+N · µ)ξ)x(αj · q,−(αj+2N · µ)ξ)

= g2
m∑
j=1

(
1

αj+N · q − 1
(αj+N · µ)ξ

)(
1

αj · q +
1

(αj+2N · µ)ξ

)
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= g2
m∑
j=1


 1
(αj+N · q)(αj · q) +

1
(αj+N · q)(αj+2N · µ)ξ

− 1
(αj · q)(αj+N · µ)ξ − 1

(αj+N · µ)(αj+2N · µ)ξ2


.
(A.37)

The O(1/ξ) terms cancel pairwise using the identity

m∑
j=1

1
(αj+d · q)(αj+N+d · µ) =

m∑
j=1

1
(αj+d+h · q)(αj+d+N+h · µ) (A.38)

with h, d, and N arbitrary integers. This identity follows from the property of the
I2(m) roots αj+m = −αj . The vanishing of the O(ξ0) and O(1/ξ2) terms follows
from a simple trigonometric identity (q = |q|(cos t, sin t)):

m∑
j=1

1
cos(t− jπ/m) cos(t− (j +N)π/m)

= 0. (A.39)

The left-hand side is a meromorphic function in t with a period π and it is expo-
nentially decreasing as t → ±i∞. It is elementary to show that all the residues
of the possible simple poles π

2 +
jπ
m , j = 1, 2, · · · ,m vanish. Thus (A.39) vanishes.

This shows that the dihedral functional equation (4.42) for odd m is satisfied by the
functions in (A.36). Including the symmetry of solutions of (A.2) implies that the
more general solution in (4.44) also satisfies (4.42).

Next consider the case of even m and odd N in the functional equation (4.42).
Substituting the functions

xO(u,w) =
(
1
u
− 1

w

)
, xE(u,w) =

(
1
u
− c

w

)
(A.40)

in the equation for fNI2(m)(q, µ), (4.43), and redefining ξ → ξ|αj |2/2, as before, gives

fNI2(m)(q, µ) = gOgE

m/2∑
j=1

[
xE(α2j · q,−(α2j+2N · µ)ξ)xO(α2j+N · q, (α2j+N · µ)ξ)

+xE(α2j+N−1 · q, (α2j+N−1 · µ)ξ)
×xO(α2j−1 · q,−(α2j+2N−1 · µ)ξ)

]

= gOgE




m∑
j=1

[
1

(αj · q)(αj+N · q) −
c

(αj+2N · µ)(αj+N · µ)ξ2

]

+
1
ξ

m/2∑
j=1


 c

(α2j+N · q)(α2j+2N · µ) −
c

(α2j−1 · q)(α2j+N−1 · µ)
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− 1
(α2j · q)(α2j+N · µ) +

1
(α2j+N−1 · q)(α2j+2N−1 · µ)




.

(A.41)

As before, the O(1/ξ) terms in fNI2(m)(q, µ) cancel pairwise using the identity

m/2∑
j=1

1
(α2j+d · q)(α2j+N+d · µ) =

m/2∑
j=1

1
(α2j+d+h · q)(α2j+d+N+h · µ) (A.42)

with h an even integer and d and N arbitrary integers. The O(ξ0) and O(1/ξ2) terms
are proportional to the corresponding terms for odd m given above and therefore
vanish. Owing to the symmetry of (A.2), the solution of (4.45) satisfies (4.42) for
even m and odd N .

For the case of the solutions for the I2(m) functional equation for even m and
even N , note that fNI2(m)(q, µ) may be written as

fNI2(m)(q, µ) =
m/2∑
j=1

[
g2
OxO(α2j+N · q, (α2j+N · µ)ξ)xO(α2j · q,−(α2j+2N · µ)ξ)

+g2
ExE(α2j+N−1 · q, (α2j+N−1 · µ)ξ)

×xE(α2j−1 · q,−(α2j+2N−1 · µ)ξ)
]

= f
N/2
I2(m/2)(q, µ) + g

N/2
I2(m/2)(q, µ)

= 0. (A.43)

Here g
N/2
I2(m/2)

(q, µ) is proportional to f
N/2
I2(m/2)

(q, µ) with the I2(m/2) roots rotated
by π/m and so the vanishing of fNI2(m)(q, µ) follows using the previous equation and
induction on N . Therefore the solutions in (4.45) solve the I2(m) functional equation
(4.42) for all m and N .
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