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Abstract. We study the properties of the states U&, 0, h)lA) where U, is an operator 
associated with the group SU(1, I ) ,  and IA) is a standard (atomic or Glauber) coherent 
state defined in terms of the usual boson creation and destruction operators at  and a. We 
show how these states may be viewed as ordinary coherent states in terms of the Bogoliubov 
quasiparticles whose creation and destruction operators bt and b are associated with the 
operators at  and a by a Bogoliubov transformation. As an important example of the use 
of these states, we show that they are the coherent states associated with a uniformly 
accelerated (Rindler) observer moving through Minkowski space. Our previous results 
then simply show how the Minkowski (inertial) vacuum appears to the Rindler observer 
as a black-body radiator with a Planckian distribution corresponding to a temperature 
proportional to the proper acceleration. 

1. Introduction 

Since the introduction into quantum mechanics of the by now very well known standard 
(atomic or Glauber (1963)) coherent states, more general coherent states which are 
associated with particular irreducible representations of various Lie groups have also 
been introduced by various authors (Barut and Girardello 1971, Radcliffe 1971, 
Perelomov 1972, 1975, 1977, Feshbach and Tikochinsky 1977). Furthermore, other 
coherent states not necessarily of this type have also been specially constructed with 
reference to particular problems or applications (e.g. Nieto and Simmons 1979). 

The physical motivation that leads us in the present paper to extend the range of 
application of the standard coherent states is our desire to develop a rather broad 
framework in which to embed the general phenomenon of clustering within a many- 
body medium. In the first instance we restrict ourselves to pairing correlations, but 
we have clearly in mind extensions to correlation phenomena concerning bound clusters 
of more than two particles. Since much of condensed matter physics depends ultimately 
on such correlations, any further attempt to motivate or to justify qualitatively our 
results seems superfluous at this stage. Their ultimate justification must clearly rest 
on their applicability and their power to suggest generalisations. 

The standard coherent states are conventionally defined with respect to a set of 
boson creation and destruction operators at and a respectively, as the eigenstates of 
the destruction operator a. Continuing for the purposes of initial discussion with a 
system of identical bosons, the introduction of the concept of correlated pairs leads 
us to consider the pairing operators at*, a' and uta. In 0 2 we show how, since these 
operators provide a simple realisation of the Lie algebra SU(1, l ) ,  they can be used 
to construct a set of generalised coherent states associated with the corresponding Lie 
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group SU(1, l ) .  We also show that these generalised coherent states may very usefully 
be viewed as eigenstates, not of the annihilation operator a, but rather of some new 
destruction operator b which can be associated with the operators a and a t  via a 
Bogoliubov transformation. Furthermore we show that, although the new coherent 
states are indeed standard coherent states with respect to the new operators 6 and bt, 
they have many very interesting and useful properties in connection with the operators 
a and a t  which have not previously been studied. 

We should mention that other authors (Barut and Girardello 1971, Perelomov 1975, 
1977, Feshbach and Tikochinsky 1977) have also previously introduced and studied 
other coherent states of the group SU(1, 1 ) .  However, we stress firstly that the states 
discussed here are different from those previously considered; and secondly, and 
perhaps more importantly, that whereas the previous works have provided hints as to 
the relationship of their generalised coherent states with the Bogoliubov transformation, 
in the present paper this relationship is demonstrated very clearly and explicitly. In 
particular we show how merely by starting with the concept of pairing and hence from 
the pairing operators given explicitly above, we are led inevitably via the general 
concepts of coherent states to the Bogoliubov transformation itself. A further phil- 
osophical contrast with previous work is that we regard this particular way of viewing 
the Bogoliubov transformation as being very important and quite central to our stated 
aims. Thus, by contrast with almost all other discussions of pairing phenomena in 
which the Bogoliubov transformation is introduced in an extremely ad hoc fashion, 
the transformation is generated here by the formalism. With an eye towards building 
on these foundations a broader formalism for higher clustering phenomena, the 
importance to us of this particular aspect should be clear. 

More specifically, what we actually show is that, just as the standard coherent states 
may be viewed as eigenstates of the original single-boson destruction operator a, so 
our generalised SU(1, l )  coherent states may be viewed as eigenstates of a new 
single-boson destruction operator 6, which is itself generated from the operators a and 
a t  by the usual Bogoliubov canonical transformation. In other words, we demonstrate 
that the generalised coherent states appropriate to paired bosons that we construct 
may also be viewed as standard coherent states of the Bogoliubov quasiparticles. 

From the discussion and motivation above, it is clear that a class of physical systems 
to which our results may be applied is those described by Hamiltonians at least 
approximately bilinear in the underlying boson fields. Apart from such obvious 
examples as superfluidity and the parametric excitation of a quantum oscillator, there 
are perhaps less obvious applications in both quantum optics and relativistic field 
theory and general relativity. 

Within quantum optics and quantum electronics, similar states to those that we 
describe in 0 2 have recently been described by several authors (Yuen 1976, Caves 
1982, Walls 1983). Just as the standard coherent states were introduced into quantum 
optics by Glauber (1963) as one-photon coherent states appropriate to the radiation 
field from a conventional single-photon laser, so our generalised SU(1, l )  paired 
coherent states may be viewed as two-photon coherent states in connection with the 
possibility of a two-photon laser. In this context our generalised coherent states have 
become known as ‘squeezed’ states for reasons that we discuss when we take this point 
up again in our concluding remarks set out in 8 4. 

As a concrete example of how our results may be applied we discuss in Q 3 an 
example drawn from relativity and quantum field theory, namely the relative nature 
of the vacuum (and other) states for an inertial observer and for a uniformly accelerated 
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observer. From a mathematical point of view the fundamental operators U2(u, A ) ,  
defined in 9 2 ,  which generate the particular representation of the group SU(1, 1) of 
relevance to us here, provide a unitary isomorphism of a Hilbert space onto itself by 
mapping each ket Is) of the space into another ket 1s; uA)= U2(u,  A)ls) belonging to 
the space. We explain in § 3 that there is an interesting physical interpretation of this 
mapping in the relativistic case of Minkowski space. If the operators a and a’ are 
now associated with quanta appropriate, say, to solutions of the massless Klein-Gordon 
equation in the Minkowski metric appropriate to an inertial observer, then it turns out 
that the operators b and bt are associated with the corresponding solutions in the 
so-called Rindler metric appropriate to an observer undergoing uniform acceleration. 
Some previously known results for this rather important example (which has a close 
bearing on the phenomenon of Hawking radiation from a black hole) can then be 
rather simply demonstrated and extended, using our general results. 

More generally we believe that the generalised paired coherent states that we 
introduce in 9 2, their properties and the results that we discuss there will be very 
useful for practical calculations in the many other fundamental problems in quantum 
field theory and many-body theory where the Bogoliubov transformation continues to 
play an important role (e.g. Hsue et al1985). After the discussion in § 3 of the particular 
application mentioned above, we conclude in § 4 with some remarks concerning 
possible extensions and generalisations of this work. 

2. The generalised coherent states 

We begin our discussion by considering the unitary operators 

exp(Aa’ - A*a) exp(i4) AEC + E R  

which form the so-called Weyl (or Heisenberg-Weyl) group, where a and a’ are the 
usual boson destruction and creation operators. Together with the identity operator 
Z they satisfy the Heisenberg commutation relations 

[a ,  U + ]  = z (1) 

and so generate a Lie algebra-the so-called Weyl (or Heisenberg-Weyl) algebra. The 
phase factor exp(i+) plays no further role in our arguments and will henceforth be 
omitted. Ordinary (or standard) coherent states are defined as usual by 

I A P  U,(A)IO) U,(A)=exp(Aa’-A*a) (2) 

a’aln) = nln) In>= (n!) -”2(a t )n lo> (3) 

where 10) is the vacuum, a10) = 0. In terms of the states In) of definite boson number 

the standard coherent state has the form 

m 

IA) = exp(-i)A12) (n!)-”2Anln> 
n = O  

and is easily seen to be an eigenstate of the destruction operator 

alA) = AIA). 
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We next consider a representation of the group SU(1, 1 )  realised with the unitary 
operators 
U2(p, 8, A ) =  exp(-$p e-leat2++p eLea2) exp(iAata) P, 6, A E U: U, = I. 

( 6 )  

K- G :a2 K o = $ a t a + i  (7)  

[KO, K*I=*K+ [ K - ,  K , ]  = 2Ko.  (8) 

The three operators K , ,  K -  and KO defined as 
K =1 t2  +-,a 

satisfy the Lie algebra of SU( 1,  l ) ,  namely 

In terms of the operator U, of equation ( 6 )  we finally introduce the states [ A ;  p8A) 
defined as 

1-4; POA) = U2(P, 8, A )I4 = U2(P, 6, A 1 Ul(A)IO) (9) 
which are the prime objects of study in this paper. We point out immediately that the 
states [A) ,  given in equation (4), are eigenstates of the operator K -  

K I A )  = ; A , I A )  (10) 
but not of the operator K O .  We stress this point because in the literature the SU(1, l )  
coherent states are usually generated by letting U, or a similar operator act on an 
eigenstate of KO. 

Next we note the important relation 

exp(-$p e-lsK+ + f p  e"K-) = euK+ e'% e-'*K- 

U -e-'@ 

( 1 1 )  

tanh( $p ) T = In( 1 - /ai2) (12) 
where 

which has been given by Perelomov (1977). Equation ( 1 1 )  is valid for any operators 
K,, K -  and KO which satisfy the algebra of equation (8), not just the particular 
representation of it given in equation (7 ) .  (We note that it is simplest, and sufficient, 
to prove equation ( 1 1 )  for the representation Ko-,+u3, K + + $ ~ ( U ~ * ~ U , )  in terms of 
the usual Pauli spin matrices U#, i = 1,2,3.)  Using the result of equations ( 1  1 )  and 
(12), we may write the operator U2(p, 8, A )  of equation ( 6 )  in the equivalent form 

(13) 
where A is real and U, given by equation (12), is complex and with modulus I u I  < 1.  
Equation (13 )  is particularly useful in simplifying the derivation of later results. 

u,(u, A )  = exp(faat2)(1 - 1 ~ / ~ ) ~ + ~ / ~ + ~ / ~  exp(-$U*a2) exp(iAata) 

For example, we can easily prove the very important relations 

U2(q  A)aU:(v, A )  = e-'*( 1 - 1 ~ 1 ~ ) - ~ ' ~ ( a  - a u t )  = b 

U2(cr, A)utUi(u ,  A )  = e'*(l - 1 ~ 1 ~ ) - ~ ' ~ ( a ~  - U*U) = bt 
(14) 

either by making use of equation (13) and the unitarity of U,, or directly from equation 
( 6 ) .  We readily see from equation (14) that the operators b and bt again obey the 
boson commutation relations 

[b,  bt]  = I (15 )  
and that the transformation from the operators a and at to the operators b and b' is 
just the usual Bogoliubov transformation. From equation (14) and the fact that U, is 
unitary we can trivially prove for any function f(a, a t )  the relation 

(16) UJ(  U, a ') U: = f( b, b t ,  e U2f( U, (I ') = f( b, b t, U,. 
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By making use of equation (13) and the trivial relation 

exp(4ata)lA) = exp[flAI2(le’l2- 1)]IA e’) (17) 
which is readily proved from equations (3) and (4), we can now write the states of 
equation (9) in the equivalent form 

/A; C A ) =  U2(a,  A)(A) 

= U2(G, A )  U M I O )  
= (1 - / o / ~ ) ’ / ~  exp(-fa*A2 eZiA -flaA12) 

x exp($aat2)1A e i A ( l  - (a)2)1’2). 

In the special case A = 0 = a, we simply get the standard coherent states, lA; 00) = \A), 
defined in equation (2). Equation (16) immediately implies that U2a = bU2,  and hence 
that the states \A; ah) are eigenstates of the destruction operator b, 

blA; ah) = bU2(a, A)\A) 

= U 2 ( W ,  A)+)  

= A I A ;  UA) (19) 
by making use of equation ( 5 ) .  The special case A = 0 is of particular interest, since 
equation (19) implies the relation 

b(0; a) = 0 (20) 
where we have written 10; CA) = 10; a), as equation (18) shows that this state is indepen- 
dent of A. Just as the state 10) was defined by the relation a(O)=O to be the ground 
state with respect to the operators a and at (i.e. the vacuum for a-type bosons), so 
the state 10; a) = U2(a,  A ) ( O )  obeys equation (20) and is therefore the vacuum for b-type 
bosons. By making further use of equation (16) we get the relation 

U,( a, A ) exp( Aa - A* a ) = exp( Ab ’ - A* b ) U,( a, A ) 

\A; uA) = exp(Abt - A*b)(O; a). 

(21) 

(22) 

and hence from equations (2), (9) and (21): 

Thus we see very clearly that the states /A; a A )  may be viewed as ordinary coherent 
states with respect to the operators b and bt,  i.e. they are the standard coherent states 
of the Bogoliubov quasiparticles (or 6-type bosons). For fixed values of a and A, they 
therefore obey the well known properties of ordinary coherent states, e.g., 

( D ;  aA/A; aA)=exp(D*A-iID(2-f)A12) 
(23) I ( D ;  (TAIA; CA)(’ = exp(-ID - A(’) 

where 



2530 R F Bishop and A Vourdas 

where the states In; ah)  are eigenstates of the number operator b tb  for b-type bosons: 

b'bln; a h )  = nln; a h )  In; ah)=  (n!)-"2(bt)n10; v). (26) 

In terms of the eigenstates lm) of the number operator ata, we now wish to calculate 
the overlaps (mln;  ah) .  We start by using equation (18) with A=O to get 

(010; a)  = ( 1  - ia12)1/4. (27) 

We next use the relation (m(bl0; a)  = 0 obtained from equation (20), together with the 
definition of the operator b from equation (14), to obtain the recursion relation 

Finally, we use the relation 

( m / n  + 1; ah)  = ( n  + 1)-'I2( ml b'ln; aA) 

which follows trivially from equation (26), together with the definition of b' from 
equation ( 14), to obtain the recursion relation 

(mln+1;  C T A ) = ~ " ( I - ~ U ~ ~ ) - ' / ~  

I t  is clear that all of the overlap integrals ( m l n ;  a h )  can be recursively obtained from 
equations (27), (28) and (30). 

We may also compare the ordinary coherent states lA) (with a = 0 = A )  with our 
generalised coherent states IB; a A )  in the following way. Use of equations (18) and 
( 5 ) ,  together with the analogous relation to equation (23) for the overlap integrals for 
ordinary coherent states, gives the relation 

( A I B ;  UA) = (1 - / a / 2 ) 1 / 4  

xexp[-ia*B2 e2iA +;CTA*~+A*B e iA( l  -1a(2)1/2-t/A12-~IB12]. (31) 
It is clear that the states IA) and IB; a h )  are not orthogonal in general, but that they 
become more nearly so as la/ approaches unity. Use of the completeness relation for 
the ordinary coherent states [A), analogous to equation (24), yields the expansion 

d2A 1 B; a h )  = 1 -(AI B; aA)IA) 
rr 

for the generalised coherent states in terms of the standard coherent states, and where 
the overlap integrals (AIB; CA) are given explicitly in equation (31). A particularly 
interesting special case of equations (31) and (32) is the resolution of the vacuum for 
b-type bosons: 

Finally, explicit use of the definitions from equation (14) of the operators b and bt in 
terms of the operators a and a t  gives the very important relation 

(Olbtb10)=((al-2- I ) - '  (34) 
for the expectation value of the number of b-type bosons in the vacuum state for 
a-type bosons. 
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3. Application: an example from relativity 

We turn now to an illustration of the use of these generalised coherent states and their 
associated Bogoliubov transformation, drawn from the fields of relativity and quantum 
field theory. In the relativistic case of Minkowski flat space it has been known for 
some time that a Bogoliubov transformation analogous to equation (14) may be 
associated with a uniformly accelerated observer (Davies 1975, 1978, Unruh 1976, 
Candelas and Raine 1976, Sciama et a f  1981). Our results can in this case be given a 
very interesting physical interpretation. 

We first review the physical problem that we have in mind. Let us consider the 
usual Minkowski coordinates ( t ,  x, y, z), in units with c = 1, for the inertial (or 
Minkowski) observer who sees the spacetime line element 

ds2 = -dt2 + dX2 + dy2 + dz2 (35) 

x = 6 cosh r t = (sinh r (36) 

and also the Rindler coordinates ( r ,  6, y, z) 

for the so-called Rindler observer undergoing uniform acceleration, in terms of which 
the spacetime line element (35) becomes 

ds2 = -t2 dT2 + d t 2  + dy2 + dz2. (37) 

In this case, lines of constant 6 thus correspond to worldlines of (Rindler) observers 
undergoing uniform proper acceleration 6-l and whose proper time is 57. 

Our aim is now to quantise the massless Klein-Gordon equation for a scalar field 
4 in the Rindler coordinates. A complete set of solutions to this classical equation in 
the so-called Rindler wedge (1x1 > I t l ) ,  is readily shown to be given by 

u,k(rtyz) = Nok exp(-iwr+ik2y+ik3z)Ki,(Q) k = ( k 2 , k 3 )  k = l k (  (38) 

where Kim (x )  is a Bessel function of the third kind and Nwk is a suitable normalisation 
constant. We note that in the right Rindler region (x  > I t [ )  the solutions u,k represent 
the positive frequency Rindler modes and uzk the corresponding negative frequency 
modes, where the terms positive and negative frequency are determined with respect 
to the operator i a /aT.  Conversely, it is not difficult to see that in the left Rindler region 
(x < - I t [ ) ,  the solutions u,k represent the negative frequency modes and the uzk the 
positive frequency modes. As usual we now define u s )  to be that solution of the wave 
equation which vanishes in the left Rindler wedge and u i i )  to be the corresponding 
solution which vanishes in the right Rindler wedge, and where in each case the solution 
equals u,k in the opposing Rindler wedge. For the uniformly accelerated observer, 
quantisation of the scalar field is now based on the canonical mode expansion: 

where HC indicates the Hermitian conjugate, and the operators b s )  obey the usual 
boson canonical commutation relations 

[bs) , ’ ,  b51:]= 6 ( w - w ’ ) S ( k - k ‘ ) = [ b i i ) ,  bi;::] (40) 
with all other commutators vanishing. 

Now the solutions u s )  and u i i )  are analytic everywhere except for the horizons 
(x  5 t = 0), and the same is therefore true for general linear combinations of them. It 
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can however be verified that the particular combinations 

are also analytic on these horizons. In this case they may therefore be used for a 
Minkowski decomposition of the field 4 for the inertial observer. One can also prove 
that the solutions u s )  and u i i )  are the corresponding positive and negative frequency 
modes for the Minkowski observer, i.e. with respect to the operator ia/at. The 
corresponding Minkowski quantisation of the scalar field 4, with the normalisation 
factors of equation (41), may then be given as 

and the operators a s )  obey analogous commutation relations to the operators b s ) .  

easily leads to the relation 
A comparison of equations (39) and (42), together with the defining relations (41), 

(43) 

= e i y ( u s ) +  al;k)) bwk = e i y ( b s ) + b i i ) )  (44) 

(45) 

bF2 = (1 - e -2nW)-1 /2 (aF2  + e - ~ W a ~ ~ t )  

between the boson operators in the two decompositions. If we then define new operators 

for arbitrary real y, we find the fundamental Bogoliubov transformation 

[awl, + exp( -TU + 2iy)aLk]. bwk = (1 - e-2rrw)-1/2 

A comparison of equations (45) and (14) then reveals that the present example is 
simply related to our general discussion with the identification 

a = -exp(-.rrw +2iy). (46) 

Hence, all of our previous results may be applied immediately. 
In particular the states 10) and 10; a)  now play the role of the vacua for our massless 

scalar meson field as observed by the (inertial) Minkowski and (uniformly accelerated) 
Rindler observers, respectively. More generally the operator U,( a, A ) defines a unitary 
isomorphism of the Hilbert space H onto itself by mapping each ket Is) into the ket 
Is; a h )  = U2(a,  A)ls). Corresponding to each operator 0 = f ( a ,  at), we map the operator 

= U2(u, A ) f ( a ,  a t )U:(a,  A )  =f(b, bt),  as in equation (16). If the operator 0 is 
attributed to the inertial observer, then is the corresponding operator for the 
accelerated observer. It is trivial to prove that if ( 6 )  is an eigenstate of the inertial 
observer’s operator 0, then the corresponding eigenstate of the accelerated observer’s 
operator a,, is 16; a A ) =  U2(a, A ) / @ .  We present here two examples of these results. 

In the first place, it is convenient for many purposes to define the Hermitian 
operators 

i (a  -at)  p* 2-117 4 + a t )  (47) 2 E 2 - l i 2  

which, from equation (11, obey the commutation relation [2, $1 = iZ, and hence (in 
suitable units) play the role of position and linear momentum operators respectively. 
Suppose now that /xo) is an eigenstate of the inertial observer’s position operator 2. 
Then, from our general result above, (xo; a A )  = Vz(a, A)lxo)  is the corresponding eigen- 
state of the accelerated observer’s position operator 

(48) 

: 

<-,A = U ~ ( U ,  h)?U:(a, A )  =2-’”i(b - b t )  
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with the same eigenvalue xo: 

4x0) = xolxo) %,AIxO; = xOlxO; ah). (49) 

We can now calculate these eigenstates in, say, the x representation, (xlx,; ah),  as 
follows. We first use equations (14) and (47) to rewrite relation (48) in the form 

gU,, =$(I  - lvlz)-l’z{[(l + a )  e-iA + (1  +a*) eiA]2 

+ i[( 1 - a )  e-iA - ( 1  - a*) eiA]j}. (50) 

Inserting equation (50) into equation (49) and making use of the usual representations 
of the operators 2 and i, 

( X I 2  = x(xl ( X I $  = -i(d/dx)(xl (51) 

we then readily find the result 

). (52) 
a~2)1’2xox -$[(I +a)  e-iA + (1 + a*) eiA]x2 

( 1  - a )  - ( 1  - a*) eiA (xlx,; ah)  = (constant) exp 

It is of special interest to note that for the particular case when a is real (= U, say) 
and A = 0, the accelerated observer’s eigenfunction approaches a Dirac delta function, 
exactly as for the inertial observer, but situated not at xo (as for the inertial observer) 
but rather at the point [ ( 1  - U)/( 1 + U ) ] ” ~ X ~ .  

As a second example we consider precisely the coherent states discussed in 0 2. In 
this case, if [ A )  is a coherent state for the inertial observer satisfying equation (5), then 
(A; ah)  is the corresponding coherent state for the accelerated observer satisfying 
equation (19). We conclude this section with a particularly important result. A direct 
combination of equations (34) and (46) then gives the most interesting observation 
that the Minkowski vacuum 10) appears to the uniformly accelerated observer, for 
whom the meson number operator is bkkbwk, as a black-body radiator with Planckian 
distribution 

( O I b ~ k 6 , ~ l O )  = (ezrw - I ) - ’  (53) 

corresponding to a ‘temperature’ (2rkB)-l in our units, where kB is the Boltzmann 
constant. In order to express equation (53)  in ordinary units, we realise that along 
lines of constant an interval of proper time is given by 5 d7. Thus, an observer with 
Rindler coordinates (7, 6, y, z )  interprets a wave with time dependence exp(iw7) as 
having an angular frequency w / t .  Hence, from equation (53) we see that to such a 
uniformly accelerated observer the Minkowski vacuum appears to have a temperature 

which is directly proportional to the proper acceleration 5-’. Davies (1975) seems to 
have been the first to realise that the Rindler vacuum contains a thermal distribution 
of quanta relative to the Minkowski vacuum. Sciama er a1 (1981) have stressed how 
an observer undergoing uniform acceleration, and hence finding his spacetime manifold 
bounded by an event horizon, can be thereby profitably viewed as constituting a ‘model’ 
black hole. They have further shown the deep connection of the result that we have 
just demonstrated with the thermal properties of real black holes when quantum effects 
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are taken into account, and in particular with the obviously reminiscent phenomenon 
of Hawking radiation. 

4. Conclusions 

In this paper we have investigated the generalised coherent states / A ;  aA) = U2(a,  A)lA), 
obtained from the standard coherent states lA)= U,(A)IO) by letting the operator 
U2(a,  A )  defined in equation (13) act on them, just as the standard coherent states are 
themselves built by letting the displacement operator U , ( A )  of equation ( 2 )  act on the 
vacuum. The ‘coherence’ properties of the standard coherent states IA) are already 
contained in the exponentiation of the one-body operator contained in equation ( 2 ) ,  
where by one-body operator in this context we mean one containing terms linear in 
the operators a and ut .  Similarly, the operator U2(a,  A )  of equation (13 )  is an 
exponential of an operator bilinear in the operators U and at and may therefore be 
expected a priori to generate a coherent paired state. We have shown how this 
generalised coherent state can itself be alternatively viewed as a standard coherent 
state with respect to new boson (quasiparticle) operators that stand in relation to the 
original boson (particle) operators by a Bogoliubov transformation. We have further 
shown how these generalised coherent states may be associated with the Lie group 
SU(1, l )  and we have examined their properties in some detail. 

One knows that the standard coherent states have a number of interesting properties 
that make them particularly suitable for physical applications. Probably foremost 
among these is that an expansion of an appropriate quantum field in such states makes 
the taking of the classical limit particularly easy and transparent. This property is 
itself connected with the fact that the standard coherent states minimise the Heisenberg 
(position-momentum) uncertainty relation (i.e. for these states the inequality is satisfied 
as an equality), and for this reason it is not surprising that they are the quantal states 
that most closely correspond to classical behaviour. 

We note parenthetically that coherent states are often initially approached from 
their ‘minimum uncertainty’ property, as for example in quantum optics. We have 
already remarked in 0 1 on the possible use in quantum optics of our generalised 
SU(1, 1) paired coherent states as two-photon coherent states in connection with the 
possibility of a two-photon laser, where they have been called ‘squeezed states’ for 
reasons which we now explain. In terms of a quantum harmonic oscillator with ‘mass’ 
and ‘circular frequency’ parameters m and w respectively, one can as usual introduce 
canonically conjugate ‘position’ and ‘momentum’ operators i and j? respectively, by 
the relation U =  ( 2 m A w ) - ” 2 j ? - i ( m w / 2 h ) ” 2 ~ .  In this case it is not difficult to show 
that the standard coherent states IA) minimise the position-momentum uncertainty 
relation, A p A x  = +A,  with a common ratio of uncertainties, A p / A x  = mu, for all complex 
values of A. Since our generalised coherent states [ A ;  a h )  may, on the one hand, be 
viewed as oidinary coherent states with respect to quasiparticle operators b and bt,  it 
comes as no surprise that they also satisfy the minimum uncertainty relation A p A x  = fh. 
However, one can also show relatively easily that the ratio A p / A x  for the generalised 
coherent states is now ‘squeezed’ in the sense that it acquires an extra factor (1 + U)/( 1 - 
a )  relative to the value quoted above for the standard coherent states. 

In view of their mode of construction, we expect that our generalised coherent 
states will be of particular use in any quantum field theory that has an underlying 
dynamical symmetry of the group SU( 1, l ) ,  or to which the Bogoliubov transformation 
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may profitably be applied. With regard to the group theoretic aspect, one should also 
note that SU(1, 1) is not the only appropriate group here. For example, the three- 
dimensional Lorentz group SO(2, 1) which is the group of rotations in three-dimensional 
Minkowski space, is locally isomorphic to SU( 1, l ) ,  and indeed also to both the group 
SL(2, R )  of real second-order matrices with unit determinant and the symplectic 

Returning to our original idea of building coherent paired states, it is possible to 
imagine several generalisations of the current approach. In the first place one may 
imagine generalising from a single boson (or canonical quantum mode) to the case of 
several distinct bosons (or modes). In the case of n bosons or modes, the various 
bilinear products of operators u:ai, a,a, and u:a,, i , j  = 1, , . . , n, now form a basis for 
a realisation of the higher symplectic algebra Sp(2n, R ) .  As before, one can similarly 
construct a unitary realisation of this group by exponentiating the skew-adjoint 
operators in this algebra. It should then be possible to extend in an obvious manner 
the treatment given here to the case of n distinct bosons or modes. 

A potentially much more important generalisation is concerned with our original 
motivation, namely to investigate higher clustering correlations in a similar fashion. 
Thus, for correlated clusters of m identical bosons (within a many-boson system), one 
can imagine examining the underlying group structure of the various products of order 
m in the operators U and a’, and in this way constructing appropriate coherent states 
for these m clusters. We hope in this way to be able to generalise the Bogoliubov 
transformation appropriate to (a particular type of) pairing, to transformations suitable 
for describing higher clustering phenomena and presumably also the possible new 
condensed phases that would be associated with them. Finally, it would also be of 
interest to extend any results obtained for bosonic systems to systems of many fermions. 

By way of final conclusions we note that the ‘squeezed states’ analogous to our 
generalised paired coherent states have attracted much recent work and excitement in 
quantum optics. By analogy, it is our belief and hope both that there are many other 
similar problems to which the present results might usefully be applied, and also that 
their possible generalisations outlined above will find immediate and potentially 
far-reaching applicability in both quantum optics and condensed matter theory. 

group Sp(2, RI. 
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