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This chapter provides an introduction to the use of diagrammatic language, or
perhaps more accurately, diagrammatic calculus, in quantum information and quan-
tum foundations. We illustrate the use of diagrammatic calculus in one particular
case, namely the study of complementarity and non-locality, two fundamental con-
cepts of quantum theory whose relationship we explore in later part of this chapter.

The diagrammatic calculus that we are concerned with here is not merely an
illustrative tool, but it has both (i) a conceptual physical backbone, which allows it
to act as a foundation for diverse physical theories, and (ii) a genuine mathematical
underpinning, permitting one to relate it to standard mathematical structures.

(i) The conceptual physical backbone concerns compositionality. Given two sys-
tems, there is also a composite system. This notion of composition is a primitive
ingredient of the diagrammatic language. Moreover, the basic elements of the dia-
grammatic language are processes, and states are identified with preparation pro-
cesses. This paves the way for a framework of generalised compositional theo-
ries (GCTs), named in analogy to generalised probabilistic theories [1]. The latter
have recently received much attention because one can better understand a theory—
quantum theory in particular—by studying it as merely a member of a broader class
of theories. Notably, the study of non-locality within this framework has provided
important new insights [2, 3]. Whereas generalised probabilistic theories discard
everything except the convex probabilistic structure, in contrast, GCTs focus on
composition. This approach is informed by techniques used in computer science,
logic, and the branch of mathematics called category theory, however its roots can
be traced to Schrödinger’s conviction that the essential characteristic of quantum
theory is the manner in which systems compose [4].
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(ii) On the other hand, the diagrammatic language has a well-defined mathemat-
ical meaning, which permits any diagram to be interpreted as a definite object in
various other concrete mathematical models, for example in Hilbert spaces. This
translation can be carried out in a formally precise manner, so that reasoning in the
diagrammatic calculus produces true equations in the chosen model. At the same
time, the relationship between what is provable in the calculus and what is provable
in concrete models can be described to a high degree of precision.

We won’t discuss this mathematical basis in detail here, however it may be sum-
marised as follows: the diagrammatic calculus is itself a GCT, and GCTs form a
certain class of monoidal categories, also known as tensor categories. The use of
diagrammatic languages for tensors traces back to Penrose in the early 1970’s [5],
but was only placed on a formal mathematical basis in the late 1980’s [6, 7]. Their
use in quantum foundations and quantum information began with an abstract (par-
tial) axiomatisation of Hilbert spaces in terms of these categories [8], eventually
resulting in so-called quantum picturalism [9]. Meanwhile, the diagrammatic com-
positional language has been adopted by several researchers in quantum foundations
[10, 11]. The particular developments related here been used to solve problems in
quantum foundations [12, 13] and quantum computation [14, 15, 16].

1 Introduction to Quantum Picturalism

1.1 Theories and Diagrams

A generalised compositional theory consists of systems, or more accurately types
of systems, and processes which transform systems. A process f which transforms
systems of type A into systems of type B is written f : A→ B. At the highest level of
generality we do not need to give any details as to what A, B, or f are: it is enough to
know that that f accepts systems of type A as inputs and produces systems of type
B as outputs. The important thing is how systems and processes are combined.

Mathematically speaking, general compositional theories are strict symmetric
monoidal categories, and a full exposition of their properties would require a lengthy
detour into category theory. The interested reader can refer to Mac Lane’s clas-
sic text [17] for a thorough treatment. However, we can avoid reading Mac Lane’s
book1 by adopting a diagrammatic notation, which absorbs all of the relevant equa-
tions into the syntax. This notation is the subject of the first section of this paper.

We will represent processes by diagrams, consisting of boxes and wires. The
wires are labelled by systems, and the boxes by basic processes2. Wires join boxes at
the top and bottom; the wires below correspond to the input systems of the process,

1 We jest; reading Mac Lane’s book is eventually unavoidable, however the paper [18] is an easy
introduction to the subject of monoidal categories.
2 The term “basic” simply means a process whose internal structure is of no interest. Typically we
construct diagrams from some given set of basic processes.
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and those at the top correspond to the output systems. For example:

f

A

B

g

B

A

A

B

A A

A

δ

f : A→ B g : A⊗B→ B⊗A δ : A→ A⊗A

The same is true for the diagram as a whole: the wires entering the bottom of the
diagram are its input systems, and those leaving from the top are its outputs.

Given processes f : A→ B and g : B→ C, it seems obvious that doing f then
g is again a process, and we write g ◦ f : A→ C to denote this process. In other
words, processes admit sequential combination; we will usually call this operation
composition.

Similarly, a pair of systems, say A and B, can be taken together and viewed as
a single system, A⊗B. Now, given a pair of processes f : A→ B and g : A′ → B′,
a new process is obtained by placing them in parallel. We denote the combined
process f ⊗ g : A⊗A′ → B⊗B′. This operation of parallel combination is called
tensor.

In the diagrammatic notation, composition is expressed by plugging the outputs
of one box into the inputs of another, and the tensor is given by juxtaposition.

A

B

B A A′

C B′BB′

B

B

A

A′

C

A

g

g ◦ f = f ⊗ g = f g

f

We require that both operations, composition and tensor, are associative and obey
the interchange law,

( f ⊗g)◦ (h⊗ k) = ( f ◦h)⊗ (g◦ k) . (1)

In the graphical notation, all of these equations become trivial: they boil down the
statement that the three diagrams below are unambiguous.

h

f

f

g g h

f

h

g

k

D

C

B

A

A B C

B C D

C

A A′

B′B

C′

While it is easy to translate these diagrams back into conventional notation, to do
so we must make a choice of where to put the brackets, even though the theory
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tells us this choice does not matter. This highlights a key advantage of working with
diagrams, namely that the objects which are equal in the theory produce the same
diagram.

In addition to the two operations, composition and tensor, every generalised com-
positional theory is equipped with certain primitive processes. The simplest process
is the process which doesn’t do anything at all, simply returning unchanged the sys-
tem given to it. We assume that for every system A such a null process, called the
identity and written 1A : A→ A, exists. The fact that it does nothing is expressed by
the equations

1B ◦ f = f = f ◦1A

for all processes f : A→ B. The identity process 1A : A→ A is drawn as a wire
without any box on it, while the identity for A⊗A′ is simply the tensor product
1A⊗1A′ , i.e. two wires.

1A = A 1A⊗A′ = A′AA′A ⊗ =

Once again we see an equation absorbed into the notation: since the identity has no
effect on a process, the length of the wires attached to a box makes no difference.

A

B

A

B

A

B

A

B

A

B

A

B

C

D

C

D

C

D

f =

f

=

f

f

f

f

==g

g

g

In addition, for every pair of systems A and B there is a process σA,B : A⊗B→
B⊗A which exchanges the two systems. The class of theories we consider here are
symmetric: swapping two systems twice has no effect, hence the equation

σB,A ◦σA,B = 1A⊗B

holds for all systems A and B Graphically, the swap is just the crossing of two wires:

σA,B = A B=
A B

BA

BA

B A

In fact, the swap should satisfy some further coherence equations, the details of
which can be found in [17]. However, we can again make the graphical notation
do the work by allowing wires to cross freely in the diagrams, and saying that only
the connectivity of the wires matters, and not their configuration in the page. For
example, the following diagrams are equal:
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f g = g f=

Note that we do not distinguish between wires crossing over and crossing under.
A process may produce an output without having to consume an input first, or

vice versa. Therefore we introduce a null system, or empty system, which we denote
I. Hence a process that produces an A from nothing would be written p : I→ A. Like
the identity process, the null system obeys some equations:

A⊗ I = A = I⊗A and 1I⊗ f = f = f ⊗1I ,

for all systems A and all processes f . As suggested by the preceding equations, I
is represented as empty space in the diagram, and its identity process 1I : I → I is
represented by the empty diagram.

ψ
φ s

A process of type s : I → I is called a scalar; this name will be justified later. It
is clear from the diagrammatic notation that given scalars s and s′ we have s ◦ s =
s⊗ s′ = s′⊗ s = s′ ◦ s; i.e. the scalars form a commutative monoid3.

In the preceding text we have introduced various transformations of diagrams
which, we claim, do not change anything. It is reasonable to ask: when are two dia-
grams considered to be equal? We use a very intuitive notion here: Two diagrams
are considered equal when, keeping the inputs and outputs fixed, one may be
transformed to the other by purely topological transformations. In other words,
if starting from one diagram we—by crossing or uncrossing wires, stretching wires,
moving boxes along wires, translating boxes in the plane (while maintaining their
connections), etc—arrive at the other, then they are equal. In particular, since scalars

gh

ψ

f s

=

g

h ψ

s
f

Fig. 1 Examples of topologically equivalent diagrams.

3 This is true even for non-symmetric monoidal categories; see [7].
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are not connected to the inputs or outputs of the diagram, they may be placed any-
where in the diagram without altering its meaning.

Example 1. The simplest non-trivial example is the theory with one primitive sys-
tem, denoted u, and whose processes are generated by the identity and swap. We
call this theory SymGrp. Since there is only one basic system, every other system
is just an n-fold tensor power of u, hence the systems of the theory can be identified
with the natural numbers. In this theory, a process p : n→ n is nothing more than
a sequence of swaps; i.e. a permutation on the n-element set. Hence SymGrp is
exactly the theory of the symmetric groups.

Fig. 2 Example: the symmetric group S3 presented as diagrams.

Example 2 (Finite-dimensional Hilbert spaces). The theory called FHilb has as its
systems all finite-dimensional complex Hilbert spaces. The processes of this theory
are all linear maps f : A→ B. The sequential composition of processes is the usual
composition of linear maps, and the tensor is the usual Kronecker product of vector
spaces and maps. The identity process is the identity map, the swap is the evident
permutation map, and the null system is the base field, C. Since a linear map C→C
is totally determined by its value at 1, we see that the scalars of FHilb are nothing
more than the complex numbers themselves.

We write FHilbD to denote the subtheory FHilb restricted to Hilbert spaces of
dimension Dn and linear maps between them, for some fixed D. For convenience,
we refer to FHilb2 as Qubit. Notice that the systems of Qubit are all tensor powers
of C2, and its processes include all quantum circuits, state preparations, and post-
selected measurements, justifying the name.

Remark 1. Note that we must specify what the tensor product is to specify what
the theory is. For example, another equally valid theory is the collection of finite
dimensional Hilbert spaces and linear maps, but with the direct sum as the tensor.
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This is again a general compositional theory, although since it lacks certain other
features we will require later, it will play no role in this presentation.

Example 3 (Sets and Relations). An example with very different flavour, but most
of the same structure is FRel. The systems of FRel are all finite sets (considered up
to isomorphism4), and the processes r : X → Y are relations between X and Y , that
is subsets of X×Y . The composition of relations is given by

s◦ r = {(x,z) | ∃y s.t. (x,y) ∈ r and (y,z) ∈ s}.

The identity process is the diagonal relation,

1X = {(x,x) | x ∈ X}.

The tensor product in FRel is the cartesian product X⊗Y = X×Y , which takes the
form

r⊗ r′ = {((x,x′),(y,y′)) | (x,y) ∈ r and (x′,y′) ∈ r′}

on processes. The null system is the singleton set {∗}, for which we have {∗}×X ∼=
X for all sets X . There are exactly two relations from {∗} to itself, namely the total
relation and the empty relation. Hence, the scalars of FRel are the Boolean monoid,
i.e. Z2 with the usual multiplication.

An important subtheory of FRel is FSet, obtained by restricting the to relations
which are functions: that is, relations r : X → Y where each x is related to exactly
one y. Just as in the case of FHilb, we can consider restrictions of FRel to systems
generated by a set of size D, which we call FRelD. For example, FRel2 contains all
the Boolean functions. The intersection of FRel2 and FSet consists of precisely the
Boolean functions; this theory we denote Bool. Many other interesting theories are
subtheories of FRel; we’ll meet some more later.

Since generalised compositional theories all share certain basic structure, it is
natural to consider maps between them. Given two such theories C and D, a map
F : C→ D consists of an assignment of each system A in C to a system FA in D,
and an assignment of each process f : A→ B in C to a process F f : FA→ FB in D,
obeying the following equations:

F(A⊗B) = FA⊗FB FI = I

F(g◦ f ) = Fg◦F f F( f ⊗g) = F f ⊗Fg

F1A = 1FA FσA,B = σFA,FB

In the mathematics literature, such a map is called a strict symmetric monoidal func-
tor; again, see Mac Lane [17] for the details. The important point to note is that the
mapping F sends wires to wires. Therefore, to specify such a mapping it is enough
to specify the image of the boxes in a diagram, ensuring that composition and tensor
are respected.

4 Since we identify sets of the same cardinality, we can equivalently say that the systems of FRel
are just the natural numbers.



GCTs and Diagrammatic Reasoning 9

Example 4. We can define a map RD : SymGrp→ FHilb by setting RD(u) = CD

and then everything else is defined by the requirement that RD is a strict symmetric
monoidal functor. Thus we have a Dn dimensional representation of the symmetric
group Sn for every D.

In fact, this construction applies equally well to any generalised compositional
theory C: all that is required is an assignment of the unique primitive system u to
some system of C. Therefore every generalised compositional theory contains all
the symmetric groups.

Given a mapping between theories it is easy to calculate the image of a given
diagram. One must recursively partition the diagram into tensors and compositions
of smaller diagrams until each partition contains exactly one element—that is, ei-
ther a single wire, a crossing of wires, or a box. The interchange law (Equation 1)
guarantees that the result does not depend on the partition chosen.

f

gh

ψ 7→

gh

ψ

f

We may now state:

Theorem 1 (Fundamental Theorem of Diagrams). Given any two generalised
compositional theories C and D, and a map F : C→ D, for any two diagrams d
and d′ in C, if d = d′ as diagrams then Fd = Fd′ in D.

This theorem has many variations, and we refer the reader to Selinger’s survey arti-
cle [19] for the full details.

Remark 2. In the diagrams to come, we will often use horizontal separation to indi-
cate separation in space and vertical separation to indicate separation in time. For
example,

f g

Φ

depicts the creation of two systems by the process Φ , which then become spatially
separated over some time and are acted upon by processes f and g respectively.
Since, as we already know, topologically equivalent diagrams are equal, these sepa-
rations have no formal status and are purely illustrative.
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1.2 Rewrites and Models

Since we wish to generalise over many concrete mathematical structures, we are
particularly interested in theories which can be specified axiomatically. That is, to
specify the theory we state (i) the list of basic systems—typically we’ll only have
one basic system, the rest being generated by the tensor product—and (ii) the ba-
sic processes. The processes of the theory are then all the diagrams which can be
constructed from these processes and nothing else.

Example 5 (Boolean Circuits). A simple example of a compositional theory is
BoolCirc, the theory of boolean circuits. This theory has only one basic system,
the bit b, and the basic processes are the logic gates:

∧ : b⊗b→ b ∨ : b⊗b→ b ¬ : b→ b FAN : b→ b⊗b

A process in this theory is a circuit for computing some boolean function, built up
from these basic gates.

Fig. 3 A Boolean circuit to compute (x∧¬y)∨¬(y∧ z).

It is tempting to assume that BoolCirc is related to the theory of Boolean func-
tions, and we can make this precise by specifying a mapping B : BoolCirc→ Bool.
We assign B(b) = {0,1} and define B on the basic processes as follows:
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B(∧) = a :


00 7→ 0
01 7→ 0
10 7→ 0
11 7→ 1

B(∨) = o :


00 7→ 0
01 7→ 1
10 7→ 1
11 7→ 1

B(¬) = n :
{

0 7→ 1
1 7→ 0 B(FAN) = δ :

{
0 7→ 00
1 7→ 11

The mapping B assigns to each diagram the boolean function normally associated
with it. However this is not the only possibility. Consider the following mapping,
P : BoolCirc→ Bool. Once again P(b) = {0,1}, but now we have the following
assignment of processes:

P(∧) = a :


00 7→ 0
01 7→ 0
10 7→ 0
11 7→ 1

P(∨) = p :


00 7→ 0
01 7→ 1
10 7→ 1
11 7→ 0

P(¬) = i :
{

0 7→ 0
1 7→ 1 P(FAN) = δ :

{
0 7→ 00
1 7→ 11

The mapping P assigns to each d : bn → b in BoolCirc an n-variable polynomial
over the ring Z2. (More generally a circuit with multiple outputs produces a list of
polynomials, one for each output.)

In fact, as the example of P suggests, the diagrams of BoolCirc admit an inter-
pretation in any setting with two binary operations and one unary operation. This is
not entirely satisfactory. In order to capture more than the bare syntax of any given
theory we need to impose some additional equations on the class of diagrams. We
do this via rewrite rules.

A rewrite rule consists of a pair of diagrams of the same type, for example d : A→
B and d′ : A→ B. If this rule is called r then we write r : d⇒ d′, or diagrammatically

r⇒

Whenever d occurs as a subdiagram of a larger diagram e then we can replace d
with d′ in e, written e[d] r⇒ e[d′], or in diagrams:

r⇒
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Rewrite rules allow us to define a notion of equality in addition to the basic equality
of diagrams. Given a collection of rewrite rules R we write d R⇒ d′ if there is some
rewrite sequence in R taking d to d′. Evidently R⇒ is a transitive relation; let R

= be its
symmetric, reflexive closure. Then we say that two processes are equal according
to R if their corresponding diagrams satisfy d R

= d′. Typically we’ll exhibit this
equivalence as a sequence of rewrites.

Example 6 (Boolean circuits). Consider the following two rewrite rules for BoolCirc,
expressing respectively the distributivity of AND over OR, and (one half of) De
Morgan’s law.

(dist)
=⇒ (DM)

=⇒

Now we can show that a certain Boolean circuit can be transformed into its disjunc-
tive normal form:

(DM)
=⇒ (dist)

=⇒

Given a theory C, a set of rewrite rules R, and a mapping F : C→D, we can ask
the following question: if d R

= d′ in C, is it the case that Fd = Fd′ in D?
This property is called soundness. A sound mapping F : C→ D is called an

interpretation of C in D, and the image of C in D is called a model. In the example
above, the mapping B is sound, hence it provides an interpretation of BoolCirc (and
R) in Bool; on the other hand P does not, due to the failure of De Morgan’s law.
Generally speaking we will always work with a given set of rewrite rules and a given
interpretation map, so we will usually say “the D interpretation of C”, although in
principle there could be many.

Remark 3. The converse property to soundness, Fd = Fd′ implies d = d′, is called
completeness. An interpretation which is both sound and complete provides an iso-
morphism between the formally presented theory and its model. While checking
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soundness is straightforward, showing completeness is often much more difficult5.
On the other hand, not having completeness means there are multiple models of a
given theory, and the study of the differences between such models is often infor-
mative.

Before moving on, we’ll introduce an important example, and its standard model.

Example 7 (Quantum Circuits). Similar to the example of Boolean circuits, we can
also view (post-selected) quantum circuits as generalised compositional theory,
called QuCirc. Again we have a single basic system, the qubit Q, and the basic
processes are a collection of unitary gates, state preparations, and projections from
which we construct the other quantum circuits.

|0〉 |1〉 〈0| 〈1|

|0〉 : I→ Q |1〉 : I→ Q 〈0| : Q→ I 〈1| : Q→ I

Zα Xβ

Zα : Q→ Q Xβ : Q→ Q ∧X : Q⊗Q→ Q⊗Q

From these basic elements we can write down any quantum circuit. We now define
the standard interpretation of QuCirc into Qubit.

JQK = C2

t

|0〉

|

= |0〉
t

|1〉

|

= |1〉
t

〈0|

|

= 〈0|
t

〈1|

|

= 〈1|

t

Zα

|

=

(
1 0
0 eiα

) t

Xβ

|

=

(
cos β

2 −isin β

2
−isin β

2 cos β

2

)

u

v

}

~ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


5 To show completeness for a rewrite theory it is typically necessary, but rarely sufficient, to check
that the rewrite rules are confluent; that is, whenever two rewrites simultaneously apply to a given
diagram, then the choice between then (eventually) does not matter. Since this property must hold
for every diagram and every pair of rewrites, even a simple rewrite system can produce an ex-
tremely large number of cases, necessitating a computer-assisted proof. For example see the work
of Lafont on Boolean circuits [20].
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Thanks to the well-known universality result [21] this interpretation demonstrates
that QuCirc can represent all unitary maps between qubits. In fact, since we have
the projections 〈0| ,〈1|, all linear maps can be represented. Note, however, that al-
though all quantum circuits can be represented, without a set of rewrite rules QuCirc
cannot express any non-trivial equalities between them. We could propose various
sound equations here, but there is no known collection of rewrite rules which makes
QuCirc complete with respect to this interpretation into Qubit. If such a set of
rewrites did exist, it would constitute provide a presentation of the unitary group by
generators and relations.

1.3 The Dagger

Now we introduce the dagger. This is simply an operation on the processes of a
theory, sending every process f : A→ B to another process f † : B→ A. We call f †

the adjoint of f . In the graphical calculus, we represent the dagger by a flip in the
horizontal axis:  f

†

= f

Note that we have made the box asymmetric to make this flipping evident. For more
general diagrams, the dagger flips a diagram upside down, preserving all the internal
structure. Taking this claim at face value, we can derive the key properties of the
dagger:
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( f †)† = f

 f

†

= f

(g◦ f )† = f † ◦g†


g

f



†

=

f

g

( f ⊗g)† = f †⊗g†

 f g

†

= f g

1†
A = 1A

(
A

)†

= A

σ
†
A,B = σB,A




†

=

The dagger allows two important concepts to be defined.

Definition 1. A process f : A→ B is called unitary if f ◦ f † = 1B and f † ◦ f = 1A.
A process is called self-adjoint when f † = f .

Example 8 (Finite-dimensional Hilbert spaces). The theory FHilb admits a dagger:
it is the usual adjoint of a linear map. In this theory, the abstract definitions of uni-
tarity and self-adjointness coincide with the usual one.

Example 9. In the theory FRel, the dagger of a relation r : X → Y is defined by the
converse relation, i.e.

r† = {(y,x) | (x,y) ∈ r}

Here, unitary processes are exactly those relations which encode permutations. A
relation is self-adjoint whenever it is symmetric. Hence the self-adjoint unitaries in
FRel are exactly the permutations of order 2.

We extend the definition of mapping to demand that it also preserves the dagger.
That is, given two theories with dagger, we require that a map F : C→ D satisfies

F( f †) = (F f )†

Example 10 (Quantum Circuits). We define a dagger on QuCirc as follows:



16 Coecke, Duncan, Kissinger, and Wang(
|0〉

)†

= 〈0|

(
|1〉

)†

= 〈1|

(
〈0|

)†

= |0〉

(
〈1|

)†

= |1〉

(
Xα

)†

= X−α

(
Zβ

)†

= Z−β

 †

=

It’s now easy to check that the interpretation map introduced earlier, J·K : QuCirc→
Qubit preserves the dagger as required.

Remark 4. The theory of Boolean circuits, BoolCirc, does not admit a dagger.
However, we could formally add new basic processes corresponding to the ad-
joints of the basic processes of BoolCirc and thus define a new theory, BoolCirc†.
Since the converse of a function is not in general a function, the interpretation
B : BoolCirc→ Bool no longer makes sense. Instead we must interpret BoolCirc†

over FRel2, that is as Boolean relations rather than functions. In this case B again
defines a valid interpretation BoolCirc† → FRel2. The resulting theory is a model
of non-deterministic computation.

In any theory, a process of type p : I→ A is called a point, or sometimes a state,
of A. Dually, a process of type e : A→ I is called a co-point, or sometimes an effect
on A. For example, in FHilb the points ψ : I→ A are in one-to-one correspondence
with the vectors of A, while in FRel a point s : I→ X is precisely a subset of X .

In a theory with a dagger the set of points is isomorphic to the set of copoints
(or in other language, for every state there is a corresponding effect and vice versa).
This allows us to define another important concept.

Definition 2. Given two points ψ,φ : I→ A we define their inner product as φ † ◦ψ .
Dually, the outer product is defined as φ ◦ψ†.

As one may expect, the inner product is always a scalar. The diagrammatic lan-
guage automatically allows the same tricks—and more— as Dirac notation does in
Hilbert spaces. Indeed one can view the diagrammatic language as a 2-dimensional
generalisation of Dirac notation.

Example 11 (Finite-dimensional Hilbert spaces). In FHilb the inner product defined
by the dagger, is exactly the usual inner product 〈φ |ψ〉.

Example 12 (Sets and Relations). In FRel the inner product r† ◦ s is 0 if the r and s
are disjoint as subsets, and 1 otherwise.
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2 Pure state quantum mechanics

2.1 The elements of an operational theory

It is remarkable that the the basic language of quantum mechanics—states, effects,
unitarity, self-adjointness, inner products, tensor products—can all be defined in the
abstract setting of generalised compositional theories. We now have enough material
to describe a formal operational framework for pure state quantum mechanics in
purely diagrammatic terms.

• A preparation is any process which produces a state; that is to say it is process
of type p : I→ A.

A

p

Preparations are not restricted to producing single systems; a preparation process
of type I→ A1⊗·· ·An is called multipartite. Of course, multipartite preparations
need not be separable.

A1 An

p1 pn
. . . AnA1

p
. . .

When interpreted in FHilb each preparation process yields a ray in some Hilbert
space, which, ignoring global phase, we may identify with a specific quantum
state. It may happen, depending on the equations of the formal theory, that dif-
ferent preparation processes produce the same state.

• A transformation is any process which acts on states and produces new states,
and which is unitary:

U

Once again, transformations may act on one or many systems at the same time.

B1

An

Bm

A1

U

• Measurements are processes which accept quantum inputs and produce classical
information about the state which was input. Since, for now, our theory only has
pure states, we will work with non-degenerate post-selected measurements6; i.e.
we know that a definite outcome has occurred, and that outcome corresponds to
a definite quantum state. Therefore, measurements are one-dimensional effects,
represented as co-points:

6 In other words, rank 1 projectors.
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A

v
AnA1

p
. . .

The classical information is implicit in the choice of copoint, and hence not repre-
sented. Since copoints do not have quantum outputs, these processes correspond
to demolition measurements, where the original system is consumed by the mea-
surement process. However, by combining an effect with the corresponding state
preparation we can also represent non-demolition measurements:

A

A

ψ

ψ

AnA1

AnA1

p
. . .

. . .

p

To properly represent the non-determinism of quantum measurements we need to
consider mixed states; this is dealt with in Section 4. More general measurements
can be represented within the theory, however they will not be described here.

This basic recipe—preparations, transformations, and measurements—allows
any experimental setup to be described in terms of the processes which realise it.
More precisely, since we use post-selected measurements, the diagram really repre-
sents a run of the experiment where a certain outcome occurred. We call an exper-
iment closed when it has no external inputs or outputs. Any closed experiment is
necessarily described by a process of type x : I→ I; that is, a scalar. This scalar is
the abstract counterpart to the probability amplitude for performing the process and
observing the specified result. Indeed, when such a diagram is interpreted in FHilb,
the result is exactly the probability amplitude.

Example 13. The theory QuCirc has the structure described above, and we can use
it to define a simple experiment. For example, the diagram below corresponds to
preparing a qubit in the |0〉 state, applying a unitary gate to it, and, upon measuring
in the computational basis, finding that the qubit is in the state |1〉.

Xπ/2

〈1|

|0〉

Using the interpretation map J·K : QuCirc→Qubit we can calculate the amplitude
for this experimental result.
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Xπ/2

〈1|

|0〉

7→ 〈1| ◦ 1√
2

(
1 −i
−i 1

)
◦ |0〉 =

−i√
2

To summarise the elements of the framework, a formal generalised compositional
theory consists of:

• A collection of basic systems and processes, corresponding to the available “lab
equipment”.

• The collection of all diagrams constructed from the basic processes, correspond-
ing to every possible experiment that could be built from the given equipment.
We consider diagrams modulo topological equivalence: equivalent diagrams cor-
respond to the same experiment.

• A (possibly empty) collection of axioms, presented as rewrite rules over dia-
grams, which specify behavioural equivalence of processes. These rules tell us
when a piece of the experimental setup can safely be replaced by another without
changing the result of the experiment.

• Finally, given the above, we’ll usually consider (sound) interpretation maps of
the formal theory into some concrete mathematical structure, such as Hilbert
spaces.

So far we have been operating at an extremely high level of generality. To focus our
attention on quantum systems we will now gradually introduce more structure to our
theories. We identify certain structural features of the Hilbert space presentation of
quantum mechanics, and provide an abstract realisation of those features in terms of
basic processes and equations, whose behaviour reproduces various quantum phe-
nomena in the abstract setting of generalised compositional theories.

The rest of this section will layout which basic processes and equations we will
need to realise. As we do so, we’ll say goodbye to some of the models introduced
earlier, but the two most important ones, FHilb and FRel, will still be applicable.

2.2 Duals

The next piece of structure that will be required is the existence of duals7.

Definition 3. A system A has a dual if there exists a system A∗ and processes

eA : I→ A∗⊗A and dA : A⊗A∗→ I

such that we have the following equations:

7 For the experts in category theory, this additional structure can be summed up by saying we
operate in a dagger-compact category, rather than just a symmetric monoidal category.
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(dA⊗1A)◦ (1A⊗ eA) = 1A (1A∗ ⊗dA)◦ (eA⊗1A∗) = 1A∗

Since this definition is rather hard to parse we will immediately move to its diagram-
matic form. We indicate the dual system A∗ by a wire labelled by A but directed in
the opposite direction. The maps dA and eA are represented by wires with half turns,
henceforth “caps” and “cups”. The equations above then take the form of “straight-
ening wires”:

eA :=
= =

dA :=

In general a system might have more than one dual, but they are all guaranteed to
be isomorphic. We’ll assume that every system has a given dual, and in particular
(A⊗B)∗ = B∗⊗A∗, in which case dA⊗B and eA⊗B take the form of nested caps and
cups. Furthermore, we’ll assume that the double dual A∗∗ = A. These simplifications
automatically hold in any theory presented diagrammatically; taking them as the
general case saves a lot of bureaucracy.

Example 14 (Finite dimensional Hilbert spaces). Let A be a Hilbert space of dimen-
sion d, then A∗ is the usual dual space; that is, the space of linear functionals from
A to the complex numbers. Supposing that {|ai〉} is a basis for the space A, then the
cup and cap are given by the linear maps

eA : 1 7→∑
i
〈ai|⊗ |ai〉 , dA : ∑

i
|ai〉⊗〈ai| 7→ 1 .

However since we are in a finite-dimensional setting we could also choose A∗ = A;
specialising to the case of qubits, we can now view the cup and cap as the preparation
and projection onto a Bell state:

eQ = |00〉+ |11〉 dQ = 〈00|+ 〈11|

Recall the quantum teleportations protocol: Alice has some unknown state that she
wishes to send to Bob, but they do not share a quantum channel. However they have
a classical channel, and have previously shared a Bell pair. In order to send her qubit
to Bob, Alice measures her two qubits in the Bell basis, and transmits the result to
Bob. Now Bob simply applies some unitary map (depending on Alice’s outcome)
to his half of the Bell pair to recover the qubit that Alice wanted to send. Since,
for the moment, we are operating in a post-selected setting, we’ll assume that Alice
observes the outcome corresponding to the state Φ+ = (|00〉+ |11〉)/

√
2) at her

measurement. In this case Bob need do nothing to his qubit. The whole set up is
shown below:
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Φ+

Φ+
Alice Bob

Knowing that the projection onto Φ+ is just the effect dQ, we can rewrite the proto-
col as shown and demonstrate the protocol purely diagrammatically:

Φ+

Φ+
= =

Example 15 (Sets and Relations). In FRel, the dual of a set X is just the same set X
again. The cup is given by the “name” of the identity:

eX = {(∗,(x,x)) | x ∈ X}

while the cap, dX is just the converse of eX .

Using caps and cups, we can turn any process f : A→ B into a process on the
dual objects going in the opposite direction: f ∗ : B∗→ A∗.

f ∗ = f

This is sometimes called the transpose of f , but this terminology can be misleading.
In FHilb, f ∗ is the map that takes a linear form 〈ξ | ∈ B∗ to 〈ξ | f ∈ A∗. We refer to
this map simply as the upper-star of f . Clearly, we have f ∗∗ = f .

It is also required that the dagger and the duals interact nicely. More precisely we
have the equations:( )†

=

( )†

=

In any theory with both a dagger and duals, we can define a third operation, the
lower-star of f as f∗ := ( f †)∗ = ( f ∗)†. Again this is involutive, i.e. f∗∗ = f . We’ll
return to the uses of the upper and lower stars in Section 4.

Finally, the cup and cap can be used to define a trace in purely diagrammatic
terms:
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Tr( f ) = f

Checking the Hilbert space interpretation, it is easy to see that this coincides with
the usual definition.

Tr( f ) = (∑
i
〈ii|)◦ (1A⊗ f )◦ (∑

j
| j j〉) = ∑

i
〈i| f |i〉= ∑

i
fii

In the diagrammatic form it is trivial to prove that trace is invariant under cyclic
permutation:

Tr


g

f

=

g

f
= fg =

f

g = Tr


f

g


The partial trace can be defined analogously.

TrA
B


A

B

B

A

U

 =

A

B

B

A

U

By adding duals we have enlarged the class of possible diagrams, since wires
may now loop back from inputs to outputs and vice versa, but the basic principle of
diagram equality does not change: Two diagrams are considered equal if one can
be smoothly transformed to another, by bending, stretching, or crossing wires,
and moving boxes around. With this in mind we can update the key theorem.

Theorem 2 (Fundamental Theorem of Diagrams with Daggers and Duals).
Given any two generalised compositional theories C and D with daggers and duals,
and a map F : C→ D, for any two diagrams d and d′ in C, if d = d′ as diagrams
then Fd = Fd′ in D.

Once again, the full details are found in [19].

Remark 5. We need not demand any additional conditions on the class of mappings
to guarantee the preservation of duals; since they are defined in terms of processes,
the structure is automatically preserved.
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2.3 Observable Structures

An observable yields classical data from a physical system [22]. The key distinction
between classical and quantum data is that classical data may be freely copied and
deleted, while this is impossible for quantum data, due to the no-cloning [23, 24]
and no-deleting [25] theorems.

In quantum mechanics, an observable is represented by a self-adjoint operator.
This (non-degenerate) operator encodes certain classical data as its orthonormal ba-
sis of eigenstates, the possible outcomes of the corresponding measurement. Note
that if a quantum state is known to be a member of a given orthonormal basis, such
as the eigenbasis {|ai〉} of some observable, then it can be copied and deleted via
the maps

δ : |ai〉 7→ |ai〉⊗ |ai〉 and ε : |ai〉 7→ 1.

Hence we can view the classical content of a quantum measurement as the possibil-
ity to copy and delete its set of outcomes. We will axiomatise quantum observables
by describing the copying and deleting operations as algebraic structures inside a
general compositional theory. The relevant structure is called a †-special commuta-
tive Frobenius algebra, and we will now build up its definition one piece at a time.

Definition 4. A commutative monoid in C is a triple (X ,µ,η), where µ and η are
maps

µ : X⊗X → X η : I→ X

which we write graphically as µ = , η = . These operations satisfy the follow-
ing equations:

= , = = , = .

Remark 6. The process µ can be understood as a multiplication for systems of type
X ; the first and last equations assert that this operation is associative and commuta-
tive respectively. The process η is the unit for this multiplication: the second equa-
tion asserts that multiplication by the unit is simply the identity.

The dual to a monoid is a comonoid.

Definition 5. A comonoid in a theory C consists of a triple (X ,δ ,ε) where δ and ε

are processes
δ : X → X⊗X ε : X → I

satisfying the equations of Definition 4 but in reverse, viz:

= = =
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A comonoid is cocommutative if it satisfies:

= .

The processes δ and ε are called the comultiplication and counit respectively.

Example 16. We have already met the basic example of a comonoid: in FHilb, for
any orthonormal basis {xi}i of a space X we obtain a comonoid via ‘copying’ and
‘erasing’ processes mentioned above:

δ : xi 7→ xi⊗ xi ε : xi 7→ 1

Remark 7. Thanks to the dagger, if (X ,δ ,ε) is a comonoid then (X ,δ †,ε†) is auto-
matically a monoid, and vice versa.

Generally speaking, a process is called a homomorphism if it preserves some
algebraic structure. In the context of GCTs, such preservation is usually expressed
by a process commuting with another which reifies that structure. For example:

Definition 6. Given two comonoids (X ,δ ,ε) and (X ′,δ ′,ε ′), a comonoid homomor-
phism is a process f : X → X ′ such that

δ
′ ◦ f = ( f ⊗ f )◦δ and ε

′ ◦ f = ε .

f f

=

f

f =

Monoid homomorphisms are defined similarly.

Remark 8. The definition above is the most general, but we will frequently en-
counter cases where f : X → X is homomorphism between two comonoids defined
on the same object, or from a single comonoid to itself.

The structures of greatest interest for this paper are algebras containing both
monoids and comonoids.

Definition 7. A commutative Frobenius algebra is a 5-tuple (X ,δ ,ε,µ,η) where

1. (X ,δ ,ε) is a cocommutative comonoid;
2. (X ,µ,η) is a commutative monoid; and,
3. δ and µ satisfy the following equations:

= =
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Finally, we can define:

Definition 8. A †-special Frobenius algebra (†-SCFA) is a commutative Frobenius
algebra

O = (µ : X⊗X → X , η : I→ X ,

δ : X → X⊗X , ε : X → I)

such that δ = (µ )†, ε = (η )† and = .

The preceding definitions may seem rather opaque, and not fully justified by the
intuition that a quantum observable is somehow encoded by the maps which copy
and delete its eigenstates. However complex it may appear (and we shall shortly
simplify it), the importance of Definition 8 rests on the fact [26] that in FHilb ev-
ery †-SCFA arises from a comonoid defined by copying an orthonormal basis as
described above. Since orthonormal bases define non-degenerate quantum observ-
ables, †-SCFAs are also called observable structures.

Concretely, given an orthonormal basis {|i〉}i then δ :: |i〉 7→ |ii〉 defines an ob-
servable, and all observables are of this form for some orthonormal basis. The re-
sulting intuition is that δ is an operation that ‘copies’ basis vectors, and that ε

‘erases’ them [22]. We will use the symbolic representation (µ ,η ,δ ,ε ) and the
pictorial one ( , , , ) interchangeably.

Example 17 (Sets and Relations). Perhaps surprisingly, FRel also has many distinct
observable structures, which have been classified by Pavlovic [27]. Even on the two
element set there are two, namely

δ : i 7→ {(i, i)}

δ :
{

0 7→ {(0,0),(1,1)}
1 7→ {(0,1),(1,0)}

In fact, this pair is strongly complementary in the sense to be explained in Section 3.

Manipulating observable structures in the graphical language is extremely con-
venient since they obey a remarkable normal form law. Let δn : X→ X⊗n be defined
by the recursion

δ0 := ε δn+1 := (δn⊗1A)◦δ

and define µm analogously. Now we have the following important theorem:

Theorem 3. Given an SCFA (X ,δ ,ε,µ,η) let f : X⊗m→ X⊗n be a map constructed
from δ ,ε ,µ and η whose graphical form is connected. Then f = δn ◦µm.

Proposition 1. Given an observable structure O on X , let ( )m
n denote the ‘(n,m)-

legged spider’:
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m

n

... ...

:=
... ...

;

then any morphism X⊗n → X⊗m built from µ ,η ,δ and ε via †-SMC struc-
ture which has a connected graph is equal to the ( )m

n . Hence, spiders compose as
follows: ... ...

...
... :=

...
... ...

(2)

Thanks to the spider rule (2), every observable structure on X makes X dual to
itself (in the sense of Definition 3), via the cup and cap:

= =

The upper-star with respect to this cup and cap corresponds in FHilb to transposition
in the given basis. For that reason, we call this the -transpose f T. The lower star
corresponds to complex conjugation in the basis of O , so we call it the -conjugate
f~ := ( f T)†.

Recall that a process k : I→ X is called a point of X . In FHilb the points of X are
simply vectors in the Hilbert space X . The abstract analogue of the eigenvectors of
an observable in FHilb are the classical points of an observable structure.

Definition 9. A classical point for an observable structure is a state that is copied
by the comultiplication and deleted by the counit:

= = 1I
i i ii

(3)

We will depict classical points as triangles of the same colour as their observable
structure.

Remark 9. Another way to say the same thing, is to define classical points as
comonoid homomorphisms from the trivial comonoid (I,1I ,1I) to (X ,δ ,ε).

In quantum computing, it is common to think of elements of a product basis as
strings of some kind. E.g. for qubits:

|010011〉 ↔ |0〉⊗ |1〉⊗ |0〉⊗ |0〉⊗ |1〉⊗ |1〉

Such product bases are precisely the classical points of products of observable struc-
tures. Given an observable structure O on X , and another O on Y , we form a new
observable structure on X⊗Y by taking their product:
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δ = ε =

Evidently any pair of classical points for the constituent observable structures will
be copied.

i j

=
ji ji

Generalising, the classical points of any n-ary product of observable structures are
nothing more than lists of classical points, one for each factor.

Working concretely in Hilbert space, one can use the linear structure to give
another set of equations for observable structures. Consider some basis vector |i〉,
then the map |ii〉〈i| has the diagrammatic form:

i i

i

But notice that the sum ∑i |ii〉〈i| is nothing more than the the map δ : |i〉 → |ii〉. A
similar statement can be made for the counit ε . Hence given the complete set of
classical points for an observable structure O we have the following equations:

=
i i

i i i
=

i

= ∑
i i = i∑

i

∑
i

∑
i

Indeed these can be generalised to arbitrary spiders:

= ∑
i

i

i i

...

...

i

...

...

Note that generalised compositional theories do not necessarily admit addition of di-
agrams: we introduce these equations as way of generalising from concepts defined
in Hilbert space to the abstract setting where there need not be any linear structure.

Linear maps have the property that if two maps are equal on every element of a
basis, the maps themselves are equal. In analogy to this we define the following:

Definition 10. Let O be an observable structure on X , with classical points {ki}i;
we say that O has enough classical points if, for every system Y , and every pair of
processes f ,g : X → Y , we have
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(∀i : f ◦ ki = g◦ ki)⇒ f = g .

This property does not necessarily hold in an arbitrary GCT (although obviously it
does in FHilb) however when it does hold certain statements can be made stronger.
For example, many implications described in the subsequent sections are equiva-
lences if the underlying object has enough classical points.

2.4 Phase Group for an Observable Structure

Let ψ and φ be two points of X . Given an observable structure O on X , applying
the multiplication µ to ψ and φ yields another point of X :

ψ + φ := µ (ψ⊗φ)

ψ + φ
ψ φ

:=

Since µ is commutative and associative, and it has a unit point (namely η ), the
operation + gives the points of X the structure of a commutative monoid.

If we restrict to those points ψ : I→ X which satisfy

ψ + ψ~ = η

ψ ψ~

=

we obtain an abelian group Φ , called the phase group of O [28, 29]. The elements
of this group are called phases. Note the phase group is non-empty, since the unit
η satisfies the required equation. We let −α := α~ for phases, and represent these
points as circles with one output, labelled by a phase.

α -α

Example 18. In FHilb, let O be defined by some orthonormal basis {|i〉}i. One can
verify by direct calculation that a vector |ψ〉 lies in the phase group Φ if and only if
we have |〈i|ψ〉|2 = 1/D, for all i, where D is the dimension of the underlying space.
Such vectors are called unbiased for the basis {|i〉}i. The multiplication is then the
convolution (pointwise) product.
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Concretely, for a qubit observable given by µ = |0〉〈00|+ |1〉〈11|, the phases
are the unbiased states, which are all of the form:

|α〉=
(

1
eiα

)
,

with the multiplication:

µ

((
1

eiα

)
⊗
(

1
eiβ

))
=

(
1

ei(α+β )

)
.

We therefore see that the phase group for a qubit observable is the circle group. It
is an easy exercise to check that for a D-dimensional Hilbert space the phase group
for any observable is isomorphic to the (D−1)-dimensional torus.

The name ‘phase group’ comes from fact that the elements of the Φ correspond
to unitary maps which preserve the basis defining O . We can map any point ψ : I→
X onto an operation on X via the left action, Λ (ψ) = µ ◦ (ψ⊗1X ), or in pictures:

Λ :

ψ

7→
ψ

Then we have the following facts:

Proposition 2. Let φ ,ψ ∈Φ ; then

1. Λ (φ) is unitary;
2. Λ (φ)◦Λ (ψ) = Λ (φ +ψ) = Λ (ψ)◦Λ (φ)
3. If k is a classical point for O then Λ (φ)◦ k = k⊗ s for some scalar s.

Proof. 1. We show that Λ (ψ)† ◦Λ (ψ) = 1:

=

ψ†

ψ ψ

ψ†

ψψ~

= = =

The first equation is the spider rule while the second is the definition of ψ~. The
case Λ (ψ)◦ (Λ (ψ))† = 1 is similar.

2. This follows immediately from the associativity and commutativity of µ :



30 Coecke, Duncan, Kissinger, and Wang

φψ

= =

ψ

φ ψ + φ

φ

ψ

ψ φ

= =

3. This follow from the definition of classical points.

ψ i

ψ

i

= =
iψ i

=
i

ψ

i

The image Λ (Φ ) is therefore an abelian subgroup of the unitaries on X , which
is isomorphic to Φ . We refer to these as phase maps. If we reinterpret the third part
of the preceding proposition in terms of linear algebra, we see that every classical
point of O is an eigenvector of every phase map in Λ (Φ ). This in turn “explains”
why they commute with each other.

Example 19. Let O be defined by µ = |0〉〈00|+ |1〉〈11| as above. Now for α ∈Φ

we have

Λ (α) =

(
1 0
0 eiα

)
Hence the phase group in Hilbert spaces is exactly the group of phase shifts relative
to the given basis.

Generalising from the preceding discussion, we can now introduce ‘spiders dec-
orated with phases’:

... ...

α :=
α... ...

(4)

which compose as follows:

... ... ...

α
... := α+β

β

... ... ...

(5)

In the following sections we will refer to this generalised composition rule for
phased spiders as the spider law.
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2.5 Two toy models

In this section we’ll introduce two “toy” models of quantum mechanics. The first is
the restriction of quantum mechanics to stabilizer states; this theory we call Stab.
The second is the toy model due to Spekkens [30], which we refer to as Spek.
While the first of these is indeed a true subtheory of quantum mechanics, Spek is a
local hidden variable model. By casting both of these in the language of generalised
compositional theories we can see that the difference between is in fact very slight.

Before discussing these concrete models, we’ll introduce a formal precursor the-
ory. Let Toy be the general compositional theory built from the formal generators:

• one basic system, which we denote T ;
• six points z0,z1,x0,x1,y0,y1 : I→ T and their corresponding copoints;
• 24 unitary maps T → T which form a group isomorphic to the symmetric group

S4;
• one observable structure O , whose classical points are z0 and z1, and whose

phase group comprises the remaining four points.

Note that Toy is not fully specified: to do so we ought to say which group the phase
group is, and how the corresponding unitaries embed into the endomorphisms of T .
Since Φ is a four-element group we have only two choices here: Z4, or Z2×Z2.
As we will see this choice will make the difference between stabilizer quantum
mechanics and the quantum-like local hidden variable theory.

Let Stab be the subtheory of FHilb generated by the following elements:

• One basic system C2, which we call Q.
• Six points I→ Q:

z0 = |0〉 x0 =
1√
2
(|0〉+ |1〉) y0 =

1√
2
(|0〉+ i |1〉)

z1 = |1〉 x1 =
1√
2
(|0〉− |1〉) y1 =

1√
2
(|0〉− i |1〉)

• The group of unitaries generated by the matrices:

Zπ/2 =

(
1 0
0 i

)
Xπ/2 =

1√
−2i

(
1 −i
−i 1

)
This group is known in the quantum computation literature as the Clifford group
for one qubit; it is isomorphic to S4. The other key property of this group is that
it acts as a permutation on the states defined above, so we cannot generate new
states via unitaries.

• An observable structure O defined by the basis |0〉 , |1〉.

Evidently the classical points of O are indeed z0 and z1 and the remaining points
are unbiased for this basis, hence part of Φ . One can check that

Λ (y0) = Zπ/2
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and which generates a four element cyclic subgroup, hence the phase group Φ is
Z4.

We now introduce Spekkens’ toy theory. The toy theory is a local hidden variable
theory, based on epistemic restrictions. There is a single basic system, the toy bit,
which can have one of four possible states. We formalise the state space simply as
a four-element set. However, we now impose the epistemic restriction that any state
preparation (and, dually, measurement) may only narrow down the state to two of
the possible four. Hence the “states” of the toy theory are two-element subsets. Al-
though Spekkens’ original presentation [30] was informal, the toy theory is ideally
studied as subtheory of FRel. Following [31], let Spek be the subtheory of FRel
generated by the following elements:

• One basic system, the four element set 4 = {0,1,2,3}.
• Six points:

z0 = {0,1} x0 = {0,2} y0 = {0,3}
z1 = {2,3} x1 = {1,3} y1 = {1,2}

• The full group of permutations on 4;
• An observable structure O defined by

µ :

{00,11} ∼ 0
{01,10} ∼ 1
{22,33} ∼ 2
{23,32} ∼ 3

η : ∗ ∼ {0,2}

where we write the tensor as juxtaposition, i.e. 00 = (0,0).

Once again we easily check that the classical points for O are z0 and z1, and the
other four form the phase group Φ . The phase group in this case is generated by
the transpositions (0 1) and (2 3); hence Φ ∼= Z2×Z2.

As should be evident by this point both Stab and Spek are realisations of the in-
complete theory Toy. The only notable difference between them is the group struc-
ture of Φ . This highlights the importance of the phase group for understanding
non-locality in generalised compositional theories.

Remark 10. In the description above the group of unitaries was given a priori. This
is not necessary. If we include a second observable structure O , corresponding to
the classical points x0 and x1, the the union of the two phase groups Φ and Φ

yields all unitaries described above. These two observables are complementary in
the sense described below. Hence these two theories are in a sense minimal.
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3 Complementarity and Strong Complementarity

In the Hilbert space presentation of quantum mechanics, two observables are com-
plementary if their bases of eigenstates are mutually unbiased. That is, for any i, j,
|〈vi|v′j〉|2 = 1/D. In the graphical notation:

i j
= 1

D

j i

A question posed by Coecke and Duncan [28, 29] was, “Can we represent com-
plementarity purely in terms of interacting observable structures?” It turns out that
complementarity is equivalent to a simple diagrammatic equation. First, we can
move 1/D in the above equation to the other side and express it as a circle, as
the trace of the identity always equals D. Then, replace 1 on the RHS with “deleted
points”.

i j i
=

j i j
(6)

As we saw in section 2.3, observable structures fix an isomorphism of a space with
its dual space, via the transpose. While it is not true in general that |ψ〉 T = 〈ψ|,
the transpose does take classical points for a particular observable structure to their
adjoints:

|vi〉 T = 〈vi| and
∣∣v′j〉 T

=
〈
v′j
∣∣ .

Graphically:

i j
= =i j

(7)

Exercise. Prove this.

We can rewrite the left hand side of equation (6) using this fact.

i i

i i
i j

= = =
j i

j j

jj

S (8)

The last equation follows by substituting the symbol S for its definition, viz:

S = (9)

Unifying Equations (6) and (8) we have:
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j

= S

i

i

j
(10)

Since this equation holds for all classical points i and j, if we now appeal to the
fact that FHilb has enough classical points (cf. Definition 10), we can conclude that
identity holds without points:

S = (11)

Remark 11. The above equation is (up to a scalar factor) one of the defining equa-
tions a Hopf algebra, in which case the map S is called the antipode. For that reason,
we refer to (11) as the Hopf law. As we will see in the next section, subject to some
additional assumptions, pairs of complementarity observables do indeed form Hopf
algebras with the antipode defined as in Equation (9).

Notice if we assume Equation (11) we can derive Equation (6) without any addi-
tional assumptions. In other words, if O and O satisfy the Hopf law their classical
points are mutually unbiased. Thus, we take the Hopf law to be the defining equation
for our abstract notion of complementarity.

Definition 11. A pair (O ,O ) of observables on the same object X is complemen-
tary iff:

S = where S = .

Since every observable in FHilb has enough classical points, Definition 11 is
equivalent8 to saying that observables are complementary if their eigenbases are
mutually unbiased with respect to the other. (See [28] for more details). Hence,
we reclaim the usual notion of quantum complementarity, and extend it to a more
general setting.

Definition 12. A pair (O ,O ) of observables on the same object X is coherent iff:

= = = .

8 Indeed Equations (6) and (11) are equivalent in any theory wherever at least one of the observable
structures has enough classical points.
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In other words, the unit point η ( ) is, modulo a scalar factor, a classical point for
O , and vice versa.

∃i, j : = =
i j

We will assume that the scalar is always cancellable.

Example 20. Consider the two observables on the Hilbert space C2 corresponding
to the Z and X spins:

δ :
|0〉 7→ |00〉
|1〉 7→ |11〉 δ :

|+〉 7→ |++〉
|−〉 7→ |−−〉

η :
|0〉 7→ 1
|1〉 7→ 1 η :

|+〉 7→ 1
|−〉 7→ 1

Computing η we obtain:

η = (ε )† =
[
1 7→ (|0〉+ |1〉)

]
=
√

2 |+〉

which is indeed proportional to a classical point for δ . By a similar computation
we obtain η =

√
2 |0〉, from which the value of their inner product =

√
2 follows.

The equations of definition 12 can easily be verified from here, demonstrating that
O and O are coherent.

Proposition 3. In FHilb if O and O are self-adjoint operators corresponding to
complementary observables, one can always choose a pair of coherent observable
structures (O ,O ) whose classical points correspond to the eigenbases of O and
O .

Proof. Let {|ai〉}n
i=1 and {

∣∣b j
〉
}n

j=1 be orthonormal eigenbases for O and O re-
spectively. Since the bases are mutually unbiased we have∣∣b j

〉
=

1√
n

[
α1 j |a1〉+ · · ·αn j |an〉

]
where the αi j are scalars satisfying

∣∣αi j
∣∣ = 1. Setting |a′i〉 = αi1 |ai〉, we see that

{|a′i〉}i is also an orthonormal eigenbasis for O , which is still mutually unbiased
with respect to {

∣∣b j
〉
} j. Now define:

δ :
∣∣a′i〉 7→ ∣∣a′i〉⊗ ∣∣a′i〉

ε :
∣∣a′i〉 7→ 1

This choice yields η = (ε )† = ∑i |a′i〉=
√

n |b1〉.
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In a similar fashion we can choose an eigenbasis |b′1〉 , . . . , |b′n〉 for O such that
the resulting δ and ε satisfy (ε )† =

√
n |a′1〉. It is straightforward to verify that

this can be done such that |b′1〉= |b1〉, ensuring the coherence of O and O .

For this reason we will from now on assume that pairs of complementary observ-
ables are always coherent.

3.1 Strongly complementary observables

Many familiar observables, when expressed in terms of algebras, turn out to have
useful additional properties. These are called strongly complementary; before de-
scribing them we will require some preliminary definitions.

Definition 13. A (commutative) bialgebra on X is a 4-tuple (µ,η ,δ ,ε) of maps,

µ : X⊗X → X δ : X → X⊗X

η : I→ X ε : X → I ,

which we write graphically as ( , , , ), such that:

• (X ,µ,η) is a (commutative) monoid;
• (X ,δ ,ε) is (cocommutative) comonoid; and,
• the following additional equations are satisfied:

= (12)

= = (13)

= (14)

Remark 12. Note that equations (13) and (14) are very similar to the equations re-
quired for the coherence of two observables, per Definition 12. The only difference
there is that the scalar is not assumed to be trivial.

Definition 14. A (commutative) Hopf algebra on X is a (commutative) bialgebra on
X , augmented with a map s : X → X , called the antipode, which satisfies:

s = = s . (15)
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Again, note the similarity to Equation (11): the difference is only by a scalar factor.

Definition 15. A pair (O ,O ) of observables on the same object X is strongly com-
plementary iff they are coherent and:

= (16)

To expand on this definition slightly, given a pair of strongly complementary
observables, if we consider just the monoid part of one and the comonoid part of
the other then the resulting structure is, up to a scalar factor, a bialgebra. Note
that thanks to the up-down symmetry induced by the † it doesn’t matter which is
the monoid and which the comonoid. For obvious reasons, the we say that a pair
of strongly complementary observables forms a scaled bialgebra, and we refer to
Equation (16) as the bialgebra law. Notice that we have not, as yet, established any
connection between complementarity (Definition 11) and strong complementarity.
The following theorem links the two definitions.

Theorem 4. Let O and O be strongly complementarity observables; then they are
complementary.

Proof. Let s be defined by

S =

as per Equation (9). Using the bialgebra law we reason:

S = = = =

The last equation relies on the fact that η is classical for O (and η for O ), and
(7).

As a consequence, strongly complementary observables always form a scaled Hopf
algebra. Note that Theorem 4 relies on the fact that O and O are Frobenius alge-
bras; it is certainly not the case that every bialgebra is a Hopf algebra.

The converse to Theorem 4 does not hold: it is possible to find coherent comple-
mentary observables in FHilb which are not strongly complementary. See [29] for
a counterexample.

The following lemma about the antipode for a strongly complementary pair was
shown in [32].

Lemma 1. If (O ,O ) are strongly complementary, and have enough classical
points then the antipode s is:

• self-adjoint;
• a monoid homomorphism from O to itself, and similarly for O ; and
• a comonoid homomorphism from O to itself, and similarly for O .
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3.2 Strong Complementarity and Phase Groups

For complementary observables, classical points of one observable are always in-
cluded in the phase group of the other observable, up to a normalizing scalar. Strong
complementarity strengthens this property to inclusion as a subgroup. Let K be
the set of classical points of O multiplied by the scalar factor .

Theorem 5. Let (O ,O ) be strongly complementary observables and let O have
finitely many classical points. Then K forms a subgroup of the phase group Φ of
O . The converse also holds when O has ‘enough classical points’.

Proof. By strong complementarity it straightforwardly follows that, up to a scalar,
µ applied to two classical points of O yields again a classical point of O :

(16)
=

i ji j

i j
(3)
= i j

The unit of Φ is, up to a scalar, also a classical point of O by coherence. Hence,
K is a submonoid of Φ and any finite submonoid is a subgroup. The converse
follows from:

(3)
=

j jii

ji
(3)
= ji

together with the ‘enough classical points’ assumption.

Recall that the exponent of a group G is the maximum order of any element of
that group: exp(G) = max{|g| : g ∈ G}.

Corollary 1. For any pair of strongly complementary observables, let k = exp(K ).
Then, assuming O has ‘enough classical points’:

k

. . .
= (17)

Proof. In a finite abelian group, the order of any element divides exp(K ). The
result then follows by:

k

k

. . .
(3)
= =i i . . . i

i

(3)
=

i

together with the ‘enough classical points’ assumption.
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Proposition 4. For a pair of strongly complementary observables i is a O -

homomorphism for all i ∈K . Conversely, this property defines strong comple-
mentarity provided δ has ‘enough classical points’.

Proof. Similar to the proof of Thm. 5.

3.3 Classification of Strong Complementarity in FHilb

Corollary 2. Every pair of strongly complementary observables in FHilb is of the
following form:{

δ :: |g〉 7→ |g〉⊗ |g〉
ε :: |g〉 7→ 1

{
δ

† :: |g〉⊗ |h〉 7→ 1√
D
|g+h〉

ε
† :: 1 7→

√
D |0〉

where (G = {g,h, . . .},+,0) is a finite Abelian group. Conversely, each such pair is
always strongly complementary.

Proof. By Theorem 5 it follows that the classical points of one observable (here O )
form a group for the multiplication of the other observable (here δ

†), and in FHilb
this characterises strong complementarity.

One of the longest-standing open problems in quantum information is the charac-
terisation of the number of pairwise complementary observables in a Hilbert space
of dimension D. In all known cases this is D+ 1, and the smallest unknown case
is D = 6. We now show that in the case of strong complementarity this number is
always 2 for D≥ 2.

Theorem 6. In a Hilbert space with D≥ 2 the largest set of pairwise strongly com-
plementary observables has size at most 2.

Proof. Assume that both (O ,O ) and (O ,O ) are strongly complementary pairs.
By coherence and must be proportional to classical points of O . If (O ,O )
were to be strongly complementary observables, it is easily shown that 6= 0 so
and are proportional to the same classical point. Hence, up to a non-zero scalar:

= = =

i.e. the identity has rank 1, which fails for D≥ 2. By Corollary 2 a strongly comple-
mentary pair exists for any D≥ 2.
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4 Mixed states, measurements, and “abstract probabilities”

For some ket |ψ〉 in a Hilbert space, there are (at least) four distinct ways to represent
|ψ〉 as a linear map.

It is possible to represent a ket |ψ〉 ∈ H as a map |ψ〉 : C→ H, sending 1 ∈ C to
|ψ〉. We call such a map a “point” of H, because it does nothing more than picking
out a specific element. The second map is the associated bra 〈ψ| : H→C. This kind
of map is called a “co-point”. We can also regard such a map as an element of the
dual space H∗. But then, H∗ is just another Hilbert space, so we could just as well
represent 〈ψ| as a point of H∗. That is, a linear map 〈ψ|∗ : C→ H∗. There is yet a
fourth way to represent |ψ〉, namely as a linear map |ψ〉∗ : H∗→ C, sending a bra
〈φ | ∈ H∗ to the inner product 〈φ |ψ〉 ∈ C.

So, for a given ket |ψ〉, there are four ways to write it as points or copoints.

ψ ψ

ψ ψ

:=

:=
ψ

ψ

|ψ〉 ⇒

〈ψ| ⇒

|ψ〉∗⇒

〈ψ|∗⇒

The difference in these four pictures is largely notational: the data they represent
is the same. However, its a very useful piece of notation, especially when represent-
ing functionals between spaces of maps. Firstly, we note that we can represent a
map M : A→ B as a special kind of point, |ΨM〉 ∈ A∗⊗B.

M = ∑a j
i | j〉〈i| 7→ |ΦM〉= ∑a j

i 〈i|⊗ | j〉

These two objects clearly represent the same data. In fact, this mapping is essen-
tially the Choi-Jamiołkowski isomorphism. However instead of fixing a basis, we
rely on the dual space A∗. Thus the value on the right does not depend on a choice
of orthonormal basis. By fixing a basis B = {|i〉}, we can define a transposition
map TB(|i〉) = 〈i|. Then the usual C-J isomorphism is recovered as (TB⊗1) |ΦM〉.
However, this does depend on a choice of basis, since TB does.

In [8], the authors refer to |ΨM〉 as the “name” of a map. We shall often find this
representation more useful than the usual C-J representation, especially in instances
involving several distinct orthonormal bases. Using the caps and cups from before,
we can isomorphically relate maps and their associated names.

ρ:=
ρ

ρ ↔

The benefit of working with names of maps, as opposed to the maps themselves
becomes clear when we start considering higher-order functionals. For a finite-
dimensional Hilbert space H, let L(H) be the space of linear maps from H to itself.
When operating on density matrices, we often want to consider maps of the form
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Φ : L(H)→ L(K). We can either treat this as a genuine, higher-order map, or we
can treat it as a first-order map from names to names.

(
ρ

)
⇒

ρ

Φ

Since, in finite dimensions, we have an isomorphism L(H) ∼= H∗⊗H, we know
that all maps Φ : L(H)→ L(K) can be represented this way.

In ordinary quantum theory, mixed quantum states are represented as positive
operators and operations as completely positive maps, or CPMs. These are maps
that take positive operators to positive operators. A general CPM can be written in
terms of a set of linear maps {Bi : H→ K} called its Kraus maps.

Θ(ρ) = ∑
i

BiρB†
i

As before, we can collapse the higher-order map Θ to a first- order map by trans-
lating the positive operator ρ to its associated name.

:= ρ
ρ

Then, we can encode the Kraus vectors of Θ in a map B′=∑ |i〉⊗Bi and represent
Θ as:

B′∗ B′ (18)

When we take the elements in Eq. (19) to be morphisms in an arbitrary †-compact
category, this gives us an abstract definition of a completely positive map. This is
Selinger’s representation of CPMs [33].

B C B

f∗ f

A A

(19)

Important special cases are states where A ∼= I, effects where B ∼= I, and ‘pure’
maps, where C ∼= I.
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4.1 Measurements and Born vectors

Returning to quantum mechanics, we can see how a quantum measurement would
look in this language. A (projective) quantum measurement M is a CPM that sends
trace 1 positive operators (in this case quantum states) to trace 1 positive operators
that are diagonal in some ONB (encoding a probability distribution of outcomes).
Suppose we wish to measure with respect to an observable O , whose classical
points form an ONB {|xi〉}. The probability of getting the i-th measurement outcome
is computed using the Born rule.

Prob(i,ρ) = Tr(|xi〉〈xi|ρ)

We can write this probability distribution as a vector in the basis {|xi〉}. That is,
a vector whose i-th entry is the probability of the i-th outcome:

M (ρ) = ∑Tr(|xi〉〈xi|ρ) |xi〉

So, M defines a linear map from density matrices to probability distributions.
Expanding this graphically, we have:

∑
i

Tr

 i

i

ρ

 i
=

i

ρ = =∑
i

∑
ii ρ

i

i

i

ρ=

i

ρ

We are now ready to make definitions for abstract measurements and abstract
probability distributions, which we shall call Born vector.

Definition 16. For an observable structure O , a measurement is defined as the fol-
lowing map:

m :=

Any point |Λ) : I→ X of the following form is called a Born vector, with respect
to O :

= where = 1I
Λ Λ

ψ∗ ψ

Theorem 7. In FHilb, Born vectors for an observable O are precisely those vec-
tors whose entries are positive and sum to 1, when written in the basis of O .

Proof. Let |Λ) be a Born vector. Its i-th coefficient in the O -basis is given by:
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i

=

ψ∗ ψ

i

ψψ∗

i

We can see that these coefficients sum to 1 by using the definition of the deleting
point:

= 1C=

i

Λ

∑
i

Λ

This is a completely positive map from C to C. In other words, it is a positive scalar.
For the converse, assume |Λ) is a probability distribution whose i-th coefficient in

the O -basis is pi ∈ R+. Then, letting ψ = ∑
√

pi
i

:

=
Λ ψ∗ ψ

Post-composing with the deleting point yields ∑(
√

pi)
2 = ∑ pi = 1.

Thus Born vectors in FHilb correspond precisely to probability distributions over
classical points.

We can naturally extend the definition above to points of the form |Λ) : I→ X⊗
. . .⊗X by requiring that they be Born vectors with respect to the product Frobenius
algebra O ⊗ . . .⊗O .

The adjoint of the measurement map m† is a preparation operation. In FHilb, it
takes a Born vector |Λ) with respect to O and produces a probabilistic mixture of
the (pure) outcome states of O with probabilities given by |Λ) .

This leads to a simple classical vs. quantum diagrammatic paradigm that applies
in all of the models we consider [22]: classical systems are encoded as a single wire
and quantum systems as a double wire. The same applies to operations, and m and
m† allow passage between these types.

Note that the classical data will ‘remember’ to which observable it relates, cf. the
encoding ∑i pi |xi〉. This is physically meaningful since, for example, when one mea-
sures position the resulting value will carry specification of the length unit in which
it is expressed. If one wishes to avoid interconversion of this ‘classical data with
memory’, one could fix one observable, and unitarily transform the quantum data
before measuring. Indeed, if
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U

=

U∗ U

then U∗ U

measures the O -observable but produces O -data. In FHilb, all observable struc-
tures are unitarily isomorphic, so any projective measurement can be obtained in
this way. A particularly relevant example is when these unitaries are phases with
respect the another observable structure O .

mα := -α α (20)

When O is induced by the Pauli spin-Z observable and O by the Pauli spin-X
observable, then m = m0 is an X measurement and mπ/2 is a Y measurement. Note
however, that both produce Born vectors of outcome probabilities with respect to
the O basis. This will be useful in the next section.

5 Example: non-locality of QM

In 1989 Greenburger, Horne, and Zeilinger provided an analysis [34] of quantum
theory which improves on Bell’s theorem in one crucial way. Whereas Bell demon-
strated a probabilistic argument that quantum theory is incompatible with the as-
sumption of local realism (i.e. quantum theory generates correlations that are too
high for a classical local hidden variable model), the GHZ/Mermin theorem illus-
trates a situation that rules out a locally realistic model possibilistically. That is,
they described a series of experiments for which quantum theory predicts a single,
definite outcome that is impossible under the assumption of locality.

Here, we reproduce Mermin’s version of this argument [35] using diagrammatic
techniques. There are two key ingredients for this translation. The first is a graphical
notion of locality. For our purposes, it will suffice to treat locality as the fact that
global probability can be traced down to hidden states that determine all measure-
ment outcomes, since we shall show that no hidden state can ever be compatible
with the predictions of quantum theory. Hence, there is no point in even considering
crafting a local hidden variable representation.

The second key ingredient is parity. The GHZ/Mermin trick for producing def-
inite outcomes is to look not at individual measurement outcomes, but the overall
parity of those outcomes, i.e. “Did the experiment produce and even or an odd num-
ber of clicks?”. Considering a single outcome (click or no-click) as an element of
the abelian group Z2, the parity of a set of outcomes is given by their sum in the
group. We already saw in section 3.3 that strongly complementary observables are
classified by abelian groups. In two dimensions, there is only one such strongly
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complementary pair, namely the one corresponding to Z2. When we prepare a GHZ
state with respect to a certain observable (e.g. spin-Z) and conduct measurements
using a strongly complementary observable (e.g. spin-X), we will see this Z2 struc-
ture arise.

By combining these two elements (the topological picture of locality and the
encoding of abelian groups as strongly complementary observables) we will derive
a contradiction. Furthermore in section 5.4, we shall see how strong complementary
was embedded in the pre-conditions of a GHZ/Mermin-style argument in the first
place.

5.1 A local hidden variable model

For a particular n-party state |Ψ〉 in some theory, a local hidden variable (LHV)
model for that state consists of:

• a family of hidden states |λ 〉, each of which assigns to any measurement on each
subsystem a definite outcome; and,

• a probability distribution on these hidden states,

which simulates the probabilities of that theory. We say that a theory is local if each
state admits a LHV model.

Consider three systems and four possible (compound) measurement settings,
XXX , XYY , Y XY , and YY X . A hidden state of an underlying LHV model stores
one measurement outcome for each setting on each system:

∣∣λ ′〉= | X︷︸︸︷
+

Y︷︸︸︷
−︸ ︷︷ ︸

system 1

X︷︸︸︷
−

Y︷︸︸︷
+︸ ︷︷ ︸

system 2

X︷︸︸︷
−

Y︷︸︸︷
+︸ ︷︷ ︸

system 3

〉

We can represent this diagrammatically as follows:

X1 Y1 X2 Y2 X3 Y3

XXX X X XY Y Y Y Y Y

that is, we simply copy those values to each of the four measurement settings.
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5.2 Encoding the GHZ state and computing correlations,
diagrammatically

To present Mermin/GHZ style argument graphically, we first show how to compute
measurement outcomes for an n-party GHZ state graphically. This computation re-
lies on a standard theorem about bialgebras, which relates a graph-theoretic property
of diagrams to equality of bialgebra expressions.

Definition 17. Let ( , , , ) be a commutative, cocommutative bialgebra,

and let D be a diagram consisting only of , , , , identity maps, and swaps.
Then, the characteristic matrix χ of D is a matrix of natural numbers where the
(i, j)-th entry represents the number of forward-directed paths connecting the i-th
input to the j-th output.

Example 21. The following terms have characteristic matrix

(
0 1
0 0

)
:

The following terms have characteristic matrix1 1
1 1
1 1

 :

Theorem 8. If two diagrams generated by the same bialgebra have the same char-
acteristic matrix, they are equal as maps.

Proof. (sketch) It is possible to show by case analysis that the three bialgebra equa-
tions can be used to move all of the gray dots to the top all the white dots to the
bottom.

⇒ ⇒ ⇒

We can furthermore show that all three of these transformations preserve the char-
acteristic matrix of D . Once this is done, we obtain a diagram in normal form:

↔


1 0 0
0 0 0
1 2 0
0 0 1
0 0 3
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Then, it is possible to show there is exactly one such normal form for each char-
acteristic matrix. In fact, it is straightforward to read off the matrix by counting
edges in the normal form. Since every diagram can be put into normal form using
equations that preserve the characteristic matrix, and normal forms are in 1-to-1
correspondence with characteristic matrices, this completes the proof.9

We can now apply the theorem to prove the following corollary.

Corollary 3. The following equation holds for any connected bipartite graph with
directions as shown.

n n
. . .. . .

= (21)

Proof. For the theorem on bialgebras to apply, all of the edges need to be directed
upward. For a strongly complementary observable, the edge direction between two
different colours can be reversed by applying the antipode S. Then, we use the fact
that S is a Frobenius algebra endomorphism to move it down.

. . . . . .
. . .

= = = (∗)S S . . .
S S

We apply Theorem 8 and the spider theorem to complete the proof.

. . . . . . . . .

(∗) = = =

We compute the classical probability distributions (= O -data) for n measure-
ments against arbitrary phases αi ∈ Φ on n systems of any type in a generalised
GHZn-state:

mα1 ⊗ . . .⊗mαn

-α1 α1 -α2 α2 . . . -αn αn

GHZn := ( )n
0

(5)
=

. . .

-∑αi ∑αi

= (∗)

9 For a formal statement and proof of this theorem, in terms of factorisation systems see [36].
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Applying Corollary 3, we note that this is a probability distribution followed by
a -copy.

(∗) =

. . .

-∑αi ∑αi

=:

. . .

∑αi

(22)

The following is an immediate consequence.

Theorem 9. When measuring each system of a GHZn
A-state against an arbitrary an-

gle then the resulting classical probability distribution over outcomes is symmetric.

Theorem 10. The classical probability distributions for mα1⊗. . .⊗mαn -measurements
on a GHZn

A-state is:

• uncorrelated if |∑αi) is a classical point for O and,
• parity-correlated if |∑αi) is a classical point i for O (i.e. contains precisely

those outcomes i1⊗ . . .⊗ in such that the sum of group elements ∑ ik is equal to
i).

Example 22. We can compute the outcome distributions for XXX , XYY , Y XY , and
YY X measurements on three qubits in a GHZ-state using the technique described
above. First, outcome distribution |A) for XXX :

0 0 0 0 0 0
= = = =:

0 A

0 0 0 0

Next, we compute outcome distribution |B1) for XYY :

0 0 - π

2
π

2 - π

2
π

2 = = = =:
1

-π π 1 1

B1

Computing correlations as in Figure (22) is symmetric in the choice of measure-
ment angle for each of the systems. Thus, for the other two cases (Y XY and YY X),
we get the same result: |B1) = |B2) = |B3) .

5.3 Deriving the contradiction

Consider the function:
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(23)

We have already seen that strongly complementary observables correspond to group
algebras. That is, defines a group algebra over the classical points of O . For
qubits there is only one choice: Z2. Thus, this function computes the parity (i.e. the
Z2-sum) of all outcomes.

Measuring the parity for any local hidden state we obtain:

Y3X2Y1X1 X3Y2

that is, by (17):

Y3X2Y1X1 X3Y2

and hence:

and measuring the parity in quantum theory we obtain:

A B1 B3B2

that is, by the previous section:
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πππ

and hence:
π

which yields a contradiction.

5.4 GHZ/Mermin assumptions and the necessity of strong
complementarity

We shall examine two assumptions that play a key role in a GHZ/Mermin style
non-locality argument, and show that the presence of a strongly complementary
observable arises as a consequence.

The original argument due to Greenburger, Horne, and Zeilinger [34] and later
simplifications [37, 35] focus on a state defined in terms of correlated (or anti-
correlated) Z-spins and local spin measurements in the XY-plane. We generalise
this assumption as follows.

Assumption 1 (Coherence). We will use a GHZ state defined with respect to
some observable structure O . Measurements are all conducted within a O -
phase of some coherent observable O .

In FHilb, all observables containing at least one unbiased classical point, w.r.t.
O , are within a O -phase of a coherent observable, so we could weaken this as-
sumption further. That is, if O contains an unbiased classical point, we might as
well assume it is coherent, since Assumption 1 allows us to freely choose phases.

By Assumption 1, the correlations associated with each experiment are com-
puted from this diagram:

-α1 α1 -α2 α2 -α3 α3
=

∑αi-∑αi

The second assumption is what [34] refers to as “super-classicality”. We shall
refer to it as sharpness.
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Assumption 2 (Sharpness). After all subsystems except one are measured, the
final measurement outcome is fixed.

The map is called the decoherence map for O . It projects from the space of
all quantum mixed states to the the space of classical mixtures of eigenstates of O .
To assert sharpness, we require that, once two of the three systems are measured,
the third is invariant under this map:

=

-∑αi ∑αi -∑αi ∑αi

(24)

Plugging the unit of O in the 2nd system both for LHS and RHS, and using coher-
ence we obtain:

=

-∑αi ∑αi -∑αi ∑αi

(25)

and by exploiting symmetry we have:

=

-∑αi ∑αi -∑αi ∑αi

(26)

Hence we obtain:
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(2)
=

(24)
=

-∑αi ∑αi -∑αi ∑αi -∑αi ∑αi

(26,2)
=

-∑αi ∑αi

Since δ
† ◦ (1X ⊗∑i αi) is unitary it cancels. Thus our assumptions lead us to con-

clude the following equation for the observable structures (O ,O ):

= (27)

Proposition 5. A pair (O ,O ) of coherent observables satisfying Equation (27) are
strongly complementary.

Proof. First, we show that equation (27) implies the following, for any pair of co-
herent observables:

= (28)

The proof goes as follows:

= = = =

...which implies:

== ====
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Equation (28) is very nearly the required equation for strong complementarity,
but the directions are wrong. However, we can correct this by first showing the
following equations, using coherence and (28):

= ===

== ==

Then, we complete the proof by using the equations above to change the direc-
tions of the arrows on the inside:

= = = = ==

= ===

Thus any coherent pair of observable structures satisfying Equation (27) is a strongly
complementary pair.

6 Summary and Further Reading

In this chapter, we developed the notion of a generalised compositional theory, a
new approach to studying quantum mechanics and constructing foil theories with
quantum-like properties. The main building blocks for a GCT are:

• a collection of systems A,B,C, . . .,
• a collection of primitive processes, and
• a notion of horizontal composition ⊗ and vertical composition ◦.

From this sparse setting, we began to add extra pieces of structure.

• symmetry maps⇒ “permutibility of systems”
• dagger⇒ “time-reversed processes”
• duals⇒ “map/state duality”

This structure and its diagrammatic presentation give a rich language for talk-
ing about composed processes. We then went on to define various concepts in this
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framework, often by analogy to their Hilbert space counterparts: pure states, re-
versible dynamics, quantum observables, complementarity, mixed states, and mea-
surements. Using these ingredients, we worked through a complete example, fol-
lowing Mermin’s illustration of a possibilistic locality violation, as predicted by
quantum mechanics.

The interested reader can find many papers related to, or extending the formal-
ism introduced in this chapter. One example is the ZX-calculus, which is a graph-
ical calculus for the interaction of the Pauli-Z and Pauli-X observable structures.
In addition to the usual rules (complementarity, strong complementarity), several
other rules are added, which turn out to be complete for stabiliser quantum mechan-
ics [38]. This calculus has been applied to the study of measurement-based quantum
computing [15], topological MBQC [16], and quantum protocols [39].

The ideas developed in section 4 originated in [22]. In [40], a simplified formal-
ism for interacting classical and quantum data was developed, and can be viewed as
an abstraction of the C*-algebraic approach to the study of quantum information.

References

1. J. Barrett, Physical Review A 75(032304) (2007)
2. M. Pawlowski, T. Paterek, D. Kazlikowski, V. Scarani, A. Winter, M. Zukowski, Nature

461(1101) (2009). arXiv:0905.2292
3. H. Barnum, J. Barrett, L.O. Clark, M. Leifer, R.W. Spekkens, N. Stepanik, A. Wilce, R. Wilke,

New Journal of Physics 12(033024) (2009). arXiv:0909.5075
4. E. Schrödinger, in Proceedings of the Cambridge Philosophical Society, vol. 31 (Academic

Press, 1935), pp. 555–563
5. R. Penrose, in Combinatorial Mathematics and its Applications (Academic Press, 1971), pp.

221–244
6. G.M. Kelly, M.L. Laplaza, Journal of Pure and Applied Algebra 19, 193 (1980)
7. A. Joyal, R. Street, Advances in Mathematics 102, 20 (1993)
8. S. Abramsky, B. Coecke, in Proceedings of 19th IEEE conference on Logic in computer sci-

ence (IEEE Press, 2004), LiCS’04, pp. 415–425
9. B. Coecke, in Quantum Theory: Reconsiderations of the Foundations III (AIP Press, 2005),

pp. 81–98
10. G.M. D’Ariano, G. Chiribella, P. Perinotti, Physical Review A 84(012311) (2010).

arXiv:1011.6451
11. L. Hardy, in Deep Beauty: Understanding the Quantum World through Mathematical Innova-

tion (Cambridge University Press, 2011), pp. 409–442. arXiv:0912.4740
12. B. Coecke, B. Edwards, R.W. Spekkens, Electronic Notes in Theoretical Computer Science

270(2), 15 (2011)
13. B. Edwards, Phase groups and local hidden variables. Tech. Rep. RR-10-15, Dept. of computer

science, University of Oxford (2010)
14. B. Coecke, A. Kissinger, in Lecture Notes in computer science, vol. 6199 (Springer, 2010),

pp. 297–308
15. R. Duncan, S. Perdrix, in Proceedings of the 37th international colloquium conference on

Automata, languages and programming: Part II (Springer-Verlag, Berlin, Heidelberg, 2010),
ICALP’10, pp. 285–296. URL http://dl.acm.org/citation.cfm?id=1880999.1881030

16. C. Horsman, New Journal of Physics 13(095011) (2011). arXiv:1101.4722
17. S. Mac Lane, Categories for the Working Mathematician (2nd Ed.) (Springer-Verlag, 1997)



GCTs and Diagrammatic Reasoning 55

18. B. Coecke, E.O. Paquette, in New Structures for Physics, Springer Lecture Notes in Physics,
vol. 813 (2011), pp. 173–286

19. P. Selinger, in New Structures for Physics, Springer Lecture Notes in Physics, vol. 813 (2011),
pp. 289–355

20. Y. Lafont, Journal of Pure and Applied Algebra 184(2-3), 257 (2003)
21. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A.

Smolin, H. Weinfurter, Phys. Rev. A 52, 3457 (1995). DOI 10.1103/PhysRevA.52.3457
22. B. Coecke, E.O. Paquette, D. Pavlovic, in Semantic Techniques for Quantum Computation

(Cambridge University Press, 2009), pp. 29–69
23. D.G.B.J. Dieks, Physics Letters A 92, 271 (1982)
24. W.K. Wootters, W. Zurek, Nature 299, 802 (1982)
25. A.K. Pati, S.L. Braunstein, Nature 404, 164 (2000). arXiv:quant-ph/9911090
26. B. Coecke, D. Pavlovic, J. Vicary, Mathematical Structures in Computer Science 23, 555

(2013)
27. D. Pavlovic, in Lecture Notes in computer science, vol. 5494 (Springer, 2009), pp. 143–157.

arXiv:0812.2266
28. B. Coecke, R. Duncan, in Lecture Notes in computer science, vol. 5126 (Springer, 2008), pp.

298–310
29. B. Coecke, R. Duncan, New Journal of Physics 13(043016) (2011). arXiv:0906.4725
30. R.W. Spekkens, Physical Review A 75(032110) (2007). arXiv:quant-ph/0401052
31. B. Coecke, B. Edwards. Spekkens’s toy theory as a category of processes. arXiv:1108.1978v1

[quant-ph] (2011)
32. A. Kissinger, Pictures of processes: Automated graph rewriting for monoidal categories and

applications to quantum computing. Ph.D. thesis, University of Oxford (2012)
33. P. Selinger, Electronic Notes in Theoretical Computer Science 170, 139 (2007)
34. D.M. Greenberger, M.A. Horne, A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Con-

ceptions of the Universe, ed. by M. Kafatos (Springer, 1989), pp. 69–72
35. N.D. Mermin, American Journal of Physics 58, 731 (1990)
36. S. Lack, Theory and Applications of Categories 13(9), 147 (2004)
37. M.A. Horne, A. Shimony, D M Greenberger, A. Zeilinger, American Journal of Physics 58,

1131 (1990)
38. M. Backens, in Proceedings of Quantum Physics and Logic (2012), pp. 15–27
39. A. Hillebrand, Quantum protocols involving multiparticle entanglement and their representa-

tions in the zx-calculus. Master’s thesis, University of Oxford (2011)
40. B. Coecke, C. Heunen, A. Kissinger, in Proceedings of Quantum Physics and Logic (2012),

pp. 87–100


