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Abstract. We address the problem of how to “obfuscate” texts by
removing stylistic clues which can identify authorship, whilst preserving
(as much as possible) the content of the text. In this paper we combine
ideas from “generalised differential privacy” and machine learning tech-
niques for text processing to model privacy for text documents. We define
a privacy mechanism that operates at the level of text documents repre-
sented as “bags-of-words”—these representations are typical in machine
learning and contain sufficient information to carry out many kinds of
classification tasks including topic identification and authorship attribu-
tion (of the original documents). We show that our mechanism satisfies
privacy with respect to a metric for semantic similarity, thereby provid-
ing a balance between utility, defined by the semantic content of texts,
with the obfuscation of stylistic clues. We demonstrate our implemen-
tation on a “fan fiction” dataset, confirming that it is indeed possible
to disguise writing style effectively whilst preserving enough informa-
tion and variation for accurate content classification tasks. We refer the
reader to our complete paper [15] which contains full proofs and further
experimentation details.

Keywords: Generalised differential privacy · Earth Mover’s metric ·
Natural language processing · Author obfuscation

1 Introduction

Partial public release of formerly classified data incurs the risk that more infor-
mation is disclosed than intended. This is particularly true of data in the form
of text such as government documents or patient health records. Nevertheless
there are sometimes compelling reasons for declassifying data in some kind of
“sanitised” form—for example government documents are frequently released as
redacted reports when the law demands it, and health records are often shared
to facilitate medical research. Sanitisation is most commonly carried out by hand
but, aside from the cost incurred in time and money, this approach provides no
guarantee that the original privacy or security concerns are met.
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To encourage researchers to focus on privacy issues related to text documents
the digital forensics community PAN@Clef ([41], for example) proposed a number
of challenges that are typically tackled using machine learning. In this paper our
aim is to demonstrate how to use ideas from differential privacy to address some
aspects of the PAN@Clef challenges by showing how to provide strong a priori
privacy guarantees in document disclosures.

We focus on the problem of author obfuscation, namely to automate the pro-
cess of changing a given document so that as much as possible of its original
substance remains, but that the author of the document can no longer be identi-
fied. Author obfuscation is very difficult to achieve because it is not clear exactly
what to change that would sufficiently mask the author’s identity. In fact author
properties can be determined by “writing style” with a high degree of accuracy:
this can include author identity [28] or other undisclosed personal attributes such
as native language [33,51], gender or age [16,27]. These techniques have been
deployed in real world scenarios: native language identification was used as part
of the effort to identify the anonymous perpetrators of the 2014 Sony hack [17],
and it is believed that the US NSA used author attribution techniques to uncover
the identity of the real humans behind the fictitious persona of Bitcoin “creator”
Satoshi Nakamoto.1

Our contribution concentrates on the perspective of the “machine learner”
as an adversary that works with the standard “bag-of-words” representation of
documents often used in text processing tasks. A bag-of-words representation
retains only the original document’s words and their frequency (thus forgetting
the order in which the words occur). Remarkably this representation still con-
tains sufficient information to enable the original authors to be identified (by a
stylistic analysis) as well as the document’s topic to be classified, both with a
significant degree of accuracy.2 Within this context we reframe the PAN@Clef
author obfuscation challenge as follows:

Given an input bag-of-words representation of a text document, pro-
vide a mechanism which changes the input without disturbing its topic
classification, but that the author can no longer be identified.

In the rest of the paper we use ideas inspired by dX -privacy [9], a metric-based
extension of differential privacy, to implement an automated privacy mechanism
which, unlike current ad hoc approaches to author obfuscation, gives access to
both solid privacy and utility guarantees.3

1 https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-
868affcef595.

2 This includes, for example, the character n-gram representation used for author
identification in [29].

3 Our notion of utility here is similar to other work aiming at text privacy, such
as [32,53].

https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-868affcef595
https://medium.com/cryptomuse/how-the-nsa-caught-satoshi-nakamoto-868affcef595
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We implement a mechanism K which takes b, b′ bag-of-words inputs and
produces “noisy” bag-of-words outputs determined by K(b),K(b′) with the fol-
lowing properties:

Privacy: If b, b′ are classified to be “similar in topic” then, depending on a
privacy parameter ε the outputs determined by K(b) and K(b′) are
also “similar to each other”, irrespective of authorship.

Utility: Possible outputs determined by K(b) are distributed according to a
Laplace probability density function scored according to a semantic
similarity metric.

In what follows we define semantic similarity in terms of the classic Earth
Mover’s distance used in machine learning for topic classification in text doc-
ument processing.4 We explain how to combine this with dX -privacy which
extends privacy for databases to other unstructured domains (such as texts).

In Sect. 2 we set out the details of the bag-of-words representation of docu-
ments and define the Earth Mover’s metric for topic classification. In Sect. 3 we
define a generic mechanism which satisfies “EdX -privacy” relative to the Earth
Mover’s metric EdX and show how to use it for our obfuscation problem. We
note that our generic mechanism is of independent interest for other domains
where the Earth Mover’s metric applies. In Sect. 4 we describe how to imple-
ment the mechanism for data represented as real-valued vectors and prove its
privacy/utility properties with respect to the Earth Mover’s metric; in Sect. 5 we
show how this applies to bags-of-words. Finally in Sect. 6 we provide an experi-
mental evaluation of our obfuscation mechanism, and discuss the implications.

Throughout we assume standard definitions of probability spaces [18]. For a
set A we write DA for the set of (possibly continuous) probability distributions
over A. For η ∈ DA, and A ⊆ A a (measurable) subset we write η(A) for the
probability that (wrt. η) a randomly selected a is contained in A. In the special
case of singleton sets, we write η{a}. If mechanism K: α→Dα, we write K(a)(A)
for the probability that if the input is a, then the output will be contained in A.

2 Documents, Topic Classification and Earth Moving

In this section we summarise the elements from machine learning and text pro-
cessing needed for this paper. Our first definition sets out the representation
for documents we shall use throughout. It is a typical representation of text
documents used in a variety of classification tasks.

Definition 1. Let S be the set of all words (drawn from a finite alphabet). A
document is defined to be a finite bag over S, also called a bag-of-words. We
denote the set of documents as BS, i.e. the set of (finite) bags over S.

4 In NLP, this distance measure is known as the Word Mover’s distance. We use the
classic Earth Mover’s here for generality.
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Once a text is represented as a bag-of-words, depending on the processing
task, further representations of the words within the bag are usually required.
We shall focus on two important representations: the first is when the task is
semantic analysis for eg. topic classification, and the second is when the task
is author identification. We describe the representation for topic classification
in this section, and leave the representation for author identification for Sects. 5
and 6.

2.1 Word Embeddings

Machine learners can be trained to classify the topic of a document, such as
“health”, “sport”, “entertainment”; this notion of topic means that the words
within documents will have particular semantic relationships to each other.
There are many ways to do this classification, and in this paper we use a tech-
nique that has as a key component “word embeddings”, which we summarise
briefly here.

A word embedding is a real-valued vector representation of words where the
precise representation has been experimentally determined by a neural network
sensitive to the way words are used in sentences [38]. Such embeddings have
some interesting properties, but here we only rely on the fact that when the
embeddings are compared using a distance determined by a pseudometric5 on
R

n, words with similar meanings are found to be close together as word embed-
dings, and words which are significantly different in meaning are far apart as
word embeddings.

Definition 2. An n-dimensional word embedding is a mapping Vec : S → R
n.

Given a pseudometric dist on R
n we define a distance on words distVec :

S×S→R≥ as follows:

distVec(w1, w2) := dist(Vec(w1),Vec(w2)) .

Observe that the property of a pseudometric on R
n carries over to S.

Lemma 1. If dist is a pseudometric on R
n then distVec is also a pseudometric

on S.

Proof. Immediate from the definition of a pseudometric: i.e. the triangle equality
and the symmetry of distVec are inherited from dist.

Word embeddings are particularly suited to language analysis tasks, including
topic classification, due to their useful semantic properties. Their effectiveness
depends on the quality of the embedding Vec, which can vary depending on the
size and quality of the training data. We provide more details of the particular

5 Recall that a pseudometric satisfies both the triangle inequality and symmetry; but
different words could be mapped to the same vector and so distVec(w1, w2) = 0 no
longer implies that w1 = w2.
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embeddings in Sect. 6. Topic classifiers can also differ on the choice of underlying
metric dist, and we discuss variations in Sect. 3.2.

In addition, once the word embedding Vec has been determined, and the
distance dist has been selected for comparing “word meanings”, there are a
variety of semantic similarity measures that can be used to compare documents,
for us bags-of-words. In this work we use the “Word Mover’s Distance”, which
was shown to perform well across multiple text classification tasks [31].

The Word Mover’s Distance is based on the classic Earth Mover’s Dis-
tance [43] used in transportation problems with a given distance measure. We
shall use the more general Earth Mover’s definition with dist6 as the underlying
distance measure between words. We note that our results can be applied to
problems outside of the text processing domain.

Let X,Y ∈ BS; we denote by X the tuple 〈xa1
1 , xa2

2 , . . . , xak

k 〉, where ai is the
number of times that xi occurs in X. Similarly we write Y = 〈yb1

1 , yb2
2 , . . . , ybl

l 〉;
we have

∑
i ai = |X| and

∑
j bj = |Y |, the sizes of X and Y respectively. We

define a flow matrix F ∈ R
k×l
≥0 where Fij represents the (non-negative) amount

of flow from xi ∈ X to yj ∈ Y .

Definition 3 (Earth Mover’s Distance). Let dS be a (pseudo)metric over S.
The Earth Mover’s Distance with respect to dS , denoted by EdS , is the solution
to the following linear optimisation:

EdS (X,Y ) := min
∑

xi∈X

∑

yj∈Y

dS(xi, yj)Fij , subject to: (1)

k∑

i=1

Fij =
bj

|Y | and
l∑

j=1

Fij =
ai

|X| , Fij ≥ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ l (2)

where the minimum in (1) is over all possible flow matrices F subject to the
constraints (2). In the special case that |X| = |Y |, the solution is known to
satisfy the conditions of a (pseudo)metric [43] which we call the Earth Mover’s
Metric.

In this paper we are interested in the special case |X| = |Y |, hence we use
the term Earth Mover’s metric to refer to EdS .

We end this section by describing how texts are prepared for machine learning
tasks, and how Definition 3 is used to distinguish documents. Consider the text
snippet “The President greets the press in Chicago”. The first thing is to remove
all “stopwords” – these are words which do not contribute to semantics, and
include things like prepositions, pronouns and articles. The words remaining are
those that contain a great deal of semantic and stylistic traits.7

6 In our experiments we take dist to be defined by the Euclidean distance.
7 In fact the way that stopwords are used in texts turn out to be characteristic features

of authorship. Here we follow standard practice in natural language processing to
remove them for efficiency purposes and study the privacy of what remains. All of
our results apply equally well had we left stopwords in place.
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Fig. 1. Earth Mover’s metric between sample documents.

In this case we obtain the bag:

b1 := 〈President1, greets1, press1, Chicago1〉 .

Consider a second bag: b2 := 〈Chief1, speaks1,media1, Illinois1〉, corresponding
to a different text. Figure 1 illustrates the optimal flow matrix which solves the
optimisation problem in Definition 3 relative to dS . Here each word is mapped
completely to another word, so that Fi,j = 1/4 when i = j and 0 otherwise. We
show later that this is always the case between bags of the same size. With these
choices we can compute the distance between b1, b2:

EdS (b1, b2) =
1
4
(dS(President,Chief) + dS(greets, speaks)+

dS(press,media) + dS(Chicago, Illinois)) (3)
= 2.816 .

For comparison, consider the distance between b1 and b2 to a third docu-
ment, b3 := 〈Chef1,breaks1, cooking1, record1〉. Using the same word embedding
metric,8 we find that EdS (b1, b3) = 4.121 and EdS (b2, b3) = 3.941. Thus b1, b2
would be classified as semantically “closer” to each other than to b3, in line with
our own (linguistic) interpretation of the original texts.

3 Differential Privacy and the Earth Mover’s Metric

Differential Privacy was originally defined with the protection of individuals’
data in mind. The intuition is that privacy is achieved through “plausible deni-
ability”, i.e. whatever output is obtained from a query, it could have just as

8 We use the same word2vec-based metric as per our experiments; this is described in
Sect. 6.
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easily have arisen from a database that does not contain an individual’s details,
as from one that does. In particular, there should be no easy way to distinguish
between the two possibilities. Privacy in text processing means something a lit-
tle different. A “query” corresponds to releasing the topic-related contents of
the document (in our case the bag-of-words)—this relates to the utility because
we would like to reveal the semantic content. The privacy relates to investing
individual documents with plausible deniability, rather than individual authors
directly. What this means for privacy is the following. Suppose we are given two
documents b1, b2 written by two distinct authors A1, A2, and suppose further
that b1, b2 are changed through a privacy mechanism so that it is difficult or
impossible to distinguish between them (by any means). Then it is also difficult
or impossible to determine whether the authors of the original documents are A1

or A2, or some other author entirely. This is our aim for obfuscating authorship
whilst preserving semantic content.

Our approach to obfuscating documents replaces words with other words,
governed by probability distributions over possible replacements. Thus the type
of our mechanism is BS →D(BS), where (recall) D(BS) is the set of probability
distributions over the set of (finite) bags of S. Since we are aiming to find a
careful trade-off between utility and privacy, our objective is to ensure that
there is a high probability of outputting a document with a similar topic as
the input document. As explained in Sect. 2, topic similarity of documents is
determined by the Earth Mover’s distance relative to a given (pseudo)metric
on word embeddings, and so our privacy definition must also be relative to the
Earth Mover’s distance.

Definition 4 (Earth Mover’s Privacy). Let X be a set, and dX be a
(pseudo)metric on X and let EdX be the Earth Mover’s metric on BX rela-
tive to dX . Given ε ≥ 0, a mechanism K : BX → D(BX ) satisfies εEdX -privacy
iff for any b, b′ ∈ BX and Z ⊆ BX :

K(b)(Z) ≤ eεEdX (b,b′)K(b′)(Z) . (4)

Definition 4 tells us that when two documents are measured to be very close,
so that εEdX (b, b′) is close to 0, then the multiplier eεEdX (b,b′) is approximately
1 and the outputs K(b) and K(b′) are almost identical. On the other hand the
more that the input bags can be distinguished by EdX , the more their outputs
are likely to differ. This flexibility is what allows us to strike a balance between
utility and privacy; we discuss this issue further in Sect. 5 below.

Our next task is to show how to implement a mechanism that can be proved
to satisfy Definition 4. We follow the basic construction of Dwork et al. [12] for
lifting a differentially private mechanism K: X → DX to a differentially private
mechanism K�: X N →DX N on vectors in X N . (Note that, unlike a bag, a vector
imposes a fixed order on its components.) Here the idea is to apply K indepen-
dently to each component of a vector v ∈ X N to produce a random output
vector, also in X N . In particular the probability of outputting some vector v′ is
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the product:
K�(v){v′} =

∏

1≤i≤N

K(vi){v′
i} . (5)

Thanks to the compositional properties of differential privacy when the under-
lying metric on X satisfies the triangle inequality, it’s possible to show that the
resulting mechanism K� satisfies the following privacy mechanism [13]:

K�(v)(Z) ≤ eMdX (v,v′)K�(v′)(Z) , (6)

where MdX (v, v′) :=
∑

1≤i≤N dX (vi, v
′
i), the Manhattan metric relative to dX .

However Definition 4 does not follow from (6), since Definition 4 operates on
bags of size N , and the Manhattan distance between any vector representation
of bags is greater than N × EdX . Remarkably however, it turns out that K�

–the mechanism that applies K independently to each item in a given bag– in
fact satisfies the much stronger Definition 4, as the following theorem shows,
provided the input bags have the same size as each other.

Theorem 1. Let dX be a pseudo-metric on X and let K : X → DX be a
mechanism satisfying εdX -privacy, i.e.

K(x)(Z) ≤ eεdX (x,x′)K(x′)(Z) , for all x, x′ ∈ X , Z ⊆ X . (7)

Let K� : BX → D(BX ) be the mechanism obtained by applying K indepen-
dently to each element of X for any X ∈ BX . Denote by K�↓N the restriction
of K� to bags of fixed size N . Then K�↓N satisfies εNEdX -privacy.

Proof (Sketch). The full proof is given in our complete paper [15]; here we sketch
the main ideas.

Let b, b′ be input bags, both of size N , and let c a possible output bag (of K�).
Observe that both output bags determined by K�(b1),K�(b2) and c also have size
N . We shall show that (4) is satisfied for the set containing the singleton element
c and multiplier εN , from which it follows that (4) is satisfied for all sets Z.

By Birkhoff-von Neumann’s theorem [26], in the case where all bags have the
same size, the minimisation problem in Definition 3 is optimised for transporta-
tion matrix F where all values Fij are either 0 or 1/N . This implies that the
optimal transportation for EdX (b, c) is achieved by moving each word in the bag
b to a (single) word in bag c. The same is true for EdX (b′, c) and EdX (b, b′).
Next we use a vector representation of bags as follows. For bag b, we write b for
a vector in X N such that each element in b appears at some bi.

Next we fix b and b′ to be vector representations of respectively b, b′ in X N

such that the optimal transportation for EdX (b, b′) is

EdX (b, b′) = 1/N×
∑

1≤i≤N

dX (bi, b
′
i) = MdX (b, b′)/N . (8)

The final fact we need is to note that there is a relationship between K�

acting on bags of size N and K� which acts on vectors in X N by applying K
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independently to each component of a vector: it is characterised in the following
way. Let b, c be bags and let b, c be any vector representations. For permutation
σ ∈ {1 . . . N} → {1 . . . N} write cσ to be the vector with components permuted
by σ, so that cσ

i = cσ(i). With these definitions, the following equality between
probabilities holds:

K�(b){c} =
∑

σ

K�(b){cσ} , (9)

where the summation is over all permutations that give distinct vector represen-
tations of c. We now compute directly:

K�(b){c}
=

∑
σ K�(b){cσ} “(9) for b, c”

≤ ∑
σ eεMd(b,b′)K�(b′){cσ} “(6) for b, b′, c”

= eεNEd(b,b′)∑
σ K�(b′){cσ} “Arithmetic and (8)”

= eεNEd(b,b′)K�(b′){c} , “(9) for b′, c”

as required.

3.1 Application to Text Documents

Recall the bag-of-words

b2 := 〈Chief1, speaks1,media1, Illinois1〉 ,

and assume we are provided with a mechanism K satisfying the standard εdX -
privacy property (7) for individual words. As in Theorem 1 we can create a
mechanism K∗ by applying K independently to each word in the bag, so that, for
example the probability of outputting b3 = 〈Chef1,breaks1, cooking1, record1〉 is
determined by (9):

K�(b2)({b3}) =
∑

σ

∏

1≤i≤4

K(b2i){b3i
σ} .

By Theorem 1, K� satisfies 4εEdS -privacy. Recalling (3) that EdS (b1, b2) =
2.816, we deduce that if ε ∼ 1/16 then the output distributions K�(b1) and
K�(b2) would differ by the multiplier e2.816×4/16 ∼ 2.02; but if ε ∼ 1/32 those
distributions differ by only 1.42. In the latter case it means that the outputs of
K� on b1 and b2 are almost indistinguishable.

The parameter ε depends on the randomness implemented in the basic mech-
anism K; we investigate that further in Sect. 4.

3.2 Properties of Earth Mover’s Privacy

In machine learning a number of “distance measures” are used in classification
or clustering tasks, and in this section we explore some properties of privacy
when we vary the underlying metrics of an Earth Mover’s metric used to classify
complex objects.
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Let v, v′ ∈ R
n be real-valued n-dimensional vectors. We use the following

(well-known) metrics. Recall in our applications we have looked at bags-of-words,
where the words themselves are represented as n-dimensional vectors.9

1. Euclidean: ‖v−v′‖ :=
√∑

1≤i≤n(vi − v′
i)2

2. Manhattan: �v−v′ :=
∑

1≤i≤n |vi − v′
i|

Note that the Euclidean and Manhattan distances determine pseudometrics on
words as defined at Definition 2 and proved at Lemma 1.

Lemma 2. If dX ≤ dX ′ (point-wise), then EdX ≤ EdX′ (point-wise).

Proof. Trivial, by contradiction. If dX ≤ dX ′ and Fij , F
�
ij are the minimal flow

matrices for EdX , EdX′ respectively, then F �
ij is a (strictly smaller) minimal solu-

tion for EdX which contradicts the minimality of Fij.

Corollary 1. If dX ≤ dX ′ (point-wise), then EdX -privacy implies EdX′ -privacy.

This shows that, for example, E‖·‖-privacy implies E	·
-privacy, and indeed
any distance measure d which exceeds the Euclidean distance then E‖·‖-privacy
implies Ed-privacy.

We end this section by noting that Definition 4 satisfies post-processing ; i.e.
that privacy does not decrease under post processing. We write K;K ′ for the
composition of mechanisms K,K ′ : BX → D(BX ), defined:

(K;K ′)(b)(Z) :=
∑

b′:BX
K(b)({b′})×K ′(b′)(Z) . (10)

Lemma 3 [Post processing]. If K,K ′:BX → D(BX ) and K is εEdX -private for
(pseudo)metric d on X then K;K ′ is εEdX -private.

3D plot Contour diagram

Fig. 2. Laplace density function Lap2ε in R
2

9 As we shall see, in the machine learning analysis documents are represented as bags of
n-dimensional vectors (word embeddings), where each bag contains N such vectors.
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4 Earth Mover’s Privacy for Bags of Vectors in R
n

In Theorem 1 we have shown how to promote a privacy mechanism on com-
ponents to EdX -privacy on a bag of those components. In this section we show
how to implement a privacy mechanism satisfying (7), when the components
are represented by high dimensional vectors in R

n and the underlying metric is
taken Euclidean on R

n, which we denote by ‖ · ‖.
We begin by summarising the basic probabilistic tools we need. A probability

density function (PDF) over some domain D is a function φ : D → [0, 1] whose
value φ(z) gives the “relative likelihood” of z. The probability density function is
used to compute the probability of an outcome “z ∈ A”, for some region A ⊆ D
as follows: ∫

A

φ(x) dx . (11)

In differential privacy, a popular density function used for implementing
mechanisms is the Laplacian, defined next.

Definition 5. Let n ≥ 0 be an integer ε > 0 be a real, and v ∈R
n. We define

the Laplacian probability density function in n-dimensions:

Lapn
ε (v) := cε

n×e−ε‖v‖ ,

where ‖v‖ =
√

(v2
1 + · · · + v2

n), and cε
n is a real-valued constant satisfying the

integral equation 1 =
∫

. . .
∫
Rn Lapn

ε (v)dv1 . . . dvn.

When n = 1, we can compute cε
1 = ε/2, and when n = 2, we have that

cε
2 = ε2/2π.

In privacy mechanisms, probability density functions are used to produce
a “noisy” version of the released data. The benefit of the Laplace distribution
is that, besides creating randomness, the likelihood that the released value is
different from the true value decreases exponentially. This implies that the utility
of the data release is high, whilst at the same time masking its actual value.
In Fig. 2 the probability density function Lap2ε(v) depicts this situation, where
we see that the highest relative likelihood of a randomly selected point on the
plane being close to the origin, with the chance of choosing more distant points
diminishing rapidly. Once we are able to select a vector v′ in R

n according to
Lapn

ε , we can “add noise” to any given vector v as v+v′, so that the true value
v is highly likely to be perturbed only a small amount.

In order to use the Laplacian in Definition 5, we need to implement it. Andrés
et al. [4] exhibited a mechanism for Lap2ε(v), and here we show how to extend
that idea to the general case. The main idea of the construction for Lap2ε(v) uses
the fact that any vector on the plane can be represented by spherical coordinates
(r, θ), so that the probability of selecting a vector distance no more than r from
the origin can be achieved by selecting r and θ independently. In order to obtain a
distribution which overall is equivalent to Lap2ε(v), Andrés et al. computed that r
must be selected according to a well-known distribution called the “Lambert W”
function, and θ is selected uniformly over the unit circle. In our generalisation
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to Lapn
ε (v), we observe that the same idea is valid [6]. Observe first that every

vector in R
n can be expressed as a pair (r, p), where r is the distance from the

origin, and p is a point in Bn, the unit hypersphere in R
n. Now selecting vectors

according to Lapn
ε (v) can be achieved by independently selecting r and p, but

this time r must be selected according to the Gamma distribution, and p must
be selected uniformly over Bn. We set out the details next.

Definition 6. The Gamma distribution of (integer) shape n and scale δ > 0 is
determined by the probability density function:

Gamn
δ (r) :=

rn−1e−r/δ

δn(n−1!)
. (12)

Definition 7. The uniform distribution over the surface of the unit hypersphere
Bn is determined by the probability density function:

Uniformn(v) :=
Γ (n

2 )
nπn/2

if v ∈ Bn else 0 , (13)

where Bn := {v ∈ R
n | ‖v‖ = 1}, and Γ (α) :=

∫ ∞
0

xα−1e−x dx is the “Gamma
function”.

With Definitions 6 and 7 we are able to provide an implementation of a
mechanism which produces noisy vectors around a given vector in R

n according
to the Laplacian distribution in Definition 5. The first task is to show that our
decomposition of Lapn

ε is correct.

Lemma 4. The n-dimensional Laplacian Lapn
ε (v) can be realised by selecting

vectors represented as (r, p), where r is selected according to Gamn
1/ε(r) and p is

selected independently according to Uniformn(p).

Proof (Sketch). The proof follows by changing variables to spherical coordinates
and then showing that

∫
A

Lapn
ε (v) dv can be expressed as the product of inde-

pendent selections of r and p.
We use a spherical-coordinate representation of v as:

r := ‖v‖ , and
v1 := r cos θ1 , v2 := r sin θ1 cos θ2 , . . . vn := r sin θ1 sin θ2 . . . , sin θn−2 sin θn−1 .

Next we assume for simplicity that A is a hypersphere of radius R; with that
we can reason:

∫
A
Lapn

ε (v) dv
= ∫

‖v‖≤R
cε

n×e−ε|v| dv

“Definition 5; A is a hypersphere”

=
∫

‖v‖≤R
cε

n×e−ε
√

v2
1+···+v2

n dv

“‖v‖ =
√

v2
1 + · · · + v2

n”

= ∫
r≤R

∫
Aθ

cε
n×e−εr ∂(z1,z2,...,zn)

∂(r,θ1,...,θn−1)
drdθ1 . . . dθn−1

“Change of variables to spherical coordinates; see below (14)”

= ∫
r≤R

∫
Aθ

cε
n×e−εrrn−1 sinn−2 θ1 sinn−3 θ2 . . . sin2 θn−3 sin θn−2 drdθ1 . . . dθn−1 .

“See below (14)”
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Now rearranging we can see that this becomes a product of two integrals.
The first

∫
r≤R

e−εrrn−1 is over the radius, and is proportional to the integral
of the Gamma distribution Definition 6; and the second is an integral over the
angular coordinates and is proportional to the surface of the unit hypersphere,
and corresponds to the PDF at (7). Finally, for the “see below’s” we are using
the “Jacobian”:

∂(z1, z2, . . . , zn)
∂(r, θ1, . . . , θn−1)

= rn−1 sinn−2 θ1 sinn−3 θ2 . . . (14)

(For full details, see our complete paper [15].)

We can now assemble the facts to demonstrate the n-Dimensional Laplacian.

Theorem 2 (n-Dimensional Laplacian). Given ε > 0 and n ∈ Z
+, let

K : Rn → DR
n be a mechanism that, given a vector x ∈ R

n outputs a noisy
value as follows:

x
K�−→ x + x′

where x′ is represented as (r, p) with r ≥ 0, distributed according to Gamn
1/ε(r) and

p ∈ Bn distributed according to Uniformn(p). Then K satisfies (7) from Theorem
1, i.e. K satisfies ε‖ · ‖-privacy where ‖ · ‖ is the Euclidean metric on R

n.

Proof (Sketch). Let z, y ∈ R
n. We need to show that for any (measurable) set

A ⊆ R
n that:

K(z)(A)/K(y)(A) ≤ eε||z−y|| . (15)

However (15) follows provided that the probability densities of respectively K(z)
and K(y) satisfy it. By Lemma 4 the probability density of K(z), as a function
of x is distributed as Lapn

ε (z−x); and similarly for the probability density of
K(y). Hence we reason:

Lapn
ε (z−x)/Lapn

ε (y−x)
= cε

n×e−ε‖z−x‖/cε
n×e−ε‖y−x‖ “Definition 5”

= e−ε‖z−x‖ × eε‖y−x‖ “Arithmetic”

≤ eε‖z−y‖ , “Triangle inequality; s �→ es is monotone”

as required.

Theorem 2 reduces the problem of adding Laplace noise to vectors in R
n to

selecting a real value according to the Gamma distribution and an independent
uniform selection of a unit vector. Several methods have been proposed for gen-
erating random variables according to the Gamma distribution [30] as well as for
the uniform selection of vectors on the unit n-sphere [35]. The uniform selection
of a unit vector has also been described in [35]; it avoids the transformation to
spherical coordinates by selecting n random variables from the standard normal
distribution to produce vector v ∈ R

n, and then normalising to output v
|v| .
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4.1 Earth Mover’s Privacy in BR
n

Using the n-dimensional Laplacian, we can now implement an algorithm for
εNE‖·‖-privacy. Algorithm 1 takes a bag of n-dimensional vectors as input and
applies the n-dimensional Laplacian mechanism described in Theorem 2 to each
vector in the bag, producing a noisy bag of n-dimensional vectors as output.
Corollary 2 summarises the privacy guarantee.

Algorithm 1. Earth Mover’s Privacy Mechanism
Require: vector v, dimension n, epsilon ε
1: procedure GenerateNoisyVector(v, n, ε)
2: r ← Gamma(n, 1

ε
)

3: u ← U(n)
4: return v + ru
5: end procedure

Require: bag X, dimension n, epsilon ε
1: procedure GeneratePrivateBag(X, n, ε)
2: Z ← ()
3: for all x ∈ X do
4: z ← GenerateNoisyVector(x, n, ε)
5: add z to Z
6: end for
7: return Z
8: end procedure

Corollary 2. Algorithm 1 satisfies εNE‖·‖-privacy, relative to any two bags in
BR

n of size N .

Proof. Follows from Theorems 1 and 2.

4.2 Utility Bounds

We prove a lower bound on the utility for this algorithm, which applies for high
dimensional data representations. Given an output element x, we define Z to
be the set of outputs within distance Δ > 0 from x. Recall that the distance
function is a measure of utility, therefore Z = {z | E‖·‖(x, z) ≤ Δ} represents
the set of vectors within utility Δ of x. Then we have the following:

Theorem 3. Given an input bag b consisting of N n-dimensional vectors, the
mechanism defined by Algorithm 1 outputs an element from Z = {z | E‖·‖(b, z) ≤
Δ} with probability at least

1 − e−εNΔen−1(εNΔ) ,

whenever εNΔ ≤ n/e. (Recall that ek(α) =
∑

0≤i≤k
αi

i! , the sum of the first k+1
terms in the series for eα.)



Generalised Differential Privacy for Text Document Processing 137

Proof (Sketch). Let b ∈ (Rn)N be a (fixed) vector representation of the bag b. For
v ∈ (Rn)N , let v◦ ∈ BR

n be the bag comprising the N components if v. Observe
that NE‖·‖(b, v◦) ≤ M‖·‖(b, v), and so

ZM = {v | M‖·‖(b, v) ≤ NΔ} ⊆ {v | E‖·‖(b, v◦) ≤ Δ} = ZE . (16)

Thus the probability of outputting an element of Z is the same as the probability
of outputting ZE, and by (16) that is at least the probability of outputting an
element from ZM by applying a standard n-dimensional Laplace mechanism to
each of the components of b. We can now compute:

Probability of outputting an element in ZE

≥ ∫
. . .

∫
v∈ZM

∏
1≤i≤N Lapn

ε (bi−vi)dv1 . . . dvN

“(16)”

= ∫
. . .

∫
v∈ZM

∏
1≤i≤N cε

ne−ε‖bi−vi‖dv1 . . . dvN .
“Lemma 4”

The result follows by completing the multiple integrals and applying some approx-
imations, whilst observing that the variables in the integration are n-dimensional
vector valued. (The details appear in our complete paper [15].)

We note that in our application word embeddings are typically mapped to vectors
in R

300, thus we would use n ∼ 300 in Theorem 3.

5 Text Document Privacy

In this section we bring everything together, and present a privacy mechanism
for text documents; we explore how it contributes to the author obfuscation
task described above. Algorithm 2 describes the complete procedure for taking a
document as a bag-of-words, and outputting a “noisy” bag-of-words. Depending
on the setting of parameter ε, the output bag will be likely to be classified to be
on a similar topic as the input.

Algorithm 2 uses a function Vec to turn the input document into a bag of
word embeddings; next Algorithm 1 produces a noisy bag of word embeddings,
and, in a final step the inverse Vec−1 is used to reconstruct an actual bag-of-words
as output. In our implementation of Algorithm 2, described below, we compute
Vec−1(x) to be the word w that minimises the Euclidean distance ‖z −Vec(w)‖.
The next result summarises the privacy guarantee for Algorithm 2.

Theorem 4. Algorithm 2 satisfies εNEdS -privacy, where dS = distVec. That
is to say: given input documents (bags) b, b′ both of size N , and c a possible
output bag, define the following quantities as follows: k := E‖·‖(Vec�(b),Vec�(b′)),
pr(b, c) and pr(b′, c) are the respective probabilities that c is output given the input
was b or b′. Then:

pr(b, c) ≤ eεNk × pr(b′, c) .
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Algorithm 2. Document privacy mechanism
Require: Bag-of-words b, dimension n, epsilon ε, Word embedding Vec : S → R

n

1: procedure GenerateNoisyBagOfWords(b, n, ε,Vec)
2: X ← Vec�(b)
3: Z ← GeneratePrivateBag(X, n, ε)
4: return (Vec−1)�(Z)
5: end procedure

Note that Vec� : BS→BR
n applies Vec to each word in a bag b, and (Vec−1)� : BRn→BS

reverses this procedure as a post-processing step; this involves determining the word
w that minimises the Euclidean distance ‖z − Vec(w)‖ for each z in Z.

Proof. The result follows by appeal to Theorem 2 for privacy on the word embed-
dings; the step to apply Vec−1 to each vector is a post-processing step which by
Lemma 3 preserves the privacy guarantee.

Although Theorem 4 utilises ideas from differential privacy, an interesting
question to ask is how it contributes to the PAN@Clef author obfuscation task,
which recall asked for mechanisms that preserve content but mask features that
distinguish authorship. Algorithm 2 does indeed attempt to preserve content (to
the extent that the topic can still be determined) but it does not directly “remove
stylistic features”.10 So has it, in fact, disguised the author’s characteristic style?
To answer that question, we review Theorem 4 and interpret what it tells us in
relation to author obfuscation.

The theorem implies that it is indeed possible to make the (probabilistic)
output from two distinct documents b, b′ almost indistinguishable by choosing ε
to be extremely small in comparison with N×E‖·‖(Vec�(b),Vec�(b′)). However,
if E‖·‖(Vec�(b),Vec�(b′)) is very large – meaning that b and b′ are on entirely
different topics, then ε would need to be so tiny that the noisy output document
would be highly unlikely to be on a topic remotely close to either b or b′ (recall
Lemma 3).

This observation is actually highlighting the fact that, in some circumstances,
the topic itself is actually a feature that characterises author identity. (First-hand
accounts of breaking the world record for highest and longest free fall jump
would immediately narrow the field down to the title holder.) This means that
any obfuscating mechanism would, as for Algorithm 2, only be able to obfuscate
documents so as to disguise the author’s identity if there are several authors
who write on similar topics. And it is in that spirit, that we have made the first
step towards a satisfactory obfuscating mechanism: provided that documents are
similar in topic (i.e. are close when their embeddings are measured by E‖·‖) they
can be obfuscated so that it is unlikely that the content is disturbed, but that
the contributing authors cannot be determined easily.

10 Although, as others have noted [53], the bag-of-words representation already removes
many stylistic features. We note that our privacy guarantee does not depend on this
side-effect.
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We can see the importance of the “indistinguishability” property wrt. the
PAN obfuscation task. In stylometry analysis the representation of words for
eg. author classification is completely different to the word embeddings which
have used for topic classification. State-of-the-art author attribution algorithms
represent words as “character n-grams” [28] which have been found to capture
stylistic clues such as systematic spelling errors. A character 3-gram for example
represents a given word as the complete list of substrings of length 3. For example
character 3-gram representations of “color” and “colour” are:

· “color” �→ |[ “col”, “olo”, “lor” ]|
· “colour” �→ |[ “col”, “olo”, “lou”, “our” ]|
For author identification, any output from Algorithm 2 would then need to

be further transformed to a bag of character n-grams, as a post processing step;
by Lemma 3 this additional transformation preserves the privacy properties of
Algorithm 2. We explore this experimentally in the next section.

6 Experimental Results

Document Set. The PAN@Clef tasks and other similar work have used a variety
of types of text for author identification and author obfuscation. Our desiderata
are that we have multiple authors writing on one topic (so as to minimise the
ability of an author identification system to use topic-related cues) and to have
more than one topic (so that we can evaluate utility in terms of accuracy of topic
classification). Further, we would like to use data from a domain where there are
potentially large quantities of text available, and where it is already annotated
with author and topic.

Given these considerations, we chose “fan fiction” as our domain. Wikipedia
defines fan fiction as follows: “Fan fiction . . . is fiction about characters or
settings from an original work of fiction, created by fans of that work rather
than by its creator.” This is also the domain that was used in the PAN@Clef
2018 author attribution challenge,11 although for this work we scraped our own
dataset. We chose one of the largest fan fiction sites and the two largest “fan-
doms” there;12 these fandoms are our topics. We scraped the stories from these
fandoms, the largest proportion of which are for use in training our topic classi-
fication model. We held out two subsets of size 20 and 50, evenly split between
fandoms/topics, for the evaluation of our privacy mechanism.13 We follow the
evaluation framework of [28]: for each author we construct an known-author
text and an unknown-author snippet that we have to match to an author on
11 https://pan.webis.de/clef18/pan18-web/author-identification.html.
12 https://www.fanfiction.net/book/, with the two largest fandoms being Harry Potter

(797,000 stories) and Twilight (220,000 stories).
13 Our Algorithm 2 is computationally quite expensive, because each word w =

Vec−1(x) requires the calculation of Euclidean distance with respect to the whole
vocabulary. We thus use relatively small evaluation sets, as we apply the algorithm
to them for multiple values of ε.

https://pan.webis.de/clef18/pan18-web/author-identification.html
https://www.fanfiction.net/book/
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the basis of the known-author texts. (See Appendix in our complete paper [15]
for more detail.)

Word Embeddings. There are sets of word embeddings trained on large datasets
that have been made publicly available. Most of these, however, are already
normalised, which makes them unsuitable for our method. We therefore use
the Google News word2vec embeddings as the only large-scale unnormalised
embeddings available. (See Appendix in our complete paper [15] for more detail.)

Inference Mechanisms. We have two sorts of machine learning inference mecha-
nisms: our adversary mechanism for author identification, and our utility-related
mechanism for topic classification. For each of these, we can define inference
mechanisms both within the same representational space or in a different rep-
resentational space. As we noted above, in practice both author identification
adversary and topic classification will use different representations, but examin-
ing same-representation inference mechanisms can give an insight into what is
happening within that space.

Different-Representation Author Identification. For this we use the algorithm
by [28]. This algorithm is widely used: it underpins two of the winners of PAN
shared tasks [25,47]; is a common benchmark or starting point for other meth-
ods [19,39,44,46]; and is a standard inference attacker for the PAN shared task
on authorship obfuscation.14 It works by representing each text as a vector of
space-separated character n-gram counts, and comparing repeatedly sampled
subvectors of known-author texts and snippets using cosine similarity. We use as
a starting point the code from a reproducibility study [40], but have modified it
to improve efficiency. (See Appendix in our complete paper [15] for more details.)

Different-Representation Topic Classification. Here we choose fastText [7,22], a
high-performing supervised machine learning classification system. It also works
with word embeddings; these differ from word2vec in that they are derived from
embeddings over character n-grams, learnt using the same skipgram model as
word2vec. This means it is able to compute representations for words that do
not appear in the training data, which is helpful when training with relatively
small amounts of data; also useful when training with small amounts of data is
the ability to start from pretrained embeddings trained on out-of-domain data
that are then adapted to the in-domain (here, fan fiction) data. After training,
the accuracy on a validation set we construct from the data is 93.7% (see [15]
for details).

Same-Representation Author Identification. In the space of our word2vec embed-
dings, we can define an inference mechanism that for an unknown-author snippet
chooses the closest known-author text by Euclidean distance.

14 http://pan.webis.de/clef17/pan17-web/author-obfuscation.html.

http://pan.webis.de/clef17/pan17-web/author-obfuscation.html
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Same-Representation Topic Classification. Similarly, we can define an inference
mechanism that considers the topic classes of neighbours and predicts a class
for the snippet based on that. This is essentially the standard k “Nearest Neigh-
bours” technique (k-NN) [21], a non-parametric method that assigns the major-
ity class of the k nearest neighbours. 1-NN corresponds to classification based on
a Voronoi tesselation of the space, has low bias and high variance, and asymp-
totically has an error rate that is never more than twice the Bayes rate; higher
values of k have a smoothing effect. Because of the nature of word embeddings,
we would not expect this classification to be as accurate as the fastText classifi-
cation above: in high-dimensional Euclidean space (as here), almost all points are
approximately equidistant. Nevertheless, it can give an idea about how a snip-
pet with varying levels of noise added is being shifted in Euclidean space with
respect to other texts in the same topic. Here, we use k = 5. Same-representation
author identification can then be viewed as 1-NN with author as class.

Table 1. Number of correct predictions of author/topic in the 20-author set (left)
and 50-author set (right), using 1-NN for same-representation author identification
(SRauth), 5-NN for same-representation topic classification (SRtopic), the Koppel
algorithm for different-representation author identification (DRauth) and fastText for
different-representation topic classification (DRtopic).

20-author set
ε SRauth SRtopic DRauth DRtopic

none 12 16 15 18
30 8 18 16 18
25 8 18 14 17
20 5 11 11 16
15 2 11 12 17
10 0 15 11 19

50-author set
ε SRauth SRtopic DRauth DRtopic

none 19 36 27 43
30 19 37 29 43
25 17 34 24 41
20 12 28 19 42
15 9 22 13 42
10 1 24 10 43

Results: Table 1 contains the results for both document sets, for the unmodified
snippets (“none”) or with the privacy mechanism of Algorithm 2 applied with
various levels of ε: we give results for ε between 10 and 30, as at ε = 40 the text
does not change, while at ε = 1 the text is unrecognisable. For the 20-author set,
a random guess baseline would give 1 correct author prediction, and 10 correct
topic predictions; for the 50-author set, these values are 1 and 25 respectively.

Performance on the unmodified snippets using different-representation infer-
ence mechanisms is quite good: author identification gets 15/20 correct for the
20-author set and 27/50 for the 50-author set; and topic classification 18/20
and 43/50 (comparable to the validation set accuracy, although slightly lower,
which is to be expected given that the texts are much shorter). For various levels
of ε, with our different-representation inference mechanisms we see broadly the
behaviour we expected: the performance of author identification drops, while
topic classification holds roughly constant. Author identification here does not
drop to chance levels: we speculate that this is because (in spite of our choice
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of dataset for this purpose) there are still some topic clues that the algorithm
of [28] takes advantage of: one author of Harry Potter fan fiction might prefer to
write about a particular character (e.g. Severus Snape), and as these character
names are not in our word2vec vocabulary, they are not replaced by the privacy
mechanism.

In our same-representation author identification, though, we do find per-
formance starting relatively high (although not as high as the different-
representation algorithm) and then dropping to (worse than) chance, which is the
level we would expect for our privacy mechanism. The k-NN topic classification,
however, shows some instability, which is probably an artefact of the problems
it faces with high-dimensional Euclidean spaces. (Refer to our complete arXiv
paper [15] for a sample of texts and nearest neighbours.)

7 Related Work

Author Obfuscation. The most similar work to ours is by Weggenmann and
Kerschbaum [53] who also consider the author obfuscation problem but apply
standard differential privacy using a Hamming distance of 1 between all docu-
ments. As with our approach, they consider the simplified utility requirement of
topic preservation and use word embeddings to represent documents. Our app-
roach differs in our use of the Earth Mover’s metric to provide a strong utility
measure for document similarity.

An early work in this area by Kacmarcik et al. [23] applies obfuscation by
modifying the most important stylometric features of the text to reduce the
effectiveness of author attribution. This approach was used in Anonymouth [36],
a semi-automated tool that provides feedback to authors on which features to
modify to effectively anonymise their texts. A similar approach was also followed
by Karadhov et al. [24] as part of the PAN@Clef 2017 task.

Other approaches to author obfuscation, motivated by the PAN@Clef task,
have focussed on the stronger utility requirement of semantic sensibility [5,8,34].
Privacy guarantees are therefore ad hoc and are designed to increase misclassi-
fication rates by the author attribution software used to test the mechanism.

Most recently there has been interest in training neural networks models
which can protect author identity whilst preserving the semantics of the original
document [14,48]. Other related deep learning methods aim to obscure other
author attributes such as gender or age [10,32]. While these methods produce
strong empirical results, they provide no formal privacy guarantees. Importantly,
their goal also differs from the goal of our paper: they aim to obscure properties
of authors in the training set (with the intention of the author-obscured learned
representations being made available), while we assume that an adversary may
have access to raw training data to construct an inference mechanism with full
knowledge of author properties, and in this context aim to hide the properties
of some other text external to the training set.
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Machine Learning and Differential Privacy. Outside of author attribution, there
is quite a body of work on introducing differential privacy to machine learn-
ing: [13] gives an overview of a classical machine learning setting; more recent
deep learning approaches include [1,49]. However, these are generally applied in
other domains such as image processing: text introduces additional complexity
because of its discrete nature, in contrast to the continuous nature of neural
networks. A recent exception is [37], which constructs a differentially private
language model using a recurrent neural network; the goal here, as for instances
above, is to hide properties of data items in the training set.

Generalised Differential Privacy. Also known as dX -privacy [9], this definition
was originally motivated by the problem of geo-location privacy [4]. Despite its
generality, dX -privacy has yet to find significant applications outside this domain;
in particular, there have been no applications to text privacy.

Text Document Privacy. This typically refers to the sanitisation or redaction of
documents either to protect the identity of individuals or to protect the confi-
dentiality of their sensitive attributes. For example, a medical document may be
modified to hide specifics in the medical history of a named patient. Similarly,
a classified document may be redacted to protect the identity of an individual
referred to in the text.

Most approaches to sanitisation or redaction rely on first identifying sensitive
terms in the text, and then modifying (or deleting) only these terms to produce
a sanitised document. Abril et al. [2] proposed this two-step approach, focussing
on identification of terms using NLP techniques. Cumby and Ghani [11] pro-
posed k-confusability, inspired by k-anonymity [50], to perturb sensitive terms
in a document so that its (utility) class is confusable with at least k other classes.
Their approach requires a complete dataset of similar documents for computing
(mis)classification probabilities. Anandan et al. [3] proposed t-plausibility which
generalises sensitive terms such that any document could have been generated
from at least t other documents. Sánchez and Batet [45] proposed C-sanitisation,
a model for both detection and protection of sensitive terms (C) using informa-
tion theoretic guarantees. In particular, a C-sanitised document should contain
no collection of terms which can be used to infer any of the sensitive terms.

Finally, there has been some work on noise-addition techniques in this area.
Rodriguez-Garcia et al. [42] propose semantic noise, which perturbs sensitive
terms in a document using a distance measure over the directed graph repre-
senting a predefined ontology.

Whilst these approaches have strong utility, our primary point of difference is
our insistence on a differential privacy-based guarantee. This ensures that every
output document could have been produced from any input document with some
probability, giving the strongest possible notion of plausible-deniability.
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8 Conclusions

We have shown how to combine representations of text documents with gener-
alised differential privacy in order to implement a privacy mechanism for text
documents. Unlike most other techniques for privacy in text processing, ours
provides a guarantee in the style of differential privacy. Moreover we have demon-
strated experimentally the trade off between utility and privacy.

This represents an important step towards the implementation of privacy
mechanisms that could produce readable summaries of documents with a pri-
vacy guarantee. One way to achieve this goal would be to reconstruct readable
documents from the bag-of-words output that our mechanism currently pro-
vides. A range of promising techniques for reconstructing readable texts from
bag-of-words have already produced some good experimental results [20,52,54].
In future work we aim to explore how techniques such as these could be applied
as a final post processing step for our mechanism.
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.
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Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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