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ABSTRACT 

Engineering materials are generally non-homogeneous, yet standard continuum descriptions 

of such materials are admissible, provided that the size of the non-homogeneities is much 

smaller than the characteristic length of the deformation pattern. If this is not the case, either 

the individual non-homogeneities have to be described explicitly or the range of applicability 

of the continuum concept is extended by including additional variables or degrees of freedom. 

In the paper we model the discrete nature of granular materials in the simplest possible way 

by means of finite-difference equations. The difference equations may be homogenised in two 

ways: the simplest approach is to replace the finite differences by the corresponding Taylor 

expansions. This leads to a Cosserat continuum theory. A more sophisticated strategy is to 

homogenise the equations by means of a discrete Fourier transformation. The result is a 

Kunin-type non-local theory. In the following we analyse these theories by considering a 

model consisting of independent periodic 1D chains of solid spheres connected by shear 

translational and rotational springs. It is found that the Cosserat theory offers a healthy 

balance between accuracy and simplicity. Kunin’s integral homogenisation theory leads to a 

non-local Cosserat continuum description that yields an exact solution, but does not offer any 

real simplification in the solution of the model equations as compared to the original discrete 

system. The rotational degree of freedom affects the phenomenology of wave propagation 

considerably. When the rotation is suppressed, only one type of wave, viz. a shear wave, 

exists. When the restriction on particle rotation is relaxed, the velocity of this wave decreases 

and another, high velocity wave arises. 

 

Key words: Non-standard continua, Homogenisation, Rotational degrees of freedom, 

Cosserat continuum, Non-local continuum, Wave propagation 
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1. INTRODUCTION. COMPARATIVE ANALYSIS OF NON-STANDARD 

CONTINUA APPROACH TO MODELLING MATERIALS WITH 

MICROSTRUCTURE 

1.1. Non-standard continua 

There are cases when the classical continuum mechanics approach is insufficient to model 

adequately materials with microstructure. In particular, microstructure cannot be ignored 

when one considers layered material, especially when the layers can slide, blocky structures, 

granular media, cracked media. The consideration of microstructure is necessary when the 

size of redistribution of an external load is comparable with the microstructure size or if the 

stress gradients at intergranular contact points (finite contact area, modelled as a contact 

point) of grains have to be be taken into account. 

 Naturally, there are different approaches (or combinations thereof) to take microstructural 

effects into account. Each approach results into different types of standard or non-standard 

continua. 

 The first step in the adaptation or extension of a standard continuum theory to granular 

materials is the introduction of rotational degrees of freedom in addition to the conventional 

translational ones (if for instance the spin of particles is important). This leads to gradient or 

higher-order gradient theories (when further degrees of freedom have to be included as well), 

resulting in the introduction of additional strain measures and the correspondent stress tensors. 

 While the need for independent rotational DOF’s (Cosserat type theories, eg Cosserat [1]; 

Nowacki [2]) is quite easy to understand in the context of granular and layered materials, 

further increase of DOF requires more explanations. Mindlin [3] based his reasoning on the 

simultaneous consideration of macro- and micro- displacements within a volume element. 

 In the spirit of Mindlin’s discussion we consider a macro-volume, i.e. the  domain 

occupied by a body, and choose a Cartesian coordinate system x1x2x3 (see Figure 1). Let P be 

an arbitrary point of a body, the position of the point in the macro-volume being determined 

by the macro-coordinates xi. The macro-motion of this point can be described by the macro-

displacement vector u(xi) and macro-rotation vector ϕ=1/2rotu. According to the conventional 

continuum mechanics, the deformation measures at this point are the components of the 

macro-distortion tensor ui,j, the symmetric part of which gives usual components of a macro-
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strain tensor εij=1/2(ui,j+uj,i). The antisymmetric part of the macro-distortion tensor gives the 

macro-rotational vector ϕi=-1/2εkliuk,l, where εijk is the alternating tensor. It is seen that the 

macro-rotation vector and the distortion tensor are fully determined by the components of the 

displacement vector u(xi). 

 Next, assume the material point P as a centroid of a micro-volume of the originally 

inhomogeneous medium. This volume element defines the scale of resolution of the envisaged 

continuum theory. Effects below this characteristic scale are ignored. This volume element 

could not be constricted to the point because of the microstructure of the material. A 

particular choice of the micro-volume size is not important here. It suffices to mention that in 

general, the micro-volume size is supposed to be (a) much larger than the microstructure size 

to asymptotically satisfy the requirement for the micro-volume to be representative, ie contain 

sufficient number of elements of the microstructure and; (b) much smaller than the external 

size such as the dimension of the problem or a characteristic length of the load redistribution 

(eg, wave length), to asymptotically satisfy the requirement for the micro-volume to be 

infinitesimal. Furthermore its shape has to reflect the material symmetry of the material to be 

modelled. 

x3

x1

x2

Macro-volumeMicro-volume

u(xi)

u'(x'i)P

P'

 

Figure 1. Macro- and micro-volumes and the relationship between the macro- and micro-

displacements. 

 

 We now introduce another local Cartesian coordinate system with the origin at P. An 

arbitrary point P′ of the micro-volume has the micro-coordinates x′1x′2x′3. The vector 

connecting P and P′ will be called the micro-displacement vector and denoted as u′(x′i). The 
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micro-displacement vector characterizes the displacement of the point P′ within the micro-

particle (micro-volume element). 

 The displacement of the point P′ being a point of the macro-volume is given by the sum of 

the macro-displacement vector u(xi) and the micro-displacement vector u′(x′i). Expanding the 

components of the micro-displacement vector into the Taylor series at the vicinity of the point 

P one gets the correspondent coordinates of the displacement vector of the point P′: 

 ...)0(
2

1
)0()0()()()( ,, +′′′+′′+′+=′′+ kjjkijjiiiii xxuxuuxuxuxu , (1.1) 

where 0)0( =′
iu , ),,( 321 xxxx

def

= , ),,( 321 xxxx
def

′′′=′ . 

 The underlying assumption behind the equation (1.1) is that the displacements within the 

representative volume are analytic and can be represented by Taylor expansions round point 

P. As discussed above (conditions (a) and (b)), the size of the volume element h must be 

much smaller than the macro-volume characteristic dimension L and much bigger than the 

microstructure size a in a sense that the continuum approximation is a double asymptotics as 

h/L→0 and a/h→0 (eg, [4-6]). As a result of this asymptotic transition, we have a continuum 

that permits the usual description based on the established rules of differential geometry. The 

only difference from a conventional continuum is that each point may have additional DOF 

namely the higher order polynomial coefficients in (1.1) enabling the consideration of 

deviations of the deformation from the mean values within a representative volume element. 

 The term u′i,j provide us with nine micro-distortion components: three micro-rotations and 

six micro-strains. If for simplicity we take into account only the anti-symmetric part, we 

arrive at a continuum with 6 DOF (three translational DOF, the macro-displacements ui, and 

three rotational ones, micro-rotations ϕi). This is the Cosserat theory or the theory of micro-

polar elasticity (eg, Mindlin and Tiersten [7]; Nowacki [2]; Eringen [8]; Eringen and Kafadar 

[9]). The rotational degrees of freedom are very often referred to as the Cosserat rotations 

giving tribute to the brothers Cosserat who were the first to propose such a theory. 

 Further generalizations can be obtained by including the symmetric part of the 

microgradients into the model as well and/or by keeping the next term of the Taylor 

expansion u′i,jk  bringing the total number of DOFs to 36, Mindlin [3]. 

 It should be emphasized that the micro-deformations in the expansion (1.1) are 

independent in general from the macroscopic deformation gradient. The relationship between 

the macro-and the micro deformation is established by means of additional constitutive 

relationships. 
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 The higher-order gradient theories necessitate the introduction of additional stress tensors 

which are conjugate to the additional deformation measures (eg, couple or moment stresses in 

the Cosserat type theories; double forces tensor in the Mindlin continuum, etc). In the 

elasticity theories, these new stress tensors can normally be obtained by differentiating the 

variation of an elastic potential (the elastic energy density) with respect to the variation of the 

deformation measures. The equations of equilibrium or motion also have to be obtained for 

additional stress factors in the higher-order gradient theories. It should also be mentioned that 

the formulation of boundary value problems maybe in terms of displacements complemented 

by the additional DOF’s (for instance, rotations in the Cosserat theory) or in terms of the 

stress tensors complemented by the conjugates of the additional DOF’s (for instance, 

couple/moment stresses in the Cosserat theory) or in a mixed form. 

 It is well known that the governing equations of the continuum have to be translational and 

rotational invariant. This requirement yields exactly 2X3 balance equations. Translational 

invariance requires the consideration of linear momentum; rotational invariance requires the 

consideration of angular momentum. The equations of motion in the standard theories result 

from the moment balance, while the moment of momentum balance gives the symmetry of 

stress tensor. In the Cosserat theories both momentum balance and moment of momentum 

balance are used, each contributing three equations. An interesting question for higher-order 

theories would be where to get the additional equations of motion/equilibrium from. At 

present, this question is still open
1
, as no other fundamental hypotheses similar to the 

hypotheses of the isotropy and homogeneity of space and time have been formulated yet. That 

is why gradient enhanced theories become increasingly popular and used. They do not require 

additional motion/equilibrium equations but at the same time allow one to include the strain 

gradients into the formulation. This in reality does not add new DOF, but increases the order 

of governing partial differential equations. 

 Mindlin [3] used the Hamilton’s principle for independent variations, which were his 12 

DOF, and obtained twelve equations of motion from the variational equation of motion. 

However, this approach is applicable only in elastic materials. An application of the method 

                                                 
1 A possible remedy to obtain an extra set of equilibrium/motion equations in situations when the representative 

volume element is made up of homogeneous but materially distinct sub-volumes is to divide the volume element 

into smaller ones and write down the corresponding equations of motion/equilibrium for each of them. At least 
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of virtual power for derivation of the balance equations of micropolar and second gradient 

continua was discussed in the works of Germain [10, 11] and Maugin [12]. 

 The second approach (homogenisation by integral transformation) involves the 

introduction of a non-local (integral) constitutive law (when the long-range interactions 

between the particles need to be accounted for, eg [13]). This in general means that the stress 

components depend on the strains at all points of the continuum albeit with weight decreasing 

with distance from the point of interest. In essence, this approach shifts the procedure of 

homogenisation from the definition of deformation measures (by introducing the volume 

element) to the constitutive relationships. Both approaches can be combined leading to non-

local theories with additional degrees of freedom. 

 Non-local homogenisation strategies of the discrete materials were introduced by Kröner 

[14], Kröner and Datta [15], Kunin and Waisman [16], Kunin [13, 17] and Eringen [18] for 

periodical microstructures. The homogenisation was performed by trigonometric interpolation 

of the discrete field of displacements and rotations of the particles. In those theories the 

particle centres are assumed to be situated at the nodes of a regular grid. This leads to non-

local stress-deformation relationships reflecting the fact that the values of interpolating 

polynomial at a point are sensitive to the values at the other points. The kernels of the non-

local relationship are expressed through the Kunin’s analog of the Dirac-delta function which 

“remembers” the microstructure size. 

 Specifically, in the case of a three-DOF continuum this homogenisation procedure leads to 

a non-local continuum (with the same three DOF), the non-local stress-strain relationship and 

the non-local stresses satisfying the conventional equations of equilibrium or motion. In the 

following it will be demonstrated that in a continuum with six DOF, the Cosserat continuum, 

this homogenisation strategy leads to a non-local Cosserat continuum. Subsequently, in this 

continuum one comes up with the non-local constitutive equations in which stresses and 

moment stresses are expressed through the deformation measures (strains and curvatures). 

Non-local stresses and moment stresses satisfy exactly the same equations of equilibrium or 

motion as in the case of a “local” or “conventional” Cosserat theory. We would like to 

mention here that Kunin [17] also considered a quasi six-DOF continuum, in which the three 

                                                                                                                                                         

in this way the lever-arm (the subdivision size) can be brought into the formulation in order to get the third order 

double forces tensor with the balance equation for its components. 
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rotational DOF’s are equal to the three rotations of the standard continuum. In Section 2 we 

represent a generalisation of Kunin’s method to the case of independent rotations. 

 The major difference between local and non-local continua is that in the latter the stresses 

and couple or moment stresses become pseudo- stresses as they no longer refer to an 

elementary area, but to a finite volume. This obviously contradicts the Cauchy-Euler 

principle. The question arises why the equations of equilibrium should necessarily hold in 

their “conventional”, local form when the interaction between the parts of the body is not of 

the surface nature; it is transmitted not only through the surface, but through the volume. 

 For the considered periodic case, a justification of the conventional form of the equations 

of equilibrium/motion will be offered when a non-local orthotropic Cosserat continuum model 

will be constructed for non-interacting identical chains of granulates. Starting from the 

discrete medium consisting of, for example, particles having translational and rotational 

DOF’s, it is possible to obtain the Lagrange equation of motion. It turns out that the Lagrange 

equations are formally identical to the equations of a local Cosserat continuum with non-local 

constitutive relations. This finding supports the adoption of the “usual” local conservation 

laws in connection with non-local continua. 

 In general, the choice of the kernels is based on purely mechanistic or phenomenological 

considerations (eg, [19, 20]), material symmetry combined with a choice of the size of the 

domain of influence. Unfortunately and in particular in 3D these requirements do not 

constrain the possible variety of kernel forms significantly. This “inconvenience” is rather 

difficult to overcome, as the kernel is a function in principle of all variables of the continuum 

model. This poses considerable difficulties in determining possible kernel forms from 

experiments. 

 The phenomenological approach does not address the question of the validity of local 

conservation laws and the physical significance of Cauchy stresses in the presence of non-

local constitutive laws. These issues can only be answered and follow naturally if the model 

equations are derived from a micro-mechanical model by means of a suitable homogenisation 

procedure. 

 Alternatively, non-local operators on strains are used in their own right as substitutes for 

local strains in damage loading function (de Borst et al. [21]) leading to non-local damage 

models (eg, Pijaudier-Cabot and Bazant [22]; Bazant and Pijaudier-Cabot [23]; Pijaudier-

Cabot [24]). 

 Finally we mention a selection of developments (by no means complete), we consider 

relevant to the topic of this paper: macroscopic modelling of layered materials was conducted 
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by Mühlhaus [25], Zvolinskii and Shkhinek [26], Adhikary and Dyskin [27]. In this 2D 

modelling the role of the Cosserat rotation (only one rotation in this case) was played by the 

rotation of the neutral axis of the layer (the deflection gradient), while the moment stresses 

were the bending moment per unit area in the cross-sections of the layer. Mühlhaus [28] and 

Mühlhaus and Hornby [29, 30] modified the model of layered materials by introducing a 

different rotation measure, which is the relative deformation gradient. Mühlhaus [25] and 

Sulem and Mühlhaus [31] developed a model for a blocky material (the material broken into 

rectangular blocks). Cosserat type theories for random packing of granulates were also 

developed, for instance, by Mühlhaus and Vardoulakis [32], Mühlhaus et al [33], Chang and 

Ma [34]. A combination of a Cosserat continuum and a higher-order gradient continuum for 

granular materials has been derived by Mühlhaus and Oka [35] and Mühlhaus and Hornby 

[36]. 

 Additional DOF’s also appear in a new numerical fracture mechanics method (Wells and 

Sluys [37]). In this method the additional DOF’s are associated with the distribution of 

displacement discontinuity introduced to model crack evolution. 

 

1.2. Homogenisation methods 

Homogenisation as the main method of constructing continuum descriptions of a discrete 

material has always been the corner stone of continuum mechanics. It was the main 

simplifying factor and for centuries provided a powerful means to model solid bodies as a 

mathematical continuum rather than a collection of elements the solids are composed of. The 

first and simplest approach was not to consider the scale of the microstructure at all, but to 

smear it, so to speak. The introduction of the concept of the representative volume element 

served this purpose perfectly. Many significant problems were and are formulated and solved 

within the framework of classical elasticity and plasticity theories. However, restrictions of 

smearing the microstructure were felt mainly where the microstructure was essential to model 

and thus could not be ignored. As a result, more sophisticated continuum theories became 

high in demand around the late 1980’s and so were adequate homogenisation strategies. The 

following is a sampling of the most important homogenisation procedures: 

1. Averaging over volume element adopted in the theory of effective characteristics (eg, Hill 

[38]; Mori and Tanaka [39]; Christensen [40]; Hashin [41]; Kachanov [42]; Nemat-Nasser 

and Horii [43]; Germanovich and Dyskin [5]; Krajcinovic [44]; Cambou [45]). 
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Homogenisation produces a set of macroscopic elastic moduli based on the properties of 

the microstructure. These micro-structural constants are called effective characteristics, 

from which the name of the method derives. 

2. Homogenisation method applied to materials with randomly varying elastic properties 

based on averaging over realizations (ensemble averaging), (Savin and Khoroshun [46]; 

Khoroshun [47]). 

3. A group of methods based on modelling of periodically regular microstructure such as 

periodical system of defects/inclusions, layers, regular granular packing (eg, Duffy and 

Mindlin [48]; Deresiewicz [49]; Meguid and Kalamkarov [50]). This group of methods 

exploits the fact that the microstructure is positioned in periodical cells and the problem is 

solved for a representative defect. Then by using the periodicity, the solution for the 

whole domain is sought by looking for suitable periodic functions accompanied by 

corresponding periodic boundary conditions at the cell boundaries (eg, Vanin [51]; 

Nemat-Nasser and Horii [43]; Cambou [45]). 

4. Homogenisation by integral transformations (Kunin [13, 17]). This is a special method of 

homogenisation applied to periodical structures only. The method is based on the 

trigonometrical interpolation. The discrete medium is replaced with a continuous one such 

that the continuous values of field variables coincide with the discrete ones at the nodes 

and give some values in between by using the above trigonometrical interpolation. 

5. Homogenisation by differential expansions (eg, Mühlhaus and Oka [35]; Maugin [52]; 

Suiker et al [53, 54, 55]). The method is based on expanding the field variables into the 

Taylor series once a strategy to relate the discrete variables to continuum variables is 

established. This method allows for higher-order theories derivations if a way to identify 

correspondent derivatives of the field variables in the Taylor expansions as higher-order 

terms can be found. 

1.3. Continuum modelling of granular materials 

Depending on the packing density, granular materials can behave like solids or like fluids. If 

the packing is dense, granular material behaves solid-like. Large (finite) deformations are not 

ruled out. For loose packings, granular material may behave fluid-like. Here we concentrate 

on the first type. For a discussion of the fluid-like regime see eg, Mühlhaus and Hornby [36]. 

We concentrate on elastic models for simplicity since the emphasis is on the homogenisation 

procedure and not on constitutive details. 
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 Discrete and continuum models represent two main streams of modelling of mechanical 

behaviour of granular materials. In the former approach granular materials are modelled as a 

discrete system using, for example, the discrete element method. Many models are developed 

in the framework of this approach (eg, Satake [56]; Tüzün and Heyes [57]; Thornton [58]; 

Mühlhaus et al [59]). Equations of motion are solved for each particle in the assembly: the 

particle is subjected to momentum or even mass transfer from neighbouring particles. The 

number of equations to solve is naturally quite large requiring powerful computers. On top of 

that, direct computer simulations would require detailed information (geometrical and 

mechanical) of all grains in the assembly. This kind of information is usually hard to obtain or 

not available. In other words, the computational accuracy achievable in principle by this 

method much exceeds the accuracy of the input data available – hardly an efficient way of 

modelling. 

 In the continuum approach the equations of motion are derived for a volume element, 

governing equations describing constitutive behaviour are formulated by using the continuum 

stress-strain concepts. Continuum models can be classified as phenomenological and 

microstructural. Phenomenological modelling (eg, Gudehus [60]) is based on postulating the 

constitutive equations, which necessitates a considerable amount of testing and model 

calibration. 

 Microstructural continuum modelling was extensively developed over the past few years as 

an alternative or a strategy to provide constrains for phenomenological constitutive models. 

The benefit of the microstructural approach is that it results into rational estimates of the 

model parameters. 

 For applications of microstructural approach see the papers by Duffy and Mindlin [48], 

Deresiewicz [49], Digby [61], Walton [62], Bathurst and Rothenberg [63], Chang [64], 

Jenkins [65], Mühlhaus and Oka [35]. The principles of microstructural modelling have been 

revisited recently by Suiker et al [53, 54, 55], Cambou et al [66]. 

 The first simple micro-polar (Cosserat) type theories for random packing granulates were 

developed by Mühlhaus and Vardoulakis [32], Mühlhaus et al [33], Chang and Ma [34]. Both 

stresses and moment stresses were introduced, but the contact particle interaction was less 

sophisticated than in the more recently developed theories (Fleck and Cocks, eds., [67]). For 

example, moment stresses were attributed to the tangential component of the contact force 

and only resistance to the relative particle displacements was introduced into the contact 

relations (eg, Mühlhaus et al [33]). 
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 Further development of pure Cosserat type theories for randomly packed assemblies went 

in the direction of more sophisticated and refined particle interaction modelling. This includes 

both contact force and moment exerted onto a reference particle, as well as the resistance of 

the particles to both their relative displacements and relative rotations at the contact points. 

These refinements were implemented by Pasternak and Mühlhaus [68, 69, 70]. Orthotropic 

Cosserat and non-local Cosserat continuum models for non-interacting chains of granulates 

were developed by Mühlhaus et al [6], Pasternak and Mühlhaus [71, 72], see details in 

Section 2. 

 The wide variety of approaches discussed above suggests that a comparative study of the 

different methodologies may be useful in order to assess the quality of the approximation of 

the different homogenisation methods. 

 For simplicity we consider a model example of microstructure: 1D non-interacting chains. 

The structural bonds determine the material behaviour only in one direction. This case of non-

interacting chains of spheres is artificial and cannot be seriously thought as an example of 

granular material. It is selected to serve a special purpose – to have a structure for which the 

exact solution would not be very difficult to find and to provide a testing ground for 

comparison of homogenisation methods. We will then proceed to investigation of wave 

propagation in granular materials with internal rotational degrees of freedom. 

 

2. HOMOGENISATION OF 1D STRUCTURES 

In the following we demonstrate how additional rotational degrees of freedom arise naturally 

by mathematical homogenisation of a discrete system. For this purpose, a simple periodic 

discrete model of spheres connected to each other by both rotational and translational springs 

will be considered. This model allows the analytical derivation of a general closed form 

solution. 

 The aim of this section is to investigate two homogenisation techniques. One of them 

produces an anisotropic Cosserat continuum and the other one produces a non-local Cosserat 

continuum. A boundary value problem of a vertical duct will be considered in order to 

establish how accurately the Cosserat and non-local models describe the behaviour of the 

granular materials. 
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2.1. Model formulation 

In many cases, generalised continuum theories provide a convenient framework for the 

approximate representation of an originally discrete model. In order to analyse different 

homogenisation techniques we consider a simple material consisting of one dimensional, 

parallel chains of identical, spherical grains. We suppose that the chains do not interact with 

each other. The grains in a chain are connected by translational shear springs of stiffness k and 

rotational springs of stiffness kϕ (Figure 2), r is the sphere radius. The grains in neighbouring 

chains are not connected and move independently. 

a
ϕ2i r

x3

x1kϕ

k

u3i

……

 

Figure 2. 1D chain of spherical grains connected by translational (shear) and rotational 

springs. 

 

 The potential (elastic) energy of a single chain in the system reads 
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with the potential energy density referred to the i-th sphere being: 
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Here a designates the spacing of the mass centres of neighbouring spheres, and a
−2η−1

 is the 

number of chains per unit area of cross-section. 

 We note here that the rotational springs are important in this arrangement, since neglecting 

the resistance to rotation (kϕ→0) makes the energy lose its positive definiteness. 

 The equations of motion for the spheres are: 

 iiiiiii qakuuukum 31212133133 ))(2/()2( =ϕ−ϕ−+−− −+−+&& , (2.31) 

iiiiiiiiii MkakuuakJ 21221212212

2

13132 )2()2)(4/())(2/( =ϕ+ϕ−ϕ−ϕ+ϕ+ϕ+−+ϕ −+ϕ−+−+&& (2.32) 



Pasternak & Mühlhaus 13 Generalised homogenisation procedures 

 

where iu3 , i2ϕ  are the independent Lagrange coordinates, iq3  and iM 2  are applied load and 

moment at i-th sphere respectively, J=2mr
2
/5 is the moment of inertia of the sphere. 

 

2.2. Homogenisation by differential expansion (Cosserat continuum) 

We replace the finite difference expressions in (2.2) with corresponding differential 

expressions. Truncation of the Taylor expansions in a after the second order terms gives the 

following approximation 
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u
kaxW . (2.4) 

 Differentiation of the energy density with respect to the Cosserat deformation measures, 

viz. strains and curvatures, 

 2

1

3
13 ϕ+

∂
∂

=γ
x

u
, 

1

2
12

x∂
∂ϕ

=κ , (2.5) 

gives 

 ( ) 13

1

13 γη=σ −
ak , ( ) 12

1

12 κη=µ −
ϕ ak . (2.6) 

 Introduction of body force f3 and moment m2 and consideration of momentum and angular 

momentum equilibrium yield 

 33

1

13 uf
x

&&ρ=ρ+
∂

∂σ
, 2213

1

12 ~ϕ=ρ+σ−
∂

∂µ
&&Jm

x
, (2.7) 

where 
η

=ρ
3a

m
 is the density, 

η
=

3

~

a

J
J  is rotational inertia per unit volume or density of 

rotational inertia. 

 Equations (2.5)-(2.7) formally represent a 1D Cosserat continuum (eg, [2]). Every point of 

this continuum has two degrees of freedom: u3 represents the displacement, while ϕ2 is being 

identified as the independent rotational degree of freedom, the Cosserat rotation. 

Mechanically speaking, the obtained continuum equations describe a 3D orthotropic Cosserat 

continuum (all other components of stress and moment stress tensors and corresponding 

deformation measures are zero). Formally, after suitable reinterpretation of the model 
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parameters
2
 one obtains the governing equations of a Timoshenko beam (eg, [28, 73]). In this 

case ϕ2 represents the rotation of the beam cross-section and u3 is the displacement of its 

neutral fibre. 

 After substituting constitutive equations (2.6) into equations of motion (2.7) we obtain the 

Cosserat equations of motion (the Cosserat equivalent of Lamé equations): 

 33
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2

2

1

3

2
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xx

u

a

k
&&ρ=ρ+


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
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
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∂
∂ϕ

+
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∂
η

, (2.81) 

 2322
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1

ϕ
η
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
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



ϕ−

∂
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−
∂

ϕ∂
η ϕ &&

a

J
mk

x

u
k

x
k

a
. (2.82) 

 Next we homogenise discrete equations of motion (2.31)-(2.32) and compare the result with 

the obtained Cosserat equations of motion (2.81)-(2.82). For the derivation of the continuum 

version of equations (2.31)-(2.32) we first replace the discrete coordinate by a continuous 

coordinate, ie ai→x as outlined for example by Mühlhaus and Oka [35] )( 133 xuu i a , 

)(),(),( 122133133 xxuuxuu iii ϕϕ a&&a&&a , )(),(),( 122133122 xMMxqqx iii aa&&a&& ϕϕ , 

)( 1313 axuu i ±± a , )(),( 13131313 axaxuu ii ±ϕϕ± ±± aa . 

 The equations (2.31)-(2.32) can formally be written in a homogenised (continuous) form by 

introducing continuous functions u3(x), ϕ2(x) which coincide with u3i and ϕ2i(x) at discrete 

points x=ai and assume some values in between: 

)()]()()[2/()]()(2)([)( 13121213131313 xqaxaxakaxuxuaxukxum =−ϕ−+ϕ−−+−+−&&  (2.91) 

−−ϕ+ϕ++ϕ+−−++ϕ )]()(2)()[4/()]()()[2/()( 121212

2

131312 axxaxakaxuaxuakxJ &&  

 ).()]()(2)([ 12121212 xMaxxaxk =−ϕ+ϕ−+ϕ− ϕ  (2.92) 

These formal equations will form the starting point for the homogenisation below. 

 Following Mühlhaus and Oka [35], the equations (2.91)-(2.92) can be homogenised by 

replacing the finite differences with the Taylor series expansions, keeping terms of the second 

order in a and normalising the obtained equations by the volume (i.e. dividing by a
3η) one 

eventually has 

                                                 

2 kϕ/a is interpreted as the bending stiffness, k/a as the shear modulus. 
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η
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η
++ϕ−′−ϕ ′′

η ϕ && , (2.102) 

where ρ=m/(a
3η). 

 Comparison of (2.81)-(2.82) with (2.101)-(2.102) leads to the conclusion that the equations 

of motion in the Cosserat approximation (2.81)-(2.82) give the same leading terms as the 

approximation of the discrete (exact) equations of motion (2.31)-(2.32). Hence, the Cosserat 

theory gives exact terms up to the first order in a inclusive. One could anticipate that the 

terms of order higher than a would be captured by higher order theories. The resolution of the 

theory is a, ie all the “events” smaller than a are not seen (recognised) by the Cosserat 

continuum, which is natural since the a is a length scale or microstructural parameter of this 

Cosserat theory. 

 This Cosserat theory has also another length scale parameter. The second parameter is 

given by the square root of the ratio of the stiffness of the rotational spring kϕ to the 

translational spring stiffness k and has the dimension of length. 

 Note that the limit a→0 in both (2.81)-(2.82) and (2.101)-(2.102) should be understood as 

a/L→0, where L is the size of redistribution of the load (ie an external size). In other words, in 

the above calculations the normalisation in which L=1 is presumed. 

 It follows from the above analysis that the Cosserat equations of motion through 

displacements and rotations (a kind of “Lamé equations” for the Cosserat continuum) can be 

obtained either by the direct homegenisation of the discrete equations of motion or by 

homogenisation by differential expansions of the potential energy density of the discrete 

system provided that the same order of approximation is maintained in both cases. 

 The outlined strategy of homogenisation by differential expansions allows one to formulate 

the appropriate continuum description of the discrete system. The homogenised potential 

energy density of the mechanical system has the meaning of the elastic energy density in the 

continuum sense with subsequent introduction of the deformation measures. Once the 

constitutive equations have been recovered, the Cosserat “Lamé equations” are obtained in a 

usual fashion by substituting the governing equations into the motion equation. Thus, the 

boundary value problem can be formulated accompanied by boundary conditions. This 

approach can be virtually adjusted to any microstructural particles arrangements. 
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2.3. Homogenisation by integral transformation (non-local Cosserat continuum) 

Here we consider another homogenisation strategy – homogenisation by integral 

transformations. Kunin’s [13] homogenisation procedure for discrete periodical structures is 

based on the trigonometrical interpolation of discrete functions. For the material consisting of 

independent periodical chains of grains we have: 
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. (2.11) 

 The application of (2.111) to the discrete equations of motion (2.3) yields the non-local 

equations of motion (non-local Lamé equations): 

[ ] ++−δ−−−δ−−δ∫
+∞

∞−
113111111 )()()()(2 dyyuayxayxyxk KKK  

[ ] )()()()()()2/( 13131121111 xumxqdyyayxayxak KK
&&−=ϕ+−δ−−−δ+ ∫

+∞

∞−

, (2.121) 

 [ ] +−−δ−+−δ∫
+∞

∞−
1131111 )()()()2/( dyyuayxayxak KK  

[ ] +ϕ−−δ+−δ++−δ+ ∫
+∞

∞−
112111111

2 )()()(2)()4/( dyyayxyxayxak KKK  (2.122) 

[ ] )()()()()()(2 1212112111111 xJxMdyyayxayxyxk KKK ϕ−=ϕ−−δ−+−δ−−δ+ ∫
+∞

∞−
ϕ && . 

These equations are essentially a representation of (2.9). 

 In order to obtain the constitutive relationship we consider the potential energy of a chain 

(2.1) since a structure we are studying is essentially one-dimensional. Inserting (2.111) into 

(2.1), integrating the result by parts and assuming that functions u and ϕ and their derivatives 

decay strongly enough at infinity to make the non-integral terms zero, leads to the following 

representation of the elastic energy of the chain: 
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 (2.13) 

where )()( xxC Kδ−=′′ , )()( xCxK =′ , )()(1 xCxK −=″
 and the introduced Cosserat 

deformation measures have the form 
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13 ϕ+
∂
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=γ
x

u
, 

1

2
12

x∂
∂ϕ

=κ . (2.14) 

 The choice of deformation measures (2.14) was dictated by the wish to be consistent with 

the previous section as the intention to build a non-local Cosserat continuum was envisaged. 

In fact, this is the only possible way to introduce the deformation measures that would be 

invariant with respect to the rigid body translation and rotation. Indeed, for the rigid body 

translation u3=const, ϕ2=0, γ13=0, κ12=0; similarly for the rigid body rotation 

   u3= -x1ϕ2, ϕ2=const, γ13=∂u3/∂x1+ ϕ2= -ϕ2+ϕ2=0, κ12=0. 

 Consider the energy of the whole body U=N1N2U1, where N1, N2 are numbers of chains in 

the directions x2 and x3 respectively. Variation of the energy is 

∫∫∫
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µδκ+σδεη=δη=δ=δ 121
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, (2.15) 

where W(x1,x2,x3) is the specific potential energy at point x=(x1,x2,x3), η1/2
a is the spacing 

between non-interacting chains of the spatial assembly. Since δU=N1N2δU1 the variation of 

U1=U1(γ13, κ12) in (2.13) with subsequent extraction of δW in (2.15) and the introduction of 

the stress and moment stress 
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W
x

δκ
δ

=µ  (2.16) 

yield the following expressions for the stress and the moment stress: 
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 It is seen that the homogenisation by integral transformations produces non-local 

constitutive relationships with oscillating kernels. The origin of this particular type of non-

locality is in the fact that the interpolation function for a given set of u3i, ϕ2i is unique, and 

hence the alteration of any local value leads to the change of the whole function. 

 Integrating the non-local “Lamé equations” (2.12) by parts, extracting the expressions 

(2.17), (2.18) and accounting for volume forces and moments yields the following Euler-

Lagrange equations: 
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 The form of the angular momentum balance (2.192) is standard and consistent with its 

Cosserat counterpart (cf. (2.72)). Stresses σ13, µ12 are interpreted conventionally. However the 

constitutive relationships are non-local ie determined by the deformations of all parts of a 

chain. There could be another view on the non-local stresses and moment stresses. Since they 

are no longer referred to the elementary area they are supposed to act onto in the conventional 

Cauchy sense, the continuum obtained may be regarded as a pseudo- one. Nevertheless, we 

give the preference to the term ‘non-local Cosserat continuum’. 
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 In essence, the equations (2.14), (2.17), (2.18) and (2.19) constitute mathematically a 1D 

non-local Cosserat continuum. Every point of this continuum has two degrees of freedom, the 

displacement u3 and the Cosserat rotation  ϕ2. Mechanically speaking, the obtained continuum 

equations describe a 3D non-local orthotropic Cosserat continuum (all other components of 

stress and moment stress tensors and corresponding deformation measures are zero). 

 Obviously, the non-local “Lamé equations” (2.121)-(2.122) can be recovered if one 

substitutes the non-local constitutive relationships (2.17), (2.18) into the equations of motion 

(2.19). This gives a displacement-rotation formulation. 

 

2.4. Invertibility of kernels in non-local constitutive equations 

Here we will discuss the issue of invertibility of the kernels in non-local constitutive 

equations (2.17), (2.18). One can expect that they have an inverse since their generating 

function, the Kunin-delta, has the inverse in contrast to the non-inversible bell-shaped 

Gaussian kernels often used nowadays (eg, [20]). 

 The discrete system with 6N degrees of freedom, N being the number of the particles in it, 

is defined by the 6N Lagrange coordinates, displacements and rotations, ui, ϕi. If the forces 

and moments qi, Mi are applied to the mechanical system the one-to-one correspondence 

between the loads applied to the mechanical system and displacements and rotations is 

established by the discrete (Lagrange) equations of motion (2.3). Let A be this one-to one 

mapping: 

 
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






ϕ M

qu
A r

r

r

r

. (2.20) 

If the system of the discrete equations of motion can be solved for displacements and rotations 

of the particles, then it is given by the inverse mapping A
-1

. 

 The application of the homogenisation by integral transformations (Kunin’s 

homogenisation) (2.11) gives the homogenised continuum variables u(x), ϕ(x), q(x), M(x), 

governed by the homogenised equations of motion (2.3) or formally (2.20), for example in the 

form (2.9) or (2.12). The spaces of the discrete and continuum representations are isomorphic, 

Kunin [14]. Let H1 be this isomorphism, ie H1 establishes the isomorphism between the 

discrete Lagrange coordinates and their continuum counterparts, between the discrete and 

non-local equations of motion. Following a procedure similar to the outlined in the previous 
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section, non-local constitutive relationship can be obtained (eg, (2.17), (2.18)). We formally 

write it down as follows 

 







κ
γ

=







µ
σ

12

13

12

13
K , (2.21) 

where K is non-local operator acting on the strains and curvatures and producing non-local 

stresses and moment stresses. 

 The space of the discrete loads applied to the system is isomorphic to the space of the non-

local stresses and moment stresses, and this isomorphism H2 is established by the equations of 

equilibrium (2.19) modulo the two free constants determined by the boundary conditions. 

This is illustrated by the diagram on Figure 3. Thus we conclude that if ∃ A
-1

 then ∃  K
-1

 i.e. K 

is invertible. This means that kernels in non-local constitutive equations have their inverses if 

the initial discrete mechanical system is solvable for displacements and rotations under 

prescribed loads. 

 It is worth noting that since H1 establishes the isomorphism between the discrete Lagrange 

coordinates and their continuum counterparts, ie between the discrete and non-local equations 

of motion, the homogenised equations (2.3) or (2.12) are exact. This means that the solution 

of a boundary value problem under this non-local formulation must be exact or in other words 

must coincide with the discrete one. 

ϕ
rr

,u Mq
rr

,
A

A
-1

u(x), ϕ(x) µσ,
K

K
-1

H1 H2

 

Figure 3. Isomorphism of spaces. 

 

2.5. Random kernels 

As we established above in the non-local relationships (2.17), (2.18) some of the kernels 

exhibit the oscillating behaviour. An interesting question is now whether the oscillating 

behaviour of the kernels in the non-local relationships (2.17), (2.18) will disappear if some 

form of randomness is introduced into the mechanical system. In other words, can the 
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randomness help to cure the oscillating nature of the kernels in the non-local constitutive 

equations, ie can we get a nice bell shape form of the kernels in this case, as presumed eg by 

Eringen [20]. We try to find what non-local kernels look like for the irregular arrangements of 

the balls in chains. Since all the kernels were generated by the Kunin-delta, it would suffice to 

consider a less sophisticated model in which the nature of the problem is preserved, but the 

number of kernels would reduce significantly. 

 In view of this, we consider a simple material consisting of one dimensional, parallel, non-

interacting chains of identical, spherical grains as before, but now the grains in a chain are 

connected by translational normal springs of stiffness ki only, r is the sphere radius, a is the 

interball distance as before (Figure 4). To be able to apply the homogenisation by integral 

transformation the inter-ball spacing is presumed constant. We assume that stiffnesses ki are 

independent random variables, normally distributed with the mathematical expectations 

E(ki)=k and the variance Var(ki)=s
2
. This way the irregularity of the system is achieved. It will 

be enough to consider only one chain as our aim is restricted to investigating the form of the 

kernel rather than building a proper continuum for this model. 

 The potential (elastic) energy of a single chain in the system reads 

 
2
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1 ∑ −−=
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iii uukU . (2.22) 

Insertion of (2.111) into (2.22) yields the following homogenisation for the potential energy: 
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Figure 4. 1D chain of spherical grains connected by translational (normal) springs. 
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 In series (2.24) ki are independent normal variables and ∞<−δ−δ∑
i

KK iayiax 2)]()([ . 

Therefore, for fixed (x,y) ),(ˆ yxΦ  is a normal variable (eg, [74]). Accordingly, the kernel Φ̂  

is a normally distributed random function. Since the number of the spheres in the chain is 

large, the finite sums can be replaced with series, then the mathematical expectation and the 

variance are 
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 The mathematical expectation is the kernel that one would obtain conducting stochastic 

experiment and according to (2.25) is given by Kunin-delta function (with a factor) that is 

oscillating. This means that the imposed randomness modelling irregularity of the particles 

arrangement does not remove the oscillating nature of the kernel, ie after averaging the kernel 

determined by the random function (2.25) does not have the Gaussian, bell-shaped form. 

 The variance (2.26) behaves asymptotically as s
2
a

-4
[(sin

2
(πx/a))/3+1] at (x-y)→0 and thus 

does not have singularities when (x-y)→0, which is sound since the series in (2.24) is 

convergent. 

 The normally distributed function ),(ˆ yxΦ  is fully determined by its mathematical 

expectation, the variance and the two-point correlation function. The correlation function 

between any two points ∑ −δ−δ=Φ≡Φ
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It can be shown that formal limiting transition x1→x2, y1→y2 leads to Φ=ΦΦ ˆ)ˆ,ˆ( VarCOV . 

Indeed, by taking the limit of (x1,y1)→(x2,y2) in the last formula, one arrives to the formula for 

the variance (2.26). This serves as an indirect verification of (2.27). 

 

2.6. A boundary value problem. Vertical duct 

Let us consider an infinitely long duct occupying the area 0<x1<L, │x3│<∞. The duct is filled 

with granular material modelled by identical regular chains of balls connected by translational 

and rotational springs (Figure 5). The boundaries of each chain are subjected to pure clamping 

which corresponds to the following boundary conditions: u3=0, ϕ2=0. The volume force of ρg 

is applied to every ball. Let us assume that all fields depend on x1 only. The inertia terms 3u&& , 

2ϕ&&  are neglected. 

 For the sake of simplicity x will be written instead of x1, u instead of u3, ϕ instead of ϕ2. 

u

x

ϕ i

kϕ

k

ui

…

ρg

…

 

Figure 5. Model of the duct with grains. 

 

2.6.1. Exact solution of the discrete equations of equilibrium for the duct 

We now find the exact solution – the solution of the finite difference equations system (2.3) 

for the static case, qi=q, (q= -Bηa
3
), Mi=0 under the following boundary conditions: 

 u uj = =0 0 , u uj N N= = , ϕ ϕj = =0 0 , ϕ ϕj N N= = . (2.28) 

 The general solution of the correspondent homogeneous system: 

 0))(2/()2( 1111 =ϕ−ϕ−+−− −+−+ iiiii akuuuk ,   ( )i N= −1 1,..., . (2.291) 
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0)2()2)(4/())(2/( 1111

2

11 =ϕ+ϕ−ϕ−ϕ+ϕ+ϕ+− −+ϕ−+−+ iiiiiiii kakuuak  (2.292) 

is sought in the form i

i Cu χ= , i

i Cχ=ϕ . By substituting it into (2.29) the multiple root of 

fourth order, 1=χ , of the characteristic equation can be found. Then using the boundary 

conditions at j=0, the solution of the homogeneous system can be written in the form: 
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210 jCjC
c

j ++ϕ=ϕ , (2.30) 

where 1C  and 2C  can be obtained from the boundary conditions at the other end, j=N. 

 After eliminating ui from the system (2.29), it can be shown that the particular solution of 

(2.3) for the rotations satisfies the equation 

 
ϕ
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3 ,   )()1( xfxf −+=∆ . (2.31) 

 A particular solution of the equation (2.31) can be written in the form: 
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Then a particular solution in displacements can be found as a solution of the equation 
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Eventually, the particular solution of the equation (2.33) can be written in the form: 

 2
2

4
2

22424
i

k

q

k

qa
i

k

qa
u

p

i 









−+=

ϕϕ

. (2.34) 

Then the full solution becomes 
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−++ϕ=ϕ . (2.352) 
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2.6.2 Non-local Cosserat continuum model of the duct/Solution of the equations of 

equilibrium in the non-local Cosserat continuum 

According to established isomorphism (section 2.4) the non-local Cosserat solution should 

coincide at sphere centres with the exact (discrete) solution. It is however important to see 

what the continuous non-local solution looks like at the points between the sphere centres. 

The solution of the equations of equilibrium in the non-local Cosserat continuum (2.12) in the 

static case with zero volume moment and a constant volume force were obtained by Pasternak 

and Mühlhaus [72]. 

 Using the conventional Fourier transform one reduces the non-local “Lamé equations” 

(2.12) to the following system of equations: 
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ω−ϕ=ωϕ dxex ix  (2.37) 

δ(ω) is the ordinary Dirac-delta function. 

 The inverse transforms are: 
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 The Fourier transform of the Kunin-delta function is: 
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π>ω
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=ωδ
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)( . (2.39) 

 Correspondingly, we will look for solution of (2.36) for |ω|<π/a. As usual, the full solution 

of the system (2.36) can be written in the form: 

 pc uuu += , pc ϕ+ϕ=ϕ , (2.40) 

where the pair ( cu , cϕ ) is the homogeneous solution and ( pu , pϕ ) is a particular solution of 

the non-homogeneous system. 
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 The determinant of the homogeneous system is equal to 
2

sin 4 a
k

ω
ϕ  and in the interval 

|ω|<π/a has a root 0=ω  of the fourth order. Hence, the homogeneous solution has to be 

sought in the form: 
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j , (j=1,2), (2.41) 

where 

 )()(),()( 21 ωϕ=ωω=ω XuX . (2.42) 

Insertion of (2.41) into the homogeneous system gives the following relations between the 

constants 
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 Assuming u at x=0 to be u0 and ϕ at x=0 to be ϕ0 one has 0

1

0 uC =  and 0

2

0 ϕ=C . Finally, 

the homogeneous solution can be written in the form: 
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 A particular solution of the system (2.36) is: 
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By performing the inverse Fourier transform and adding the homogeneous solution (2.44), 

full solution can be found: 
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 Alternatively, one can solve the above problem by finding the solution of the equations of 

motion (2.19) with zero inertia terms, in which q(x)/(a
3η)=ρg=-B, M(x)=0. Then the strain 

and curvature can be found from the non-local constitutive relationship (2.17), (2.18) by 



Pasternak & Mühlhaus 27 Generalised homogenisation procedures 

 

solving the system of two integral equations. Subsequently, the displacement and rotation 

fields can be obtained from (2.14). 

 The equations (2.19) have the following solutions: 

 σ σ( ) ( )x Bx= + 0 , )0()0(
2

)(
2

µ+σ+=µ x
x

Bx , (2.47) 

where σ(0), µ(0) are yet unknown stress and moment stress at the origin. 

 The solution can be rewritten in the following form: 
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This form coincides with (2.46) if one sets 
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 Using the boundary conditions u(0)=u(L)=0, ϕ(0)=ϕ(L)=0 one obtains the solution: 
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and the constants σ(0), µ(0) are: 

 ,
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2
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 The normalisation 

 L = 1, E = 1 (2.53) 

leads to 
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)( 2 qpxxxx
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B
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ϕ

  p = −
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2
,  )4/3(4ˆ 2aEq −−= ϕ . (2.54) 

Note that the coefficient at x
4
 in (2.501) is positive because B is negative. This means that 

u u( ) ( )−∞ = +∞ = +∞ , i.e. the branches of the fourth order polynomial u(x) are going 
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downwards at the ± ∞  (the positive direction of u is directed downwards). Because of (2.54) 

the displacement distribution is symmetrical. 

 The displacement becomes zero at points: 

 ( ))4/3(1611
2

1 2

2,1 aEx −+±= ϕ . (2.55) 

If 04/3 2 >−ϕ aE , i.e. 2/3 aE >ϕ , which is the case when the rotational springs are rather 

stiff, then x1>1, x2<0. This means that both roots x1 and x2 are outside the duct. If 

04/3 2 <−ϕ aE , i.e. 2/3 aE <ϕ , which corresponds to the case of small stiffness of the 

rotational springs, then 1ˆ11 <−= qx , 0ˆ
2 >= qx . This means that both roots x1 and x2 are 

inside the duct (Figure 6). Thus, under a certain combination of constants the non-local 

Cosserat continuum solution exhibits a boundary effect consisting of anomalous upward 

displacements near the boundary. 

 According to (2.462), after the normalisation the rotations become (Figure 7) 
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Figure 6. Distribution of normalised displacements for soft ((3Eϕ)1/2
<a/2) and stiff 

((3Eϕ)1/2
>a/2) rotational springs. 
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Figure 7. Distribution of normalised rotations. 

 

2.6.3. Cosserat continuum model of the duct 

Let us find the solution of the Cosserat equations of equilibrium (2.7) for the case of the 

constant volume force and zero volume moment (ρf3= -B, ρm2=0): 
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Denoting -ρf3=-ρg=B, one gets the solution of equations (2.57) in the form 
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Then taking into account the Cosserat constitutive equations (2.6) one obtains 
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Subsequently, by using the deformation measures (2.5) rotation and displacement fields are 

found: 
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 (2.61) 

After satisfying the boundary conditions 

 0)(,0)0(,0)(,0)0( =ϕ=ϕ== LLuu  (2.62) 

equations (2.60) and (2.61) become 
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 Comparing the rotation fields for the Cosserat continuum model (2.632) with the non-local 

Cosserat continuum model (2.502), one can see that they coincide, because the constants σ0 

and µ0 have not changed, while the displacement field (2.631) and (2.501) differ in the terms 

q̂  and cq̂ . Let us analyse this difference. 

 After the normalisation (2.53), the zeros of the displacement can be found: 

 )4811(
2

1
2,1 ϕ+±= Ex . (2.65) 

It is obvious that 1+48Eϕ>1, therefore x1>1, x2<0. Both roots x1 and x2 are always outside the 

duct. This means that the boundary effects, present in the non-local Cosserat continuum 

model, disappear in the Cosserat model. 

 There has to be an explanation for that fact. The length where the boundary effect exists is 

defined by the value of the parameter q. Let us evaluate 

 22 )4/3(4ˆ aaEq <−−= ϕ . 

Hence, the characteristic size where the boundary effect exists is of the order a
2
. However, the 

Cosserat theory does not see the lengths lesser than a (a
2
<a<<1), the characteristic parameter 

of length which has been used when finite differences were replaced by the partial derivatives. 

That is why these boundary effects are left invisible in the Cosserat theory. Furthermore, in 

terms of the original discrete system, no distance smaller than a exists (there are no spheres at 

such distances). Therefore, the “high resolution” boundary effect is an artefact of the non-

local Cosserat continuum resulting from the type of interpolation adopted. 

 

2.6.4. Comparison of the exact solution with the solution in the non-local Cosserat and 

Cosserat continua 

Assuming x=ja one has the Cosserat solution (2.60), (2.61) 
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where 

 12
)0( C

a

k

η
=µ ϕ

, 23

2
)0( C

a

k

η
=σ ϕ

, qBa −=η 3 . (2.68) 

Comparing the Cosserat theory solution (2.66), (2.67) with the exact solution (2.35) one can 

conclude that rotation fields coincide completely, while the displacements differ in terms 

jC
a

2
6

−  and 2
2

24
j

k

qa

ϕ

. 

 If we put ja=x in the non-local Cosserat solution (2.46) we immediately see that the non-

local Cosserat solution (2.46) coincides completely with the exact one (2.35). It means that 

the non-local Cosserat solution gives the exact solution at nodes where the centroids are; as 

we anticipated above, the result is due to the homogenisation by integral transformation. 

However, being a continuum solution the non-local Cosserat solution also gives some values 

in between nodes due to the interpolating nature of the homogenisation by integral 

transformation. 

 Figure 8a shows the comparison of the discrete (exact), non-local Cosserat and the 

Cosserat models solutions for a simple case of three balls. Figure 8b shows the configuration 

before and after the deformation. 

 In the above we developed two continuum models of the discrete model using two 

different homogenisation strategies: by differential expansions and integral transformations 

and compared them against the exact solution of the discrete model. The first approach led to 

the Cosserat continuum theory. The boundary value problem is reduced to solving the 

relatively simple system of two differential equations. The analysis above shows that the 

Cosserat continuum model of granulates gives both quite good accuracy and relative 

simplicity of solving the governing equations. The second approach led to the non-local 

Cosserat continuum theory that gave us the exact solution. The problem is reduced to solving 

the system of two integral equations which is more complicated than solving the system of 

differential equations (the first model) and in essence is no simpler than to solve the 

governing equations of the discrete model, the system of finite difference equations. Thus, the 

second homogenisation approach indeed gave us the continuum description of the discrete 

system, non-local Cosserat continuum. However, being just an equivalent description of the 
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discrete model, giving the exact solution, does not offer any simplification, which generally 

continuum theories are supposed to do. 

 

Non-local Cosserat

0 0.2 0.4 0.6 0.8 1

1
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u(x)/umax

x

Cosserat

Discrete
 

(a) 

 

 

 

(b) 

 

Figure 8. The comparison of the exact, non-local Cosserat and Cosserat solutions: (a) 

displacement distribution; diamonds indicate the centroids of the spheres; (b) configuration 

before (solid line) and after (broken line) the deformation in the vertical duct with three 

spheres. 

 

3. WAVE PROPAGATION. DISPERSION RELATIONSHIPS 

For a particular case of q3(x1)=M2(x1)=0 we consider the propagation of harmonic waves 

 
)( tvxi pAeu

−ξ= , 
)( tvxi pBe

−ξ=ϕ , (3.1) 

where ξ is the wave number, vp is the phase velocity. For the sake of simplicity x will be 

written instead of x1, u instead of u3 and ϕ instead of ϕ2. 

 Propagation of these waves will be studied for the original physical model (2.3) and then 

for the Cosserat (2.8) and non-local Cosserat (2.12) models. 

 

3.1. Wave propagation in the discrete (physical) model 

By substituting (3.1) into the governing equations of the original physical model, namely the 

discrete equations of motion (2.3) or their homogenised (continuous) analogue (2.9), we 
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obtain the following system: 
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The characteristic equation is biquadratic with respect to the phase velocity 
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This equation has positive discriminant. Two real solutions of the equation give the phase 
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Let r=a/2. One can find the ratio of their amplitudes, for example from the equation (3.21): 
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where vp
2
 is given by (3.4). 

 The first type of wave (positive sign before the radical (3.4)) and the second (negative 

sign) have the following long wave asymptotics 
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ξ
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This is asymptotics of the same type as obtained by Mühlhaus and Oka [35]. 

 The corresponding asymptotics for the ratio of amplitudes is: 
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 Thus, we have two types of waves. The first one becomes the rotational wave in the long 

wave limit (ξ→0), while the second one is the shear wave. Otherwise, both components are 

present, but asymptotically one type dominates. For that reason we will call these waves 

rotational-shear and shear-rotational. One should avoid considering the limiting case of ξ→∞ 

(short length wave) since this case cannot be described properly in terms of the physical 

model. This is because for large wave numbers, the ball microstructure should be taken into 

account and the model should be changed accordingly. 

 The ratio of amplitudes for different ratios of spring stiffnesses is shown in Figure 9. All 

the plots are given for the physically reasonable wave lengths. This is due to the fact that in 

the considered system the wave length cannot be shorter than the ball size. Moreover, in the 

homogeneous models the wave length should be much greater than the ball size. 

 The square of the phase velocity for rotational-shear and shear-rotational waves for 

different ratios of stiffnesses is shown in Figure 10. 
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Figure 9. The ratio of amplitudes for rotational-shear (a) and shear-rotational wave (b). 

 

3.2. Non-local Cosserat continuum 

Substituting (3.1) into the non-local (integral) equations of motion (2.121)-(2.122) and 

calculating the corresponding integrals one can get the same system as obtained for the exact 

equation of motion (3.2), but with a restriction: ξ<π/a. (It does not appear mathematically for 

the exact solution.) This restriction reflects the fact that wave lengths must be larger than the 
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micro-structure size. This seems reasonable since our model was not designed to “see” 

something less that the microstructure size. 
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Figure 10. The square of the phase velocity for rotational-shear (a) and shear-rotational wave 

(b). The circles show velocities corresponding to integer values of the normalised wave 

number. 

 

3.3. Cosserat continuum approximation 

By assuming f3=m2=0 the equations of motion (2.81)-(2.82) can be written in the form: 
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 Substituting (3.1) into the equations of motion one can get: 
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The system has the following biquadratic characteristic equation with respect to the phase 

velocity 
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The discriminant is positive. Two real solutions of the equation give the phase velocity. Since 
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 are always positive. They read 
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This expression is an asymptotics of (3.4) as 0→ξ  with the accuracy o(ξ). This is not 

surprising since the Cosserat model is a long wave (small wave number) approximation. 

 Figure 11 shows the square of the phase velocity for both rotational-shear and shear-

rotational waves comparing the exact and the Cosserat solutions. They are in quite a good 

agreement for the small wave numbers, ie in the range where the Cosserat approximates 

properly the exact solution. 
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Figure 11. Comparison of the square of the phase velocity for the exact and the Cosserat 

solutions: (a) rotational-shear wave, (b) shear-rotational wave. 
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 The obtained result (3.11) allows us to investigate the effect of the presence of rotational 

degree of freedom. Towards this end consider an asymptotics of kϕ/(ka
2
)>>1 which is the case 

when the rotations are almost suppressed. Then assuming r=a/2 
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 When the rotations are completely suppressed (kϕ/(ka
2
)→∞), velocity of the first, 

rotational-shear, wave tends to infinity, but the amplitude of the displacement oscillations 

vanishes. The velocity of the second, shear-rotational, wave becomes 

 Jkavp /1.0~ 2

2∞
. (3.13) 

This corresponds to a conventional shear wave. 

 In general, when kϕ/(ka
2
) is finite, the shear-rotational wave is slower than the conventional 

shear wave, while the rotational-shear wave is faster than the latter. When experimental 

measurements of wave velocities are conducted by registering the time of first arrival, one can 

expect that this rotational-shear wave will be registered first. This will lead to the measured 

wave velocity being higher than predicted by the classical elasticity, thus paving the way to 

experimental observation of the Cosserat effects. 

 

4. CONCLUSIONS 

In many cases it is advantageous to model real materials with internal microstructure as 

continua based on the well-developed machinery of modern continuum mechanics. This can 

be accomplished by associating each point of the continuum with a volume element, which on 

the one hand is large compared to the dimensions of the microstructure but on the other hand 

must be small as compared to the characteristic dimensions of the phenomenon to be 

modelled. The presence of microstructure implies that at least in principle relative movements 

between the microstructure and the average macroscopic deformations are possible. The 

relative movements may be considered by means of additional degrees of freedom. The 

introduction of additional degrees of freedom leads to non-classical continua, the simplest 

being the Cosserat continuum each point of which possesses both translational and rotational 

degrees of freedom. Proceeding with further degrees of freedom, one obtains higher order 

continua and attains more accuracy in the modelling. 
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 The treatment of a representative volume element as a point of the macroscopic continuum 

imposes a restriction on the scale of the modelling: details smaller than the representative 

volume element are beyond the resolution of the model. It is generally believed that this 

restriction can be overcome by incorporating non-local constitutive laws, where, for instance, 

the stress at a point depends in an integral sense on the strains within a volume surrounding 

the point. For that reason, non-local continua do not obey the Cauchy-Euler principle: the 

stress state of a volume is not completely determined by the stresses at its boundary. This 

makes it impossible to deduce the continuum equations of motion from first principles forcing 

one to either hypothesise on them or to infer them from microstructural considerations. 

 The introduction of a suitable continuum theory to model a material with a given 

microstructure requires an appropriate choice of homogenisation procedure. In order to 

analyse different homogenisation methods we considered a model system consisting of 

decoupled periodic 1D chains of solid spheres connected by translational and rotational 

springs. The model is simple enough to allow complete analytical solutions for both static 

equilibrium and wave propagation. Two homogenisation techniques were considered: (1) 

homogenisation by differential expansion and (2) homogenisation by integral transformation 

(Kunin-type homogenisation). The first technique leads to a local Cosserat continuum, while 

the second approach gives rise to a non-local Cosserat continuum theory. The former result 

offered a robust balance between accuracy and simplicity being a long wave asymptotic 

approximation to the exact model. The second technique resulted in a non-local continuum 

description that yielded an exact solution, but at the same time did not really provide any 

simplification as compared to the exact, discrete model. In fact, there is isomorphism between 

the discrete model and a non-local Cosserat continuum. Interestingly, the equations of motion 

derived for this case using the Kunin-type homogenisation of the discrete equations assumed 

after the introduction of invariant deformation measures, the form expected for a Cosserat 

continuum. Another feature of this method is that the non-local and the discrete solutions for 

1D granulates coincide at the centers of the balls. However, between the discrete points the 

Kunin-type homogenisation may lead to unrealistic patterns. In particular, the considered non-

local model for a vertical duct under gravity showed near boundary displacements directed 

upwards, ie against gravity. These boundary effects are, however, limited to distances smaller 

than the spacing between the particle centres and are simply artefacts of the homogenisation 

procedure. 

 Homogenisation by means of integral transformation produces non-local integral relations 

with oscillating kernels. This oscillation is, however, not a direct consequence of the strict 
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periodicity of the model system. For instance, randomisation of the spring stiffnesses makes 

the kernels random functions with periodic means. 

 The analysis of wave propagation in this model system showed that two types of waves 

exist simultaneously: shear-rotational and rotational-shear waves, the latter being the faster 

ones. As the wave number tends to zero (long wavelength limit), the shear component is 

predominant in the shear-rotational wave, while the rotational component is predominant in 

the rotational-shear wave. Further analysis of the Cosserat model showed that in the limit of 

infinite rotational stiffness (when particle rotation is suppressed) the rotational-shear wave 

disappears, while the velocity of the shear-rotational wave becomes independent of the 

frequency indicating the absence of dispersion. The rotational-shear wave was found to be 

faster than the conventional shear wave. Therefore, when experimental measurements of wave 

velocities are conducted by registering the time of first arrival, one can expect that this 

rotational-shear wave will be registered first. This will lead to the measured wave velocity 

being higher than predicted by the classical elasticity, thus providing grounds for the 

experimental detection of Cosserat effects. 

 In conclusion, the framework of the Cosserat continuum theory was found to provide 

accurate descriptions of materials with microstructure. The Cosserat effects are responsible 

for the increase in measured wave velocities in granular materials as compared to the classical 

calculations that ignore rotational degrees of freedom. 
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