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1 Introduction

In the framework of RANS modelling of turbulent non-premixed flames, transported

probability density function (PDF) methods introduced by S.B. Pope [1] have proven to

be powerful methods when finite-rate chemistry needs to be considered. Crucial aspects

of non-linear interaction between turbulent fluctuations and finite-rate chemistry can

indeed be accounted for, such as auto-ignition, local extinction and re-ignition, or

incomplete combustion.

In the context of one-point statistical modelling of turbulent flows (reacting or

non-reacting), from the modelling assumptions made at the level of the one-point joint

velocity-scalar PDF (i.e. from the chosen Langevin model and from the chosen mixing

model), second-moment closure models can be retrieved [2]. This is a useful way to

derive consistent and realisable second-moment closures [3]. The other way around,

the Langevin model can be specified such that it corresponds to a given Reynolds-

stress model [2,4]. Still, the choice for a Langevin model corresponding to a given

Reynolds-stress model is not unique.

In this paper, additional constraints are applied to the Generalised Langevin Model

(GLM) coefficients such that a chosen scalar-flux model is implied (still in correspon-

dence with a chosen Reynolds-stress model). We first present the general modelling

framework for transported joint velocity-scalar PDF (JVSPDF) methods. We then

comment on the models used at the PDF level and the implied second-moment clo-

sures for Reynolds stresses and scalar fluxes. We stress the fact that mixing models

which are independent of velocity (like the most widely used mixing models) imply an

extra contribution in the model for the pressure-scrambling term. The next section fo-

cuses on the main purpose of this paper: the construction of a GLM in correspondence

with a given differential scalar-flux model. Following [2], a formulation with constant

diffusion coefficient C0 is first recalled, and a formulation consistent with a chosen

standard scalar-flux model is then proposed. The latter, which does not use a constant

value for the coefficient C0, can reduce the dependency on the mixing model. Finally,

considering the Sydney bluff-body stabilised flame HM1 [5,6], results obtained with

different models are presented in the light of the modelling issues previously discussed.

2 Joint velocity-scalar PDF

2.1 Statistical description at one point

The statistical description of the flow is made in terms of the joint one-point PDF fΦ

such that fΦ(Ψ ; x, t) .dΨ is the probability that Φ is in the interval [Ψ , Ψ+dΨ [ at point

(x, t). We consider the joint velocity-composition PDF such that Φ = (U, φ), with U

the velocity vector and φ the composition vector. The joint PDF is defined as [1,7]:

fΦ(Ψ ; x, t) = 〈δ[Φ(x, t) − Ψ ]〉, where δ[ ] is the Dirac delta function and where the

brackets 〈 〉 refer to the expected value [7]. Using the conditional expected value [1],

〈Q(x, t)|Ψ 〉fΦ(Ψ ; x, t) = 〈Q(x, t) .δ[Φ(x, t) − Ψ ]〉, mean values (or expected values) Q

and fluctuations q′ are defined as:

Q = 〈Q(x, t)〉 =

Z

[Ψ ]
〈Q(x, t)|Ψ 〉fΦ(Ψ ; x, t) .dΨ and q′ = Q − Q. (1)
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For variable density flows, it is useful to consider the joint mass density function (MDF)

FΦ(Ψ )=ρ(Ψ ) fΦ(Ψ ). Density weighted averages (Favre averages) can be considered:

eQ =
〈ρ(x, t) Q(x, t)〉

〈ρ(x, t)〉
=

R
[Ψ ] 〈Q(x, t)|Ψ 〉FΦ(Ψ ; x, t) .dΨ

R
[Ψ ] FΦ(Ψ ; x, t) .dΨ

. (2)

Fluctuations with respect to the Favre average are defined as: q′′ = Q − eQ .

2.2 Velocity-scalar PDF transport equation

Neglecting the mean viscous stress tensor gradient ∂
˙
τij

¸‹
∂xj , the transport equation

for the joint velocity-composition MDF FUφ reads:

∂FUφ

∂t
+ Vj

∂FUφ

∂xj
+

„
−

1

〈ρ〉

∂〈p〉

∂xi
+ gi

«
∂FUφ

∂Vi
+

∂

∂ψα

ˆ
Sα(ψ)FUφ

˜

= −
∂

∂Vi

2
4
"„

1

〈ρ〉
−

1

ρ(ψ)

«
∂〈p〉

∂xi
+

1

ρ(ψ)

*
−

∂p′

∂xi
+

∂τ ′

ij

∂xj

˛̨
˛̨
˛V , ψ

+#

| {z }
〈ai|V, ψ〉, with ai the GLM

FUφ

3
5

−
∂

∂ψα

»
1

ρ(ψ)

fi
−

∂Jα
j

∂xj

˛̨
˛̨V , ψ

fl

| {z }
〈 θα|V, ψ〉, with θα the mixing model

FUφ

–
. (3)

The terms on the left hand side of Eq. (3) appear in closed form: effects of convection

and mean pressure gradient are exactly accounted for.

Assumption on flame structure In Eq. (3), the evolution in composition space due to

chemical reaction also appears in closed form (last term on the left hand side: chemical

source term). In this paper, where the focus is on scalar-flux modelling, we make the

assumption that, for the turbulent flames considered, the local structure in composition

space corresponds to the composition on the centreline of a laminar diffusion flame in

the opposed-jet configuration at a given strain rate. The local composition is then

only dependent on one single conserved scalar, the mixture fraction ξ. We use Bilger’s

definition [8], based on the elements carbon, hydrogen and oxygen:

ξ =

2(ZC−ZC,o)
WC

+
ZH−ZH,o

2WH
−

ZO−ZO,o

WO

2(ZC,f−ZC,o)
WC

+
ZH,f−ZH,o

2WH
−

ZO,f−ZO,o

WO

, (4)

where Zβ is the total mass fraction of element β and Wβ is the atomic mass of element

β. The subscripts “f” and “o” refer to the fuel and oxidant streams.

The composition space is reduced to a one-dimensional space and instead of Eq. (3),

we model and solve the joint velocity-mixture fraction MDF FUξ(V , ζ; x, t):

∂FUξ

∂t
+ Vj

∂FUξ

∂xj
+

„
−

1

〈ρ〉

∂〈p〉

∂xi
+ gi

«
∂FUξ

∂Vi
= −

∂

∂Vi

ˆ
〈ai|V , ζ〉FUξ

˜

−
∂

∂ζ

ˆ˙
θξ

˛̨
V , ζ

¸
FUξ

˜
, (5)

where no chemical source term appears (since ξ is a conserved scalar).
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2.3 Particle method and Lagrangian modelling

When Eq. (5) is modelled and solved using a particle stochastic approach [1], a set of

uniformly distributed computational particles evolves according to stochastic differen-

tial equations. Each particle has a set of properties {w⋆, m⋆, X⋆, u⋆, ξ⋆} where w⋆ is

a numerical weight, m⋆ is the mass of the particle, X⋆ its position, u⋆ its fluctuating

velocity and ξ⋆ the particle’s mixture fraction (where the superscript ⋆ denotes that

the quantity is a computational particle property). Particle mass m⋆ is constant in

time.

One can show that solving the following Lagrangian equations for the ensemble of

particles:1

dX⋆
i = U⋆

i dt with U⋆
i =

h
eUi

i⋆
+ u⋆

i , (6)

dξ⋆ = θ⋆
ξdt, (7)

du⋆
i = −u⋆

j

"
∂ eUi

∂xj

#⋆

dt +

2
4 1

〈ρ〉

∂〈ρ〉 gu′′

i u′′

j

∂xj

3
5

⋆

dt + a⋆
i dt, (8)

where the mean density ρ and mean velocity vector eU satisfy the mean continuity and

mean momentum equations (neglecting the mean viscous stress tensor gradient):

∂ρ

∂t
+

∂ρeUj

∂xj
= 0, (9)

∂ρeUi

∂t
+

∂ρeUi
eUj

∂xj
= −

∂p

∂xi
−

∂ρ gu′′

i u′′

j

∂xj
+ ρgi, (10)

is equivalent to solving Eq. (5) for the particle joint velocity-scalar MDF FP
Uξ :

FP
Uξ(x, V , ζ; t) =

*X

⋆

w⋆m⋆.δ
`
X

⋆(t) − x
´
.δ
`
U

⋆(t) − V
´
.δ
`
ξ⋆(t) − ζ

´
+

. (11)

3 Modelling

The Lagrangian model for velocity evolution a⋆
i and the mixing model θ⋆

ξ close the

transport equation for the joint velocity-composition MDF FUξ(V , ζ; x, t), Eq. (5), and

therefore imply models for its first statistical moments: the Reynolds stresses gu′′

i u′′

j and

the scalar fluxes gu′′

i ξ′′.

3.1 Reynolds-stress model

The Generalised Langevin Model (GLM) [9] is chosen as framework for the stochastic

Lagrangian model for particle velocity evolution:

a⋆
i dt =

ˆ
Gij

˜⋆
u⋆

jdt +
q

C0 [ǫ]⋆dW ⋆
i , (12)

1 The quantities between brackets [ ]⋆ are interpolated at the particle location (obtained
by solving the RANS equations (9) and (10) together with the model (15) and a modelled
equation for the dissipation rate of turbulent kinetic energy ǫ).
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where dW ⋆
i is an increment over dt of the Wiener process W ⋆

i . The matrix Gij reads:

Gij =
ǫ

k

“
α1δij + α2bij + α3b2ij

”
+ Hijkl

∂ eUk

∂xl

, (13)

with Hijkl = β1δijδkl + β2δikδjl + β3δilδjk (14)

+ γ1δijbkl + γ2δikbjl + γ3δilbjk + γ4bijδkl + γ5bikδjl + γ6bilδjk

+ ξ1bijbkl + ξ2bikbjl + ξ3bilbjk ,

where k = 1
2
gu′′

k
u′′

k
is the turbulent kinetic energy and ǫ the modelled turbulent dissipa-

tion, such that the choice of the coefficients αi, βi, γi and ξi together with the choice

of the coefficient C0 define the specific form of the GLM (see Table 1 for the definition

of the anisotropy tensor bij).

Table 1 Useful tensors and scalar invariants

bij =
guiuj

gulul
− 1

3
δij Sij = 1

2
k
ǫ

„
∂ eUi
∂xj

+
∂ eUj

∂xi

«
I0 = Sll I2 = Slmb2

ml

b2ij = bilblj Wij = 1
2

k
ǫ

„
∂ eUi

∂xj
−

∂ eUj

∂xi

«
I1 = Slmbml I3 = Slmb3

ml

b3
ll

= blkbkmbml F = 1 − 9
2
b2
ll

+ 9b3
ll

Pk
ǫ

= −2
`
I1 + 1

3
I0

´

The implied Reynolds-stress transport equation reads:

∂ρ gu′′

i u′′

j

∂t
+

∂ρ gu′′

i u′′

j
eUk

∂xk

= −ρ

 
gu′′

i u′′

k

∂ eUj

∂xk

+ gu′′

j u′′

k

∂ eUi

∂xk

!
+ Tij + ρΠij −

2

3
ǫδij , (15)

where the implied pressure-strain correlation model Πij reads:

Πij =

„
2

3
+ C0

«
ǫδij + Gil guluj + Gjlgului. (16)

In this paper, when directly solving Eq. (15) together with Eq. (9) and (10) by means of

a Finite-Volume method, we will model the triple correlation term − ∂ρu′′

i u′′

j u′′

k

.
∂xk

using the Daly-Harlow generalised gradient diffusion model:

Tij = −
∂

∂xk

2
4Csρ

k

ǫ
gu′′

k
u′′

l

∂ gu′′

i u′′

j

∂xl

3
5 with Cs = 0.22. (17)

This will imply a small difference compared to solving Eq. (5) with the GLM as model

for velocity evolution, Eq. (12), since in this case the model for the triple correlation

term Tij directly results from the GLM and is different from Eq. (17) [10].

In the following, we consider the LRR-IPM Reynolds stress model [11] for the

pressure-strain correlation Πij , which can be written in the form:

Πij = ǫ
5X

n=1

A(n)T
(n)
ij , (18)

where the nondimensional, symmetric, deviatoric tensors T
(n)
ij are given in Table 2 and

the LRR-IPM coefficients A(n) are given in Table 3.
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Table 2 Nondimensional, symmetric, deviatoric tensors T
(n)
ij

T
(1)
ij = bij T

(6)
ij = Silb

2
lj

+ Sjlb
2
li
− 2

3
I2δij

T
(2)
ij = b2ij − 1

3
b2
ll
δij T

(7)
ij = Wilb

2
lj

+ Wjlb
2
li

T
(3)
ij = Sij − 1

3
I0δij T

(8)
ij = bilSlmbmj − 1

3
I2δij

T
(4)
ij = Silblj + Sjlbli −

2
3
I1δij T

(9)
ij = b2

il
Wlmbmj + b2

jl
Wlmbmi

T
(5)
ij = Wilblj + Wjlbli T

(10)
ij = b2

il
Slmbmj + b2

jl
Slmbmi −

2
3
I3δij

Table 3 LRR-IPM coefficients A(n)

A(1) = −2C1 A(2) = 0 A(3) = 4
3
C2 A(4) = 2C2 A(5) = 2C2

with C1 = 1.8 and C2 = 0.6.

3.2 Mixing models: mean scalar and scalar variance

We usually ask mixing models to satisfy the minimum requirements of conservation

of the mean and correct scalar variance decay. These properties are reflected in the

transport equations for mean mixture fraction and mixture fraction variance which

can be obtained from Eq. (5):

∂ρeξ
∂t

+
∂ρeUj

eξ
∂xj

= −
∂ρ gu′′

j ξ′′

∂xj
+ ρθξ|{z}

= 0 (conservation of the mean)

(19)

∂ρgξ′′2
∂t

+
∂ρeUj

gξ′′2
∂xj

+ 2ρ gu′′

j ξ′′
∂eξ
∂xj

= −
∂ρ gu′′

j ξ′′2

∂xj
−2ρξ′′θξ| {z }

scalar dissipation rate ρeχ

(20)

Most mixing models imply a scalar dissipation rate eχ modelled as: eχ = Cφωgξ′′2 (with

ω = ǫ /k ). In this paper, we use the value Cφ = 2.

Mixing model dependence on velocity S.B. Pope [13] considered the hypothesis that, at

high Reynolds number, the mean of a passive scalar conditional on velocity is indepen-

dent of the molecular viscosity. This condition is sufficient for the validity of Taylor’s

idea that the dispersion of a conserved passive scalar is determined by the motion of

fluid particles. This is not satisfied by the most widely used mixing models which are

independent of velocity. In general, the evolution for the scalar flux gu′′

j ξ′′ and the triple

correlation gu′′

j ξ′′2 in Eq. (19) and (20) depends on the choice of the mixing model.

3.3 Modelled scalar flux

The exact scalar-flux transport equation for high Reynolds number flows reads:

∂ρ gu′′

i ξ′′

∂t
+

∂ρ gu′′

i ξ′′fUj

∂xj
+ ρ gu′′

j ξ′′
∂fUi

∂xj
+ ρ gu′′

i u′′

j

∂eξ
∂xj

= −ξ
∂p

∂xi
−

∂ρu′′

i u′′

j ξ′′

∂xj
. (21)
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Eq. (5) implies the above equation with the following model for the pressure-scrambling

term:

−ξ
∂p

∂xi
= ρ gu′′

i θξ + ρgaiξ′′. (22)

We will suppose that the first term in Eq. (22) takes the form:

ρ gu′′

i θξ = C∗

φ

h
ρ

ǫ

k
gu′′

i ξ′′
i

, (23)

with different mixing models possibly leading to different values for C∗

φ. It is important

to note that for some mixing models which are conditional on velocity this term is

zero [12,13] (C∗

φ = 0), as required by Taylor at high Reynolds number. For the widely

used IEM model [14,15], θ⋆
ξ = − 1

2Cφω(ξ⋆ − [eξ]⋆), we can easily see that C∗

φ = − 1
2Cφ.

For the Curl’s model, S.B. Pope showed in his 1985’s paper [1] that C∗

φ = −Cφ. We

will see later in the results for the bluff-body stabilised flame HM1 (Fig. 3) that, in

the present case where one single conserved scalar is considered (composition space

reduced to a one-dimensional space), the Euclidean minimum spanning tree (EMST)

model [16] seems to lead to a C∗

φ similar to IEM, while the modified Curl’s coalescence

dispersion (CD) model [17,18] leads to a higher (absolute) C∗

φ value.

With a given mixing model satisfying (23), the GLM-implied model for the pressure-

scrambling term reads [2]:

−ξ
∂p

∂xi
= −ρ

`
−C∗

φ − α1
´ ǫ

k
gu′′

i ξ′′ + ρ
“
Gij − α1

ǫ

k
δij

”
gu′′

j ξ′′. (24)

This differential scalar-flux model can be compared to the widely used “standard

model”:

−ξ
∂p

∂xi
= −ρCφ1

ǫ

k
gu′′

i ξ′′ + ρCφ2
gu′′

j ξ′′
∂fUi

∂xj
, (25)

where the first term is modelled using Monin’s model [19] with Cφ1 = 3, and the second

term is the destruction of production model by Launder [20] with Cφ2 = 0.5.

In a similar way as for the Reynolds stresses in Section 3.1, when directly solving

the modelled equation (21) by means of a Finite-Volume method, the triple correlation

term − ∂ρu′′

i u′′

j ξ′′
.

∂xj will be modelled as:

T ξ
i = −

∂

∂xj

"
Cξ

sρ
k

ǫ
gu′′

j u′′

k

∂ gu′′

i ξ′′

∂xk

#
, with Cξ

s = 0.22. (26)

4 GLM corresponding to given Reynolds-stress and scalar-flux models

We now derive a Langevin model consistent with the LRR-IPM Reynolds-stress model

for pressure-strain correlation, and as much as possible consistent with the standard

scalar-flux model, Eq. (25).
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4.1 GLM general formulation

Table 1 gives a list of useful tensors and scalar invariants. Although we restrict ourselves

to the LRR-IPM Reynolds stress model, we will use here a more general formulation,

with the modelled pressure-strain correlation expressed in terms of ten tensors T
(n)
ij

as:

Πij = ǫ

10X

n=1

A(n)T
(n)
ij , (27)

where the nondimensional, symmetric, deviatoric tensors T
(n)
ij are given in Table 2.

Note that we follow the general formalism introduced in [4], such that the trace of the

tensors T
(n)
ij is zero in variable density flows, and where the tensors T

(9)
ij and T

(10)
ij

(and the GLM coefficients ξi) are introduced in order to allow GLM representations of

Reynolds-stress models that include terms which are cubic in bij . It is useful to write

Eq. (13) in terms of the tensors and scalar invariants given in Table 1:

k

ǫ
Gij = α∗

1δij + α∗

2bij + α3b2ij + (β2 + β3) Sij + (β2 − β3) Wij (28)

+ (γ2 + γ3) Silblj + (γ2 − γ3)Wilblj + (γ5 + γ6) bilSlj + (γ5 − γ6) bilWlj

+ (ξ2 + ξ3) bilSlmbmj + (ξ2 − ξ3) bilWlmbmj ,

where we introduced:

α∗

1 = α1 + β1I0 + γ1I1 and α∗

2 = α2 + γ4I0 + ξ1I1. (29)

Writing Eq. (16) in the following form:

Πij

ǫ
=

„
2

3
+ C0

«
δij + 2

»
k

ǫ
Gikbkj +

k

ǫ
Gjkbki +

1

3

k

ǫ
Gij +

1

3

k

ǫ
Gji

–
, (30)

and using the Cayley-Hamilton theorem for the symmetric traceless tensor bij :

b3ij =
1

2
b2kkbij +

1

3
b3kkδij , (31)

we finally obtain for the coefficients A(n) defined by Eq. (27) the relations given in

Table 4, together with the condition that the term in δij should be zero (i.e. that the

redistribution term does not affect turbulent kinetic energy):

0 =
1

2
+

3

4
C0 + α∗

1 +

„
α∗

2 +
1

3
α3

«
b2kk + α3b3kk +

1

3
(β2 + β3) I0 (32)

+

»
(β2 + β3) +

1

3
γ∗

–
I1 +

»
γ∗ +

1

3
(ξ2 + ξ3)

–
I2 + [ξ2 + ξ3] I3,

with

γ∗ = γ2 + γ3 + γ5 + γ6. (33)

Using the definitions given in Table 1 and the relations given in Table 4, this condition

reads:

−

„
1

2
+

3

4
C0

«
+

F

3
α∗

2 = A∗, (34)
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with

A∗ =
1

4

»
A(1) + A(2)

„
−

1

2
b2kk + 3b3kk

«
+ A∗∗

–
, (35)

A∗∗ = A(3)I0 + 2A(4)I1 +
“
2A(6) + A(8)

”
I2 + 2A(10)I3.

Table 4 Relationship between the coefficients A(n) and the GLM parameters

A(1) = 4α∗

1 + 4
3
α∗

2 + 2b2
kk

α3

A(2) = 4α∗

2 + 4
3
α3

A(3) = 4
3

(β2 + β3)

A(4) = 2 (β2 + β3) + 2
3

(γ2 + γ3 + γ5 + γ6)

A(5) = 2 (β2 − β3) + 2
3

(γ2 − γ3 − γ5 + γ6)

A(6) = 2 (γ2 + γ3)

A(7) = 2 (γ2 − γ3)

A(8) = 4 (γ5 + γ6) + 4
3

(ξ3 + ξ2)

A(9) = 2 (ξ3 − ξ2)
A(10) = 2 (ξ3 + ξ2)

As explained in [2], arbitrary values can be chosen for the parameters β1, γ1, γ4 and

ξ1. This is clear from Eq. (29) which shows that their contributions can be incorporated

in the coefficients α1 and α2 (that can depend on the invariants I0 and I1).

Note that the GLM satisfies the condition (see Table 4):

3

2
A(3) − A(4) +

1

3
A(6) +

1

6
A(8) −

1

9
A(10) = 0. (36)

A given Reynolds-stress model needs to satisfy this relation in order to have a GLM

representation. This is the case for LRR-IPM (see Table 3). Eq. (36) implies that the

expressions for A(3)–A(10) in Table 4 only provide seven independent relations for eight

parameters: β2, β3, γ2, γ3, γ5, γ6, ξ2 and ξ3. Introducing the parameter β∗:

β∗ =
1

4
A(5) −

1

12
A(7) −

1

24
A(8) +

1

36
A(10) +

1

3
γ5, (37)

we can express the parameters β2, β3, γ2, γ3, γ5, γ6, ξ2, ξ3 of the GLM as function of

the coefficients A(3)–A(10) (see Table 5). The value β∗ = 1
2 was proposed since it leads

to β2 − β3 = 1 as required in isotropic turbulence [9,2].

In order to determine the remaining GLM coefficients α1, α2, α3 and C0, we use

the relations for A(1) and A(2) from Table 4, together with the condition that the

redistribution term does not affect the turbulent kinetic energy, Eq. (34).

A fourth relation is needed. We will now briefly review the case when C0 is given a

constant value (which corresponds to the implementation of the GLM which has been

used so far in the tranported PDF computer code ‘PDFD’ originally developed at TU

Delft [10]). We will then come to the new idea of this paper: to provide the fourth

condition by specifying the linear relaxation constant in the GLM-implied scalar-flux

model. We will see the influence of the value for β∗ on the modelling of the rapid-

pressure-scrambling term.
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Table 5 Relationship between the GLM Hijkl-tensor parameters and the coefficients A(n)

β1 = arbitrary
γ1 = arbitrary
γ4 = arbitrary
ξ1 = arbitrary

β2 = 3
8
A(3) + β∗

β3 = 3
8
A(3) − β∗

γ2 = 1
4

`
A(6) + A(7)

´

γ3 = 1
4

`
A(6) − A(7)

´

γ5 = from Eq. (37), after choosing an arbitrary value for β∗

γ6 = 1
4
A(8) − 1

6
A(10) − γ5

ξ2 = 1
4

`
A(10) − A(9)

´

ξ3 = 1
4

`
A(10) + A(9)

´

4.2 GLM formulations with constant or variable C0

By setting a constant value for C0, from the expressions for A(1) and A(2) given in

Table 4 and Eq. (34), we can obtain the parameters α∗

1, α∗

2 and α3:

α∗

2 =
3

F

»„
1

2
+

3

4
C0

«
+ A∗

–
, (38)

α3 =
3

4
A(2) − 3α∗

2, (39)

α∗

1 =
1

4
A(1) −

1

3
α∗

2 −
1

2
b2kkα3, (40)

This form is proposed by S.B. Pope in [2], with C0 = 2.1 (and β∗ = 1
2 , as mentioned

above). As explained in [2], the occurrence of 1/F in the expression for α2 raises

the question of realisability when F goes to zero (when a two-component state is

approached). Such situations do not occur in the calculations presented in this paper.

Nevertheless, the implementation of the GLM corresponding to the LRR-IPM is done

in such a way that if F is close to zero, it is substituted by the LIPM model [2]. In this

case, C0 = 2.1 and the value for α2 is fixed to α2 = 3.5; α3 is obtained from Eq. (39),

α1 is deduced from the redistribution condition (33) and A(1) from Table 4.

The coefficient C0 in the GLM was first identified as a Kolmogorov constant (from

considerations on the Lagrangian velocity structure function which should be isotropic

and linear in the dissipation rate in the inertial range). The choice of the value C0 = 2.1

was determined by Anand and Pope [21] by considering the evolution of the thermal

wake behind a line source in grid turbulence (moderate Reynolds number). In order

to calibrate this constant value, velocity evolution was modelled using the simplified

Langevin model together with an equation for position evolution corresponding to

a diffusing particle (i.e. including first-order effects of molecular diffusion). Recently,

Viswanathan and Pope came back to such studies of dispersion from line sources [22],

also comparing to experimental data from moderate Reynolds number flows. They

mostly used the constant value C0 = 2.1 but also obtained good results with the

constant value C0 = 3. The value of C0 is Reynolds number dependent: it increases

with the Reynolds number and approaches an asymptotic value C0(∞) [23]. The value

C0 = 2.1 obtained for a moderate Reynolds number flow is probably two to three times

lower than the value C0(∞) in high Reynolds number flows [24]. It was also observed
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that some anisotropy in the Lagrangian velocity structure function could be important

in shear flows [25]. This was also considered in [26] where the effects of anisotropy

together with acceleration fluctuations on the variations in C0(∞) were discussed. The

choice for a constant value of C0 is therefore questionable.

Other forms of the GLM have been proposed where C0 is not a constant. For

instance the IPMb model, corresponding to the LRR-IPM Reynolds-stress model, pro-

posed in [2] and in [3], reads:

α∗

2 = α3 = 0, α∗

1 =
1

4
A(1) and C0 =

4

3

„
−

1

2
− A∗

«
=

2

3

„
−1 + C1 + C2

Pk

ǫ

«
. (41)

Here we introduced the production of turbulent kinetic energy Pk = −2ǫ
`
I1 + 1

3 I0
´
.

In this case, the realisability constraint is C0 ≥ 0. This condition can be satisfied by

specifying the first LRR-IPM model constant as [3]: C1 = max
h
1.8; 1 − C2

Pk

ǫ

i
.

4.3 GLM formulation consistent with standard scalar-flux model

The standard pressure-scrambling model, given in Eq. (25), can be written:

−ξ
∂p

∂xi
= ρ gu′′

j ξ′′
ǫ

k

ˆ
−Cφ1δij + Cφ2

`
Sij + Wij

´˜
. (42)

Using Eq. (24) and (28), the GLM-implied model for the pressure-scrambling term

reads:

−ξ
∂p

∂xi
= ρ gu′′

j ξ′′
ǫ

k

h`
C∗

φ + α∗

1

´
δij +

“
α∗

2bij + α3b2ij

”
(43)

+β2
`
Sij + Wij

´
+ β3

`
Sij − Wij

´
+ Λij

˜
,

where the terms in α∗

2 and α3 correspond to non-linear relaxation of the scalar flux

(i.e. anisotropy effects in the scalar-flux decay rate), and where Λij includes other

higher-order contributions:

Λij = (γ2 + γ3)Silblj + (γ5 + γ6)Sjlbli + (γ2 − γ3) Wilblj − (γ5 − γ6)Wjlbli

+ (ξ2 + ξ3) bilSlmbmj + (ξ2 − ξ3) bilWlmbmj . (44)

Perfect match between GLM-implied model and standard model? In order to have an

exact correspondence of the GLM-implied model with the standard model, the terms

in α∗

2 and α3 in the slow term, and the β3 and Λij terms in the rapid term should

vanish in Eq. (43). Moreover, we should require: α∗

1 = −Cφ1 − C∗

φ and β2 = Cφ2 .

For some Reynolds-stress models the Λij contribution is not zero, which already

prevents an exact correspondence. Let’s consider the LRR-IPM model, for which this

contribution is zero. In order to remove the term in β3 in Eq. (43), we can specify

Cφ2 = 3
4A(3), such that β3 = 0. The LRR-IPM can lead to the standard rapid term by

setting the constant value Cφ2 = 0.6 (which implies setting the value β∗ = 0.3 in the

GLM). It is more problematic to match the slow term. The IPMb model mentioned

above, can remove the non-linear relaxation contributions in the slow term since α∗

2 =

α3 = 0. However, the typical value for the Monin constant Cφ1 = 3 is quite different

from −α∗

1 = 0.9 given by the IPMb. Only the effect of the mixing model (C∗

φ �= 0)

can help to get the correspondence (in this case with C∗

φ = −2.1). This is of course



12

not satisfactory, since at high Reynolds number, mixing models should ideally lead to

C∗

φ = 0, in agreement with Taylor’s idea.

Since the “perfect match”, with C∗

φ = 0, is not possible, we consider a GLM formu-

lation that is consistent with the standard scalar-flux model for the linear relaxation

term and for the mean velocity gradient contributions in the rapid term (β2 and β3

terms), requiring α∗

1 = −Cφ1 − C∗

φ and β2 = Cφ2, and where the effect of the mixing

model (C∗

φ �= 0) is included in the non-linear relaxation terms.

Rapid-pressure-scrambling term In order to ensure that β2 = Cφ2, we simply specify:

β∗ = Cφ2 −
3

8
A(3). (45)

For most Reynolds-stress models where the same value A(3) = 4
5 is fixed according to

the rapid distortion theory, using the value Cφ2 = 0.5, we obtain β∗ = 0.2 instead of

the originally proposed value β∗ = 0.5. In this pragmatic approach, it is the modelling

of the rapid-pressure-scrambling term in the GLM-implied scalar-flux equation that

determines the value of β∗.

We chose here to take the rapid-pressure-scrambling term of Launder as a reference

since it is a widely used model. However, we should recall that the value β∗ = 0.5

required in isotropic turbulence implies the β2 and β3 terms in Eq. (43) as proposed

by Lumley [2,27].

Monin’s term For the relaxation term, the condition α∗

1 = −Cφ1 − C∗

φ together with

the first relations in Table 4 imply:

α∗

2 =
3`

1 − 9
2 b2

kk

´
»`

Cφ1 + C∗

φ

´
+

1

4
A(1) −

3

8
b2kkA(2)

–
. (46)

The factor 1− 9
2 b2kk in the above equation implies a singularity at b2kk = 2

9 , values that

can occur within the Lumley triangle [7,27] (i.e. values that can occur for realisable

values of the Reynolds stresses). Using the representation of the Lumley triangle used

by S.B. Pope in [7], the line b2kk = 2
9 is shown in Fig. 2.

The following alternative way of writing the GLM-implied pressure-scrambling term

(43) obtained by introducing the Cayley-Hamilton relation (31), permits to have the

factor F instead of the factor 1 − 9
2 b2kk in the expression for α∗

2:

−ξ
∂p

∂xi
= ρ gu′′

j ξ′′
ǫ

k

»“
C∗

φ + α∗

1 + α3b3kk

”
δij +

„
α∗

2 +
3

2
α3b2kk

«
bij + α3

“
b2ij − 3b3ij

”

+ β2
`
Sij + Wij

´
+ β3

`
Sij − Wij

´
+ Λij

–
. (47)

This way to write the GLM-implied model is simply a reinterpretation of the relaxation

terms. Requiring α∗

1 = −Cφ1 − C∗

φ − α3b3kk now leads to:

α∗

2 =
3

F

»`
Cφ1 + C∗

φ

´
+

1

4
A(1) +

3

4

„
−1

2
b2kk + b3kk

«
A(2)

–
, (48)

α3 =
3

4
A(2) − 3α∗

2, (49)

α∗

1 = −Cφ1 − C∗

φ − α3b3kk, (50)

C0 =
4

3

»`
Cφ1 + C∗

φ

´
−

1

2
−

1

4

“
A(2)b2kk + A∗∗

”–
, (51)
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where C0 was obtained from Eq. (34).

In the case of isotropic turbulence for a constant density flow, and for C∗

φ = 0, we

obtain the value C0 = 10
3 ≈ 3.33. Note that if the IEM model is used with Cφ = 2

(i.e. C∗

φ = −1), we obtain a value C0 = 2.0 which is close to the constant value

C0 = 2.1 proposed by Anand and Pope. This suggests that so far, in transported joint

velocity-composition PDF calculations, the too low value C0 = 2.1 together with the

typical non-zero values for C∗

φ, have implied scalar-flux models where the modelling of

the relaxation term resulted to be in good correspondence with Monin’s model with

standard constant value.

The main advantage of the GLM coefficients given by Eq. (48)-(51) is that they

lead to a scalar-flux model in more complete correspondence with standard models:

−ξ
∂p

∂xi
= ρ gu′′

j ξ′′
ǫ

k

h“
−Cφ1 − α3b3kk

”
δij +

“
α∗

2bij + α3b2ij

”
(52)

+ Cφ2

`
Sij + Wij

´
+

„
3

4
A(3) − Cφ2

«`
Sij − Wij

´
+ Λij

–
,

where the effect of the mixing model through C∗

φ appears in the non-linear relaxation

α∗

2 and α3 terms. In this case, it is the modelling of Monin’s term which determines

the value of the coefficient C0.

Realisability For the LRR-IPM:

C0 =
2

3

»
−1 + 2

`
Cφ1 + C∗

φ

´
+ C2

Pk

ǫ

–
. (53)

It is interesting to notice that this expression is similar to the expression from the IPMb

model (41), where the constant 2(Cφ1 + C∗

φ) appears instead of C1. The realisability

condition C0 ≥ 0 can be written Pk

ǫ ≥ − 25
3 which is bound to be satisfied (compared

to Pk

ǫ ≥ − 4
3 for IPMb). Still, following the idea of [3] for IPMb, in order to make

sure that realisability is statisfied, the constant Cφ1 can be adjusted by specifying

Cφ1 = max
h
3.0; 1

2 − C2

2
Pk

ǫ − C∗

φ

i
.

On the other hand, we still have the occurrence of the factor 1/F in the expression

for α∗

2. This issue is not considered here since for the turbulent flame considered in this

paper all the points in the calculation are away from a two-component state (F = 0),

as can be seen in Fig. 2.

5 Results

The test case considered is the bluff-body stabilised flame HM1 [5,6] which is a target

flame of the International Workshop on Measurement and Computation of Turbulent

Nonpremixed Flames (TNF workshop) [28]. The numerical settings (grid, boundary

conditions) are as in [10]. In the following, Db and Rb refer respectively to the diameter

and radius of the bluff-body: Db = 5cm and Rb = 2.5cm. Table 6 summarises the

different calculations which will be discussed in the following.
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Table 6 Summary of the calculations

Method Submodels Figures
A1 JVSPDF, Eq. (5) IEM, Cφ = 2 new GLM, Eq. (48)-(51) 1, 2, 4, 5
B JVSPDF, Eq. (5) IEM, Cφ = 2 GLM, Eq. (38)-(40), C0 = 2.1 3
C JVSPDF, Eq. (5) CD, Cφ = 2 GLM, Eq. (38)-(40), C0 = 2.1 3
D JVSPDF, Eq. (5) EMST, Cφ = 2 GLM, Eq. (38)-(40), C0 = 2.1 3
A2 Eq. (19)-(21) Eq. (24), C∗

φ
= −1 with Eq. (26) & Eq. (48)-(50) 5, 6

A3 Eq. (19)-(21) Eq. (25) with Eq. (26) 6

All calculations use LRR-IPM model with modified constant Cǫ1 = 1.6. Calculations A2 and
A3 are performed using the mean flow field and mean density field from calculation A1.

5.1 Flow fields

From the comparative study presented in [29] for the bluff-body flame HM1, the LRR-

IPM Reynolds-stress model is used with the modified constant value Cǫ1 = 1.6. Figure 1

shows that the mean flow field is reasonably well predicted as in [29,10]. As reported

in [30] (not shown here), the choice of the scalar-flux model or whether assumed-

shape PDF or transported PDF methods are used has almost no influence on the flow

field results (since the resulting differences in mean density are small and do not have

influence on the mean flow field through the mean continuity equation).
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Fig. 1 Radial profiles of mean axial velocity eU (black / left axis) and fluctuating axial velocityp
gu′′2 (grey / right axis) for the bluff-body flame HM1, in m/s. Filled symbols: measurements

in flame HM1. Empty symbols: measurements in flame HM1e. Lines: calculation A1.

For realisability considerations it is interesting to plot all the computed points in

the Lumley triangle. In Fig. 2, we see that all the points are far from a two-component

state (far from the F = 0 line).

5.2 GLM with constant C0: influence of the mixing model on mean scalar

We illustrate here how the GLM implementation with constant C0 = 2.1 given by

Eq. (38)-(40) makes the mean scalar field results dependent on the choice of the mixing

model (i.e. on C∗

φ). This dependence of the mean scalar on the mixing model comes

from the difference in scalar-flux modelling as shown in Eq. (24).

In Fig. 3, we observe that, in this case where one single conserved scalar is consid-

ered, IEM and EMST mixing models lead to similar results for mean mixture fraction,

while the CD mixing model leads to different results (higher mean mixture fraction on

the centreline). A similar observation can be made from one figure presented in [31]
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Fig. 2 The Lumley triangle represented using the invariants ξ∗ and η∗ as in [7]. The dotted line
corresponds to b2

kk
= 2

9
. The grey dots correspond to the calculated values in the computational

domain for the bluff-body stabilised flame HM1 using LRR-IPM.
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Fig. 3 Radial profiles of mixture fraction for Sydney bluff-body stabilised flame HM1. Top:
mean / Bottom: fluctuation (rms). Symbols: measurements. Lines: transported joint velocity-
scalar PDF calculations with Cφ = 2 (calculations B, C and D in Table 6).

(Fig. 9), showing mean mixture fraction axial profiles on the centerline using the three

mixing models for a turbulent lifted flame. Note that, to the best of the authors’

knowledge, this is the only figure in the literature showing a comparison of different

transported velocity-scalar PDF results for a mean scalar using different mixing models

while the other submodels and model constants are fixed.

The IEM and EMST mixing models move the composition of the computational

particles to neighbouring values, while the CD mixing model allows particles with a

given velocity to “jump” in composition space. We can expect the latter to induce more

decorrelation between velocity components and scalars, which corresponds to a larger

negative value for C∗

φ (and a larger value for the implied Monin constant). Note that

for this flame, a mixing model conditional on the velocity satisfying C∗

φ = 0 would lead
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to poor predictions of the mean mixture fraction, due to a too low implied value for

the Monin constant.

Only small differences are observed for mixture fraction variance. This is probably

due to the fact that the differences in velocity-scalar correlation are small compared to

the scalar dissipation rate which is modelled in the same way by the different mixing

models.

5.3 Proposed GLM: results with implied scalar-flux model

Fig. 4 shows radial profiles of the coefficient C0 obtained in a tranported PDF cal-

culation using the newly proposed GLM and the IEM mixing model with Cφ = 2

(calculation A1 in Table 6). We see that in the shear layers the value is larger than the

value C0 = 2.0 corresponding to constant-density homogeneous isotropic turbulence.

It is quite remarkable that in this case (IEM mixing model with Cφ = 2), the values

for C0 are not too different from the constant value C0 = 2.1.
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Fig. 4 Radial profiles of C0 for Sydney bluff-body stabilised flame HM1 (calculation A1 in
Table 6).

Figure 5 shows the results for mean mixture fraction and mixture fraction variance

obtained in two different ways with the proposed GLM-implied model for the pressure-

scrambling term in the scalar-flux modelling. On the one hand, mean particle fields are

extracted from a transported PDF calculation using the newly proposed GLM and the

IEM mixing model with Cφ = 2 (A1 in Table 6). On the other hand, using the same

mean density and flow fields, the GLM-implied model is solved using a Finite-Volume

method (A2 in Table 6). The differences in the results may come from the differences in

triple correlation modelling, or from numerical errors. We know from scalar PDF results

obtained with the same computer code, for instance from the calculations presented

in [32], where the same gradient diffusion model is applied both in Finite-Volume and

particle methods that the numerical errors only lead to small differences in the results.

Therefore, the differences observed in Figure 5, especially for mixture fraction variance,

are mainly attributed to the differences in triple correlation modelling: Eq. (26) for the

GLM-implied calculation A2 and a model resulting from the combination of the GLM

and the mixing model for the tranported PDF calculation A1.

Finally, we check the consistency between the proposed GLM-implied model and

the standard model (respectively from calculations A2 and A3 in Table 6). In both

cases, equations for mean mixture fraction, variance and scalar fluxes are solved using

a Finite-Volume method, using Eq. (26) in order to model the triple correlation, with

the mean density and flow fields from the transported PDF calculation. The difference
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Fig. 5 Radial profiles of mixture fraction for Sydney bluff-body stabilised flame HM1. Top:
mean / Bottom: fluctuation (rms). Symbols: measurements. Solid black line: transported PDF,
calculation A1. Dashed grey line: GLM-implied model, calculation A2.

in the results may come from the anisotropy effects in the relaxation term or from the

β3 term in the rapid-pressure-scrambling contribution, as discussed at the beginning of

Section 4.3. We actually see no difference in the results in the first downstream radial

profiles for mean mixture fraction and mixture fraction variance (not shown). Only at

a downstream distance x = 120mm, some small differences can be observed, as shown

in Fig. 6, showing that the proposed GLM indeed implies a pressure-scrambling model

in close correspondence with the chosen standard scalar-flux model.

0.2 0.4 r/Rb 0.8 1.0 1.2

x=120mm (=2.4Db)

0.0

0.1

0.2

0.3

0.2 0.4 r/Rb 0.8 1.0 1.2

x=120mm (=2.4Db)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fig. 6 Radial profiles of mixture fraction for Sydney bluff-body stabilised flame HM1. Left:
mean / Right: fluctuation (rms). Symbols: measurements. Dashed grey line: GLM-implied
model, calculation A2. Dotted black line: standard model, calculation A3.

6 Conclusions

We derived a GLM formulation with non-constant diffusion coefficient C0 in close corre-

spondence with a widely used standard differential scalar-flux second-moment closure.

The correspondence is not exact since the GLM-implied model includes anisotropy ef-

fects in the relaxation term and extra contributions in the rapid-pressure-scrambling

term. We verified for the Sydney bluff-body stabilised flame HM1 that results are indeed
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identical using either the standard model or the GLM-implied model (with LRR-IPM

Reynolds-stress model). The derivation was done using a general formalism such that

it can be applied to different Reynolds-stress or scalar-flux models that have a GLM

representation.

It was shown that in GLM formulations with constant C0 the scalar-flux model

depends on the choice of the mixing model, when C∗

φ �= 0 (which is the case for the

most widely used mixing models which are independent of velocity). In principle, there

is no reason why such formulations should imply scalar-flux models in correspondence

with the standard model. However, it appears that the constant value C0 = 2.1 together

with the typical C∗

φ values of the widely used mixing models (C∗

φ = − 1
2Cφ or C∗

φ = −Cφ

with Cφ = 2) yields a Monin term in the scalar-flux model which is not too different

from the standard model. Therefore, the forms of the GLM with constant C0 used so

far in transported joint velocity-scalar PDF calculations have lead to scalar-flux models

in reasonably good correspondence with the standard model, thanks to the effect of

the mixing model. However, they would lead to quite different scalar-flux modelling if

the mixing model used would satisfy C∗

φ = 0.

In the proposed GLM formulation, the value of the coefficient C0 is determined

such that the required relaxation for the Monin term in the implied scalar-flux model

is prescribed. Moreover, by knowing the C∗

φ value of the chosen mixing model, the

dependency of the GLM-implied scalar-flux model on the mixing model is removed

for the linear relaxation term. The modelling of the rapid-pressure-scrambling term

is related to the value of the GLM parameter β∗. The constant value Cφ2 = 0.5 for

Launder’s destruction of production’s model, together with assumptions from the rapid

distortion theory used to fix the Reynolds-stress model constant A(3) = 4
5 , would lead

to β∗ = 0.2 instead of the originally proposed value β∗ = 0.5 based on considerations

from isotropic turbulence.
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