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Abstract. Effective validation techniques are an essential pre-requisite for seg-
mentation and non-rigid registration techniques to enter clinical use. These al-
gorithms can be evaluated by calculating the overlap of corresponding test and 
gold-standard regions. Common overlap measures compare pairs of binary la-
bels but it is now common for multiple labels to exist and for fractional (partial 
volume) labels to be used to describe multiple tissue types contributing to a sin-
gle voxel. Evaluation studies may involve multiple image pairs. In this paper 
we use results from fuzzy set theory and fuzzy morphology to extend the defini-
tions of existing overlap measures to accommodate multiple fractional labels. 
Simple formulas are provided which define single figures of merit to quantify 
the total overlap for ensembles of pairwise or groupwise label comparisons. A 
quantitative link between overlap and registration error is established by defin-
ing the overlap tolerance. Experiments are performed on publicly available la-
beled brain data to demonstrate the new measures in a comparison of pairwise 
and groupwise registration. 

1   Introduction 

Effective validation techniques are an essential pre-requisite for segmentation and 
non-rigid registration techniques to enter clinical use. Registration for medical appli-
cations seeks a mapping from one image (or set of images) to another such that struc-
tural or functional correspondence is achieved i.e. identifiable features or regions are 
correctly mapped between images. In medical image segmentation, the objective is to 
identify regions that have some functional or structural significance. If a pre-labeled 
image can be correctly registered to another image then the labeling problem is solved 
for that image. Conversely, if a pair of images contains corresponding labeled regions 
then the registration problem is at least partially solved by constructing a mapping 
between corresponding labels. Two common scenarios are that automatic image regis-
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tration has been performed on the basis of voxel intensity information or that a novel 
segmentation technique has been applied to an image. The problem with validating 
these cases at present is the paucity of metrics of quality, especially where the seg-
mentation or registration technique generates fuzzy (i.e. fractional or probabilistic) 
labels or is evaluated over multiple test images. To date most evaluation has relied on 
the use of simple measures of regional overlap, defined for single labels, which as-
sume that each voxel is either labeled or not labeled. In this paper we use results from 
fuzzy set theory and fuzzy morphology to extend existing definitions of overlap to (i) 
measure overlap of partial volume labels (ii) compute overlap measures for multiple 
labels defined on multiple image pairs (iii) compute overlap measures for groupwise 
registration and (iv) establish a link between measures of overlap and estimates of 
target registration error. Experiments are performed to establish the behavior of the 
new overlap measures and to compare pairwise and groupwise registration performed 
on publicly available data.  

We consider an existing labeling (E) and a test labeling (T) that may have been ob-
tained by a new segmentation technique or by using the result of image registration to 
map a label set from one image to another. The most obvious quantitative comparison 
of regions is by volume [1] however two labelings may have similar volumes but very 
different shapes, or even locations. The Hausdorff-Chebyshev metric defines the 
largest difference between two contours or surfaces but can be computationally ex-
pensive to compute and is not symmetric between E and T (although it can be made 
so). The Modified Williams Index has been developed for comparison of multiple 
expert observers boundaries against computer generated boundaries and is the ratio 
between the average computer-to-observer agreement and the average inter-observer 
agreement [2].  

For a comparison of voxel-wise binary labelling the number of true and false posi-
tives and negatives can be determined and measures of region overlap can be com-
puted. These are generally of the form: 
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In equation 1 N(E) indicates the number of voxels which belong to the label E etc. In 
this work we will concentrate on the first (left-most) expression (the Tanimoto coeffi-
cient) although a similar development could be made with the other forms. These and 
other overlap measures are reviewed from the perspective of the so-called “overlap-
ping area matrix” by Beauchemin and Thomson [3]. Measures of correspondence 
based on information theory have also been proposed [4]. For labels defined in a 
probabilistic fashion, Gerig [5] suggests a probabilistic overlap and has provided 
software to compute this and other overlap measures. 

The work in this paper extends previous overlap definitions to cope with contem-
porary applications. The motivation is to develop regional overlap measures that can 
be intuitively pooled across labels and subjects to provide single figures of merit. 
Potential applications include assessment of registration of ensembles of subjects, 
particularly in group-wise (“target-less”) applications. We also take the opportunity to 
formalize a previously suggested link between overlap measures and target registra-
tion errors in registration via the definition of the overlap tolerance, τ. 
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2   Methods 

We first redefine the overlap measure for fuzzy labels. In equation 1, the overlap is 
obtained by summing the number of distinct voxels in the label intersection and un-
ion. However, both binary labels which have been interpolated following registration 
and those which model partial occupancy at a voxel can be characterized by a number 
[0, 1] at each voxel that defines the fraction of voxel that is labelled. Results from 
fuzzy set theory for the intersection and union of two fuzzy sets can immediately be 
applied to rewrite equation 1 to give an overlap, OF which is a function of the label 
values at each voxel summed over all voxels, i, in the image.  
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Equation 2 computes the overlap of a single pair of fuzzy labels defined on a pair of 
images. The numerator and denominator can be accumulated across multiple labels 
and multiple image pairs to compute a single overlap figure, OPMF, which describes 
the total overlap of a set of fuzzy labels defined on a set of image pairs. The overlap is 
the ratio of the total fuzzy intersection to the total fuzzy union. 
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In equation 3, αl is a label-specific weighting factor that affects how much each label 
contributes to the accumulated overlap and βk is a pair-specific weighting factor that 
affects the relative contribution of each image pair to the accumulated overlap. We 
defer a discussion of the possible values of αl and βk to section 2.2. There are now 
emerging techniques where a single groupwise registration is performed instead of 
multiple pairwise registrations. A groupwise overlap measure, OGMF, can be con-
structed by considering permutations of image pairs within the group and applying 
equation 3 Note that there is no simple relationship between multiple overlaps evalu-
ated separately using equation 2 and the ensemble overlap evaluated using equation 3. 

2.1   Overlap and Target Registration Error: Overlap Tolerance 

The overlaps described above do not consider the proximity of the non-overlapping 
label portions that may also provide important information. One previously proposed 
method of determining this proximity is the tolerance, τ [6]. The standard overlap 
measures can be considered to be τ=0 since pairs of label voxels have to occupy the 
same space to be considered overlapping. However, τ > 0 allows labels to be consid-
ered overlapping if they lie within τ mm of each other. Therefore as the tolerance 
increases, the fractional overlap 1 as the condition for overlapping voxels is re-
laxed. Previously this has been described for binary labels and integer values of the 
tolerance. We now define overlap for fractional labels and non-integer tolerances. 
Starting from the definition of overlap for fractional labels, OF,  (equation 2) the defi-
nition of fuzzy overlap to a tolerance,τ, can be written: 



102 W.R. Crum et al. 

( )
( )( ) ( )( )( )

( )∑
∑

=

ivoxels
ii

ivoxels
iiii

F ETMAX

EDTMINETDMINMAX

O

,

,

,

,,, ττ

τ
 

(4) 

In equation 4, Dτ is a fuzzy dilation operator that can be represented as a voxel mask 
of dilation coefficients centered on each voxel of interest with τ specifying the extent 
of the operator. In 1D, where the voxel dimension is 1mm for example, D0={1}, 
D1={1, 1, 1}, D2={1, 1, 1, 1, 1} etc. When considering fractional tolerances then 
Dγ={γ, 1, γ}, D1+γ={γ, 1, 1, 1, γ} etc where 0 ≤ γ ≤ 1. Then the fuzzy dilation applied 
at a single voxel located at the origin, L(0), in 1D can be written as 

( ) ( ) ( ))(0* iLiDMAXL τ=  where i is in the range [-k, +k] and k = (int)(1+τ). This defini-

tion is consistent with that of [7]: ( )( ) ( ) ( )[ ]{ }SyyxytxD ∈−= ,,sup µυµυ
 where S is the 

image-space, ν is a structuring element, µ is a fuzzy set and x, y are both elements of 
S. t is a t-norm which in our case is simply defined as t(a, b) = ab.  

Note that OF(τ) is an increasing function of τ for τ ≥ 0.The maximum possible 
overlap given by equation 4 can be established by assuming that both D and T have 
fractional labels in the range [0, 1]. Then when τ >> 1 the numerator reduces to 
MAX(Ti, Ei)  and the maximum overlap is therefore 1 as expected. Now consider a 
pair of misregistered images where every voxel is independently labeled and the same 
set of labels exists in each image but are not necessarily coincident. Then the overlap 
of any pair of labels can be computed as described above. For each labeled voxel in 
the target image the smallest tolerance, τ1, for which the overlap with its partner in the 
source image is 1, can be computed. Then the map of tolerances is a map of target 
registration error. For labels spanning multiple voxels, τ1 estimates the maximum 
displacement between non-overlapping voxels belonging to corresponding labels. 

2.2   Parameter Choices 

In equation 3, weights α and β were introduced to respectively define the relative 
contribution of labels and subjects to the overlap measures. With α=1, all labels are 
implicitly weighted by their volume. This may not be desirable as smaller labels may 
represent a greater registration or segmentation challenge. Two alternative choices are 
to set α either to (i) the inverse mean volume of the current label pair to give all labels 
equal weighting or (ii) the inverse mean volume squared of the current label pair to 
weight by the inverse volume. We examine the effect of these different α values be-
low. In the experiments reported in this paper we have set β=1 but β could be used to 
weight inversely with the variance of labeling accuracy. 

3   Experiments A, B and C 

Nine T1-weighted MR-brain images with labels from the Internet Brain Segmentation 
Repository1 were used. Each image had ten binary anatomical labels, one for each of 
the following structures: amygdala, caudate, cerebellum, cortex, hippocampus, lateral 
ventricle, pallidum, putamen, thalamus and white matter.  
                                                           
1 http://www.cma.mgh.harvard.edu/ibsr 



 Generalised Overlap Measures for Assessment  103 

Experiment A investigates the decrease in overlap measures in response to forced 
misregistration. Each of the nine images (the targets) was paired with a copy of itself 
(the sources) and the accumulated overlap measure was computed for each pair. Then 
a non-rigid misregistration algorithm, which acted to reduce an image similarity 
measure, was applied to each source image and associated labels using tri-linear in-
terpolation. The mean misregistration displacement over each pair was computed 
together with the new accumulated overlaps. The overlaps were also computed for a 
single label, S constructed from the union of the ten labels above. 

Experiment B examines the relationship between the overlap tolerance and the 
misregistration error. For each of the misregistered labels in experiment A including 
the combined label, S, the tolerance was found for which the overlap OF was 0.99 and 
compared with the mean misregistration error computed for each label from the ap-
plied transformations. 

Experiment C compares a group of pairwise registrations and a groupwise regis-
tration. The 9 images from experiment A were (i) each registered independently to a 
tenth image in a pairwise fashion using a B-spline approach [8] and (ii) registered in a 
groupwise fashion to a common reference frame representing the average shape of the 
population, also using a B-spline approach [9]. Both techniques overlay a mesh of 
uniformly spaced control points onto each of the images; deforming the control points 
deforms the underlying images. The control points are manipulated until the normal-
ised mutual information is maximised. The groupwise technique does not use an ex-
plicit anatomical reference; instead an average shape is calculated implicitly by con-
straining the sum of all the deformations to be equal to zero using a Gradient Projec-
tion Method.  The cases were compared by assuming that both had been performed in 
a groupwise fashion and computing the groupwise overlap measure, OGMF by permut-
ing and accumulating all possible pairwise overlaps as in equation 3.  

4   Results 

Experiment A. Fig. 1 plots the accumulated overlap against the mean applied misreg-
istration  for  the  three  different  label  weightings, α, for each  pair in experiment A.  
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Fig. 1. The results of experiment A. The overlap accumulated over 10 labels plotted against the 
mean applied misregistration error for 9 image pairs. ♦=Volume-weighting, ■=Equal-
weighting, ▲=Inverse Volume-weighting, * = Union Label S and ○ = Simple Average. 
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Also plotted are the overlap for the single union label S and the average overlap com-
puted for each pair. It can be seen the trend is for the measured overlap to decrease as 
a function of increasing applied misregistration. There is a distinction between the 3 
different weighting schemes with the inverse volume weighted overlaps decreasing 
fastest. This is to be expected, as the overlap of smaller regions will be more sensitive 
to misregistration. The average overlap for each pair is nearly coincident with the 
equally weighted accumulated overlap as expected. The overlap of large structures (as 
deduced from the volume-weighted and union plots) does not always strictly decrease 
with increasing misregistration. This result is considered in section 4.  
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Fig. 2. Results for experiment B. (a) The smallest tolerance that gives an overlap of 0.99 
against the applied misregistration error for each of 10 label-pairs on 9 subjects. (b) The results 
of (a) averaged over each subject. 

Experiment B. Fig. 2a plots the tolerance computed iteratively using equation 4 for 
each label on each pair against the mean applied misregistration for that label. Figure 
2b plots the tolerance averaged over all the labels on each pair against the mean ap-
plied misregistration calculated over the aggregated label S. In both cases there is a 
strong linear relationship between the tolerance and the applied misregistration. 
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Fig. 3. Results for experiment C. The total accumulated overlap computed in a groupwise 
fashion for the unregistered, pairwise registered and groupwise registered images. Results are 
shown for volume-weighting, equal weighting and inverse volume-weighting between labels. 
Error bars represent the standard deviation of the overlap computed over all subject pairs. 
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Experiment C. Fig. 3 shows the groupwise overlap, OGMF, for the unregistered, pair-
wise and groupwise registered images for volume weighting, equal weighting and 
inverse volume weighting between structures. The overlap consistently ranks the 
pairwise overlaps above the groupwise overlaps. While the pairwise registration was 
refined to a control point spacing of 2.5mm, the groupwise was only refined to a spac-
ing of 5mm for computational efficiency. Therefore the scale of non-rigid deforma-
tions is restricted in the groupwise registration compared to the pairwise. Also the 
minimization of the groupwise cost function is more complex and therefore more 
likely to find local minima; this is an area of continuing research. A more interesting 
observation is that the inverse volume weighted overlaps are far more similar than the 
equal and volume weighted overlaps indicating that small structures are being regis-
tered more consistently. This is probably because the small, deep brain structures 
have relatively consistent anatomy whereas the larger structures such as cortex and 
white matter are known to vary significantly between individuals.  

5   Discussion and Conclusion 

We have developed overlap measures to allow comparison of multiple fuzzy labels 
defined on multiple subjects. The specific case of pairwise and groupwise registration 
has been considered here but these measures could also be applied to related problems 
of segmentation. We have re-introduced the idea of overlap tolerance and used it to 
relate registration error to overlap. We have demonstrated a linear relationship be-
tween the overlap tolerance and the applied misregistration in one experiment but this 
cannot be considered a completely general result. The misregistration acted normally 
to edge features so preferentially displaced high-contrast boundaries of structures 
rather than rearranging low-contrast features. The tolerance would be an insensitive 
indicator of registration error if the mis-registrations were occurring within labels; this 
is a property of labels rather than these overlap measures. Another application for the 
tolerance might be to initialize registration problems where labels exist on some parts 
of the image. 

The framework presented in this paper allows single overlap measures that encom-
pass multiple labels defined on multiple image pairs to be generated in a natural way. 
Weighting can be applied to prefer smaller labels and/or to accommodate other prior 
information about the images. Such evaluation tools are necessary for the clinical 
adoption of new registration and segmentation techniques. 
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