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Abstract

Generalised spin structures, or r-spin structures, on a 2-dimensional orbifold 6
are r-fold fibrewise connected coverings (also called r th roots) of its unit tangent
bundle ST6. We investigate such structures on hyperbolic orbifolds. The conditions
on r for such structures to exist are given. The action of the diffeomorphism group of
6 on the set of r-spin structures is described, and we determine the number of orbits
under this action and their size. These results are then applied to describe the moduli
space of taut contact circles on left-quotients of the 3-dimensional geometry fSL2.

1. Introduction

Spin structures on manifolds have been studied extensively, not least because of
their relevance to physics. A spin structure on a Riemann surface 6 may be thought
of as a square root of the tangent bundle T6, that is, a holomorphic line bundle L with
L 
 L D T6. On the level of the unit tangent bundle ST6, a spin structure can be
interpreted as a fibrewise connected double covering M ! ST6 by another S1-bundle
M over 6.

It is this last definition which most easily generalises to 2-dimensional orbifolds
and coverings of higher order. This is not just generalisation for generalisation’s sake.
For instance, such objects appear in the work of Witten [20] on matrix models of
2-dimensional quantum gravity, see also [15]. Here the viewpoint is that of Algebraic
Geometry, where an r th root of the tangent bundle of a Riemann surface 6 is con-
sidered to be a holomorphic line bundle whose r th tensor power equals T6. In that
framework, questions of moduli have been studied by Jarvis [9] and others.

Our personal motivation for investigating such r th roots comes from the moduli
problem for taut contact circles on 3-manifolds. These structures were introduced in [6],
where we also classified the 3-manifolds which admit such structures. The moduli ques-
tion was largely settled in [8], but certain details as to the precise geometry of the mod-
uli spaces had been left open. These details hinge on the classification of r th roots of
the unit tangent bundle of 2-dimensional hyperbolic orbifolds.
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Here is an outline of the paper. In Section 2 we present the basics of 2-dimensional
hyperbolic orbifolds, mostly to set up notation. In Section 3 we recall the definition of
the unit tangent bundle of an orbifold. Roots of such unit tangent bundles are defined
in Section 4, where we determine the conditions on r (in terms of the genus and multi-
plicities of the cone points of the orbifold 6) for r th roots to exist. We also set up a
one-to-one correspondence between r th roots and certain homomorphisms on the funda-
mental group of the unit tangent bundle of 6 (Theorem 3). In Section 5 this is used
to investigate the action by the diffeomorphism group of 6 on the set of r th roots. The
number of orbits under this action is determined (Proposition 5), as well as the length
of the orbits (Proposition 8). In Section 6 we reformulate this action by the diffeo-
morphism group in algebraic terms as an action by the outer automorphism group of
the orbifold fundamental group. Finally, in Section 7 we use this algebraic reformu-
lation and the results of the previous sections to describe the Teichmüller space (The-
orem 10) and moduli space (Theorem 11) of taut contact circles on left-quotients of the
3-dimensional Thurston geometry fSL2. In particular, we are interested in the enumera-
tion of the connected components of the moduli space; this gives the number of distinct
taut contact circles up to diffeomorphism and deformation.

Sections 2 to 5 are completely self-contained. The final two sections depend to
some degree on our earlier work [8], but except for the algebraic reformulation of the
moduli problem we do not need to quote any details from that paper.

2. Hyperbolic orbifolds

Throughout this paper, let 6 be a fixed (closed, orientable, 2-dimensional) orbifold
of genus g and with n cone points of multiplicity �1, : : : , �n . Moreover, it is assumed
that 6 is of hyperbolic type, i.e. its orbifold Euler characteristic, defined as

�

orb(6) D 2 � 2g � n C

n
X

jD1

1

� j

,

is assumed to be negative. This condition on the orbifold Euler characteristic deter-
mines those orbifolds which admit a hyperbolic metric; however, as yet we do not fix
such a hyperbolic structure.

The orbifold fundamental group �

orb of 6 is defined as the deck transformation
group of the universal covering Q

6 ! 6. We briefly recall the geometric realisation
of this group and its standard presentation. To that end, choose a base point x0 2 6

distinct from all the cone points, and a lift Qx0 2 Q6 of x0 in the universal covering space.
Choose a system of 2g loops on 6, based at x0, and a curve from x0 to each of the
cone points, such that 6 looks as in Fig. 1 when cut open along these 2gC n curves.
We may interpret that figure as a fundamental region in Q

6; it is determined (amongst
all possible fundamental regions whose boundary polygon maps to the chosen system
of curves) by the indicated placement of Qx0 on its boundary. Notice that the sides of
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Fig. 1. A fundamental domain for 6.

this polygon identified by the deck transformation Nq j meet at a vertex mapping to the
j th cone point in 6; all other vertices are lifts of x0.

Let Nu1, Nv1, : : : , Nug , Nvg , Nq1, : : : , Nqn be the deck transformations of Q

6 which effect
the gluing maps of the sides of the chosen fundamental polygon as indicated in Fig. 1.
From the figure we see that the deck transformation

Q

i [ Nui , Nvi ]
Q

j Nq j (read from the right
as a composition of maps) fixes the point Qx0, which is not the lift of a cone point, so
we conclude

Y

i

[ Nui , Nvi ]
Y

j

Nq j D 1.

Similarly, we have

Nq
� j

j D 1, j D 1, : : : , n.

These relations give the standard presentation of �

orb as

�

orb
D

(

Nu1, Nv1, : : : , Nug , Nvg , Nq1, : : : , Nqn W

Y

i

[ Nui , Nvi ]
Y

j

Nq j D 1, Nq
� j

j D 1

)

.

Once 6 has been equipped with a hyperbolic structure and an orientation, then
Q

6 D H

2 and the Nui , Nvi , Nq j are orientation preserving isometries of H2, i.e. elements of

PSL2R. The identification of Q

6 with H2 is uniquely determined if we specify, for in-
stance, the lift Qx0 2 H

2, the initial direction of one of the edges of the fundamental
polygon emanating from that point, and require that the orientation lifted from 6 co-
incide with a chosen orientation of H2. In this way an oriented hyperbolic structure
on 6 defines an element of the Weil space R(�orb, PSL2R) of faithful representations
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of �

orb in PSL2R with discrete and cocompact image. Conversely, any representation
N� 2 R(�orb, PSL2R) determines a diffeomorphic copy N�(�orb) nH2 of 6 with a hyper-
bolic structure and an orientation.

It is possible to designate one of the orientations on any given 6 as positive and
the other as negative in the following way. If there are cone points, it suffices to ob-
serve that N�( Nq j ) is a rotation by �2�=� j , with the same sign for each j D 1,:::,n. (The
sign is well defined even for � j D 2 when we regard the rotation as being through the
interior of the fundamental domain.) Observe in Fig. 1 how the direction of rotation
around the cone points relates to the orientation given by the pairs of arrows indicating
the action of Nui and Nvi ; thus, any such pair of arrows allows us to determine the ori-
entation of 6, also when no cone points are present. We write R�(�orb, PSL2R) for
the corresponding components of R(�orb, PSL2R). Any two representations N�1, N�2 2

R(�orb, PSL2R) are related via conjugation with a diffeomorphism of H2. This diffeo-
morphism will be orientation preserving or reversing, depending on whether N�1, N�2 lie
in the same component or not, see also [8, pp. 59/60]. This orientation issue will only
become relevant in Section 7 of the present paper.

3. The unit tangent bundle of an orbifold

The unit tangent bundle of an oriented hyperbolic orbifold 6 is defined as fol-
lows, see [17, p. 466]. Write fSL2 for the universal cover of PSL2R. There is a short
exact sequence

0 ! Z!

fSL2
p
�! PSL2R! 1.

Realise the given hyperbolic structure and orientation on 6 by a choice of representa-
tion N� 2 R(�orb, PSL2R). Then set

ST6 D p�1( N�(�orb)) nfSL2I

this is the unit tangent bundle of 6. It is in a natural way the total space of a Seifert
bundle over 6 with normalised Seifert invariants

{g I b D 2g � 2I (�1, �1 � 1), : : : , (�n , �n � 1)}.

REMARK. There is a tricky orientation issue here. The group PSL2R of orien-
tation preserving isometries of H2 acts, via the differential, transitively and with triv-
ial point stabilisers on the unit tangent bundle STH2 of H2 (see Scott’s survey [17]),
which allows us to identify PSL2R with STH2. A given orientation on H2 thus induces
an orientation on the S1-fibres of PSL2R D STH2

! H

2, and hence on the R-fibres of
fSL2 ! H

2. When we pass to a left-quotient of fSL2, these oriented R-fibres descend to
oriented Seifert fibres. With this orientation convention, the invariants of the multiple
fibres are (� j , 1), see [17, p. 467]. On the other hand, there is a natural right S1-action
on compact left-quotients of fSL2. When this right action is turned into a left action by
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the inverse elements (while keeping the orientation of fSL2 and its quotient), the Seifert
invariants become (�i , �i � 1). This is the convention of Raymond and Vasquez [16,
pp. 169/70], which is the more suitable one for our more algebraic considerations in
our earlier paper [8] and below.

A presentation of the fundamental group � of ST6 is given by

� D

(

u1, v1, : : : , ug , vg , q1, : : : , qn , h W
Y

i

[ui , vi ]
Y

j

q j D h2g�2,

q
� j

j h� j�1
D 1, h central

)

.

Under the projection ST6! 6, the generators of � and �

orb correspond to each other
as suggested by our choice of notation. In other words, there is a representation � 2

R(� , fSL2) with �(�) D p�1( N�(�orb)) and p(�(ui )) D N�( Nui )) etc. For further details
see [8, Section 4].

The Seifert fibration ST6 ! 6, up to equivalence, does not depend on the choice
of hyperbolic structure on 6. This allows us to speak of the unit tangent bundle ST6

(as a Seifert manifold) even when we have not fixed a metric on 6.

4. Roots of the unit tangent bundle

Our aim is to classify r th roots of ST6 for 6 an oriented orbifold of hyperbolic
type, by which we mean the following.

DEFINITION. An r th root of the unit tangent bundle ST6 is an r -fold fibrewise
connected and orientation preserving covering M ! ST6 of ST6 by a Seifert mani-
fold M . In other words, we require that each S1-fibre of ST6 is covered r times
positively by a single S1-fibre of M .

REMARKS. (1) For r D 2, such coverings are precisely the spin structures on 6.
Spin structures on orbifolds of arbitrary dimension were defined and studied from the
differential geometric point of view (index theory, twistor theory) in [5] and [3]. The
latter paper contains a general existence and classification statement for spin structures
on orbifolds, albeit only for orbifolds whose singular set is of codimension at least 4.

(2) In the case of a principal S1-bundle without multiple fibres, one can pass to
the associated complex line bundle. An r th root then corresponds to a complex line
bundle whose r th tensor power is the given line bundle.

For the purpose of classifying such r th roots M ! ST6 we need to specify a
notion of equivalence. Both M and ST6 come equipped with an effective S1-action
that induces the Seifert fibre structure. The covering map M ! ST6 may be regarded
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as the quotient map under the Zr -action on M induced by this S1-action on M and the
natural inclusion Zr � S1. In particular, the covering map M ! ST6 is regular, and
M is a principal Zr -bundle over ST6.

Two r th roots q W M ! ST6 and q 0

W M 0

! ST6 will be regarded as equivalent
if there is an S1-equivariant diffeomorphism  W M ! M 0 with q 0

Æ  D q. Since the
S1-actions on M and M 0 are lifted from the S1-action on ST6, this amounts to the
same as requiring the existence of a Zr -equivariant diffeomorphism  W M ! M 0.

The equivalence classes of arbitrary principal Zr -bundles over ST6 are in nat-
ural one-to-one correspondence with the set Hom(� , Zr ) of homomorphisms from the
fundamental group � of ST6 into Zr , the correspondence being given by associating
with a principal Zr -bundle its monodromy homomorphism [19, §13.9]. The r th roots
M ! ST6 are precisely those principal Zr -bundles over ST6 for which the Zr -action
extends to an S1-action covering the S1-action on ST6. In other words, each S1-fibre
of ST6 lifts to a (positive) path of length 2�=r in the corresponding S1-fibre of M .
This is the same as saying that the monodromy homomorphism takes the value 1 on
the fibre class h.

Thus, the r th roots M ! ST6 are classified by the subset

Hom1(� , Zr ) WD {Æ 2 Hom(� , Zr ) W Æ(h) D 1}.

If we drop the condition on orientations, we also have to allow homomorphisms Æ with
Æ(h) D �1. This will become relevant in Section 6.

On a given M there are other structures as principal Zr -bundles over ST6 with
each Zr -orbit lying in an S1-fibre of M . These correspond to homomorphisms Æ 2
Hom(� , Zr ) with Æ(h) a generator of Zr . Such more general Zr -bundles play no role
in our discussion.

REMARK. There is a well-known isomorphism between, on the one hand, the
deck transformation group of the universal covering QX ! X of a topological space X

and, on the other hand, the fundamental group �1(X, x0). This isomorphism depends,
up to an inner automorphism, on the choice of a lift Qx0 2 QX of the base point x0, cf. [8,
Remark 4.10]. This dependence becomes irrelevant once we consider homomorphisms
into the abelian group Zr . Thus, while we usually think of � as a deck transformation
group, one may still interpret the monodromy homomorphism � ! Zr as being defined
in terms of loops as in [19, §13].

We now want to give a characterisation of the homomorphisms Æ 2 Hom1(� , Zr )
in terms of the allowable values on the generators in the standard presentation of � . In
order to do so, we need to recall a theorem of Raymond and Vasquez [16] about the
Seifert invariants of left-quotients of Lie groups, cf. [7]. We have seen in the preced-
ing section that, once we equip 6 with a hyperbolic structure, its unit tangent bun-
dle ST6 can be written as a left-quotient of fSL2, and so the same is true for its
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r -fold covering M . Indeed, the fundamental group of the manifold M corresponding to
Æ 2 Hom1(� , Zr ) is Q� D ker Æ. A representation � 2 R(� , fSL2) as described at the end
of Section 3 induces a representation Q� 2 R( Q� , fSL2) of Q� as the deck transformation
group of M .

By construction, M is a Seifert manifold with n multiple fibres of multiplicities
�1, : : : , �n (just like the Seifert manifold ST6), but whereas the fibre index (see [7,
Definition 6] of ST6 equals 1, the fibre index of M is r . Then, according to [16]
or [7], the normalised Seifert invariants

{g, b, (�1, �1), : : : , (�n , �n)}

of M (where b is an integer and each � j an integer between 1 and � j � 1) are subject
to the condition that there exist integers k1, : : : , kn such that

rb D 2g � 2 �
n
X

jD1

k j ,(1)

r� j D � j � 1 C k j� j , j D 1, : : : , n.(2)

(Observe that these conditions are satisfied for ST6 with r D 1, b D 2g � 2, and all
k j equal to zero.) For a given 6, these conditions impose severe restrictions on the
possible values of r . These restrictions are implicit in [16]; for the reader’s convenience
we deduce them directly from the equations (1) and (2).

Lemma 1. If r 2 N satisfies the Raymond–Vasquez relations (1) and (2), then r

is prime to �1 � � � �n and divides the integer �1 � � � �n � �
orb.

Conversely, if r 2 N satisfies these latter conditions ( for given g, n and � j ), then

there are integers b, k j and � j (with 1 � � j � � j � 1) such that equations (1) and (2)
are satisfied.

Proof. From (2) we see that r must be prime to � j . With (1) and (2) one computes

r � �1 � � � �n �

 

b C

n
X

jD1

� j

� j

!

D ��1 � � � �n � �
orb,

which proves the claimed divisibility.
For the converse, the condition gcd(r, � j ) D 1 allows us to choose integers 1 �

� j � � j � 1 and k j such that (2) holds. One then computes

r � �1 � � � �n

n
X

jD1

� j

� j

D ��1 � � � �n � �
orb
� �1 � � � �n �

 

2g � 2 �
n
X

jD1

k j

!

,

which shows that r divides 2g � 2 �
Pn

jD1 k j , as was to be shown.
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REMARK. Equation (2) and the fact that r and � j are coprime imply that mul-
tiple fibres with the same � j also have the same � j (and hence the same k j ). This is
a unique feature of left-quotients of fSL2.

The converse implication of the preceding lemma has the following consequence.
Given an r 2 N satisfying the divisibility assumptions, we find—by the lemma—a set
of normalised Seifert invariants satisfying the Raymond–Vasquez relations. In particu-
lar, the Euler number

e D �

 

b C

n
X

jD1

� j

� j

!

of the Seifert fibration must be non-zero, since re D �

orb
< 0. This means that the

Seifert manifold M defined by these invariants is diffeomorphic to a left-quotient of fSL2.
The projection fSL2 ! PSL2R induces the Seifert fibration M ! 6 over a hyperbolic
orbifold 6 and gives M the structure of an r th root of ST6.

Lemma 2. The homomorphisms Æ 2 Hom1(� , Zr ), where r 2 N is supposed to

satisfy the Raymond–Vasquez relations (1) and (2), can take arbitrary values on the

generators u1,v1, : : : , un,vn , but the value on the q j is determined by Æ(q j ) D k j mod r .

Proof. In Zr we compute

0 D Æ(1) D Æ(q
� j

j h� j�1) D Æ(q j )� j C � j � 1.

From equation (2) we see that, first of all, � j must be prime to r , and secondly, that
Æ(q j ) D k j mod r , as claimed. Equation (1) implies that this condition on Æ is con-
sistent with the other relation in the presentation of � . It is then easy to see that we
may define a homomorphism Æ 2 Hom1(� , Zr ) by prescribing arbitrary values on the
ui and vi .

We summarise our discussion in the following theorem.

Theorem 3. The unit tangent bundle ST6 of an orbifold 6 of hyperbolic type

admits an r th root if and only if r 2 N is prime to the multiplicities �1, : : : , �n of the

cone points and a divisor of the integer �1 � � ��n ��
orb(6). In that case, the distinct r th

roots are in natural one-to-one correspondence with the elements of Hom1(� , Zr ).

REMARK. There is a simple geometric explanation why r needs to be prime to
the multiplicities �1, : : : ,�n for an r th root of ST6 to exist. From the local model for a
fibre of multiplicity � j one sees that when we pass to an r -fold cover with connected
covering of the multiple fibre, then for r not prime to � j the covering of the regular
fibres will fail to be connected.
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Lemma 2 implies that any two homomorphisms in Hom1(� ,Zr ) differ by a homo-
morphism � ! Zr that sends h and the q j to zero. Such a homomorphism may be
interpreted as an element of

Hom(�1(6), Zr ) � Hom(H1(6), Zr ) � H 1(6I Zr ) � Z

2g
r .

(In the first term we really do mean the fundamental group �1(6), not the orbifold
fundamental group �

orb.) This one-to-one correspondence of r th roots of ST6 with
elements of H 1(6I Zr ), however, is not natural. All we have is a free and transitive
action of H 1(6I Zr ) on the set of r th roots.

One way to give an explicit one-to-one correspondence between Hom1(� , Zr ) and

Z

2g
r is to fix a presentation for � , and then to associate with Æ 2 Hom1(� ,Zr ) the tuple

(Æ(u1), Æ(v1), : : : , Æ(ug), Æ(vg)) 2 Z2g
r .

REMARKS. (1) As observed by Johnson [10], there is a natural geometric lift-
ing of mod 2 homology classes from a surface to its unit tangent bundle. Thus, spin
structures on surfaces are naturally classified both by Hom1(�1(6),Z2) and H1(6IZ2).
There is no such natural lifting of mod r classes for r greater than 2. However, given
a smooth simple closed curve on 6, we can consider its tangential lift to ST6. This
will be used in the next section to help us understand the action of the diffeomorphism
group of 6 on Hom1(� , Zr ).

(2) For an honest S1-bundle over an arbitrary manifold X , one can classify r th

roots by mimicking the spectral sequence argument of [13, Chapter II.1] with Z2-
coefficients replaced by Zr -coefficients, cf. [11]. This allows one to show that an r th

root exists if and only if the mod r reduction of the Euler class of the S1-bundle van-
ishes (which can also be seen by more simple means), and then r th roots are in (non-
natural) one-to-one correspondence with the elements of H 1(X I Zr ).

We close this section by giving an explicit presentation of the fundamental group
Q� D ker Æ of the manifold M corresponding to Æ 2 Hom1(� , Zr ). Choose integers si , ti

with si � Æ(ui ) and ti � Æ(vi ) mod r , i D 1, : : : , g. Then Q� is generated by

Qui WD ui h
�si , Qvi WD vi h

�ti , i D 1, : : : , g, Qq j WD q j h
�k j , j D 1, : : : , n, and Qh WD hr .

With the help of the Raymond–Vasquez relations one sees that this yields the presen-
tation

Q� D

(

Qu1, Qv1, : : : , Qug , Qvg , Qq1, : : : , Qqn , Qh W
Y

i

[ Qui , Qvi ]
Y

j

Qq j D
Qhb,

Qq
� j

j
Qh� j

D 1, Qh central

)

.
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5. The action of diffeomorphisms on roots

We are now going to define an action of the diffeomorphism group of 6 on the
set of r th roots of ST6. For g � 2, it will be shown that this action is transitive for
r odd, and that it has exactly two orbits for r even; the case g D 1 will require an
ad hoc treatment; on a given hyperbolic orbifold of genus g D 0 and for each r there
is at most one r th root, since in that case Hom1(� , Zr ) is trivial. Throughout, we fix
an orientation of 6, and the diffeomorphisms we consider are always understood to
be orientation preserving. A diffeomorphism of an orbifold may at best permute cone
points of the same multiplicity. By Lemma 2 and the remark following the proof of
Lemma 1, any such permutation can be achieved by a diffeomorphism that induces
the trivial action on Hom1(� , Zr ). So in order to understand the action of the diffeo-
morphism group of 6 on Hom1(� ,Zr ), it suffices to consider diffeomorphisms that fix
a neighbourhood of each cone point.

Let M ! ST6 be an r th root of ST6, corresponding to some homomorphism
Æ 2 Hom1(� , Zr ), and let f be a diffeomorphism of 6 as described. By slight abuse
of notation, we may regard the differential T f as a diffeomorphism of ST6; the com-
position of the projection M ! ST6 with T f is then a new r th root of ST6. We
denote the corresponding element in Hom1(� , Zr ) by f

�

Æ.
Geometrically this means the following. Given u 2 � , represent it by a loop in

ST6. Then ( f
�

Æ)(u) 2 Zr is given by the monodromy of the covering M ! ST6

along the preimage of that loop under T f .
We make one further abuse of notation. If u is an oriented, smooth closed curve

on 6 (avoiding the cone points), we also write u for its tangential lift to a closed curve
in ST6. Up to conjugation, this represents a well-defined element in � D �1(ST6),
so it makes sense to speak of Æ(u) 2 Zr . This abuse of notation is justified by the fact
that for f a diffeomorphism of 6, the tangential lift of f (u) equals the image of the
tangential lift of u under the differential T f .

Consider a topological model for 6 as in Fig. 2. Here 6 is given the standard
orientation, so that the simple closed curves ui , vi representing the standard generators
of H1(6) intersect positively in a single point. The notation ui , vi has been chosen in
accordance with the presentation of � in Section 3. In the sequel we identify a homo-
morphism Æ 2 Hom1(� , Zr ) (representing an r th root of ST6) with the corresponding
2g-tuple of integers mod r , that is, we write

Æ D (s1, t1, : : : , sg , tg) 2 Z2g
r ,

where si D Æ(ui ) and ti D Æ(vi ).
For our discussion below we note that the element h 2 � corresponds to a pos-

itively oriented regular fibre of ST6, so it can be represented by a small positively
oriented circle on 6.

Next we want to show that for any given Æ 2 Hom1(� ,Zr ) there is a diffeomorphism
f of 6 such that f

�

Æ is in a very simple standard form. This is done by studying the
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Fig. 2. Loops on 6 representing loops in ST6.

Fig. 3. The smooth deformation from ui � uiC1 to wi,iC1 � h.

transformation behaviour of Æ under certain Dehn twists on 6.
For u a simple closed curve on 6, write f u for the right-handed Dehn twist along u.

Lemma 4. Under the basic Dehn twists f ui , f vi and f wi,iC1 , the tuple Æ D (s1,t1,:::,
sg , tg) transforms as follows:

f ui

�

Æ D (: : : , si , ti � si , : : : ),

f vi

�

Æ D (: : : , si C ti , ti , : : : ),

f
wi,iC1
�

Æ D (: : : , si , ti � si C siC1 � 1, siC1, tiC1 C si � siC1 C 1, : : : ).

Proof. The Dehn twist f ui sends ui to itself and vi to ui C vi ; the differential
T f ui has the same effect, when those curves are regarded as loops in ST6. So the
inverse diffeomorphism sends ui to itself and vi to vi � ui . This gives the formula for
f ui
�

. The argument for f vi
�

is analogous.
In order to investigate f

wi,iC1
�

, we need to compute Æ(wi,iC1).

CLAIM. Æ(wi,iC1) D Æ(ui ) � Æ(uiC1)C 1.

This can be seen as follows (cf. [10] for an analogous idea). The disjoint union
of the smooth curves ui and �uiC1 (that is, uiC1 with reversed orientation) can be de-
formed smoothly into the union of wi,iC1 and a small circle oriented negatively (see
Fig. 3 for a schematic illustration). The tangential lift of the latter equals �h. This
implies the claim.
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Now, the inverse of f wi,iC1 sends vi to vi � wi,iC1, and viC1 to viC1 C wi,iC1; the
other basic loops remain unchanged. In conjunction with the claim, this gives the for-
mula for f

wi,iC1
�

.

REMARK. The formulae of Lemma 4—for the case r D 2, where signs do not
matter—were derived earlier by Da̧browski and Percacci [4] by quite involved calcu-
lations in local coordinates. Related considerations can also be found in the work of
Sipe [18]. She studied r th roots of the unit tangent bundle of hyperbolic surfaces with
the aim of describing certain finite quotients of their mapping class group.

The signs in the formulae of Lemma 4 change when we perform left-handed Dehn
twists. Therefore, Dehn twists along ui and vi enable us to perform Euclid’s algorithm
on any pair of integers representing the pair (si , ti ) of mod r classes. This implies that
we can reduce one component to zero and the other to the unique element di 2 Zr

determined by the conditions that the principal ideal in Zr generated by di equal the
ideal generated by si and ti , and that the integer representative of di lying between 1
and r be a divisor of r . By slight abuse of notation we write this last condition as
di jr . The pair (di , 0) can be changed to the pair (0, di ) by further such Dehn twists.
In total, we can find a composition of Dehn twists of 6 that transforms Æ to

(0, d1, : : : , 0, dg).

In order to simplify this further, we have to bring the curves wi,iC1 into play. By
the claim, the transformed Æ takes the value 1 on wi,iC1. Thus, when we perform d1

right-handed Dehn twist along w12, the tuple (0, d1, 0, d2, : : : ) changes to (0, 0, 0, d1 C

d2, : : : ). Continuing with the appropriate Dehn twists along w23 up to wg�1,g, we find
a diffeomorphism transforming Æ to

(0, : : : , 0, d1 C � � � C dg).

We shall presently describe further Dehn twists that bring Æ into one of the forms listed
in the next proposition.

Proposition 5. By a sequence of Dehn twists, we can bring Æ into one of the

following standard forms:
• (0, : : : , 0, 0) if g � 2 and r odd,
• (0, : : : , 0, 0) or (0, : : : , 0, 1) if g � 2 and r even,
• (0, d) with djr if g D 1 (beware that this includes d D r � 0).

Of course, for g D 1 the surface 6 will be of hyperbolic type only if there is at
least one cone point. For g D 0 (and at least three cone points), Hom1(� ,Zr ) is trivial.
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Proof of Proposition 5. The case g D 1 has been settled by the discussion pre-
ceding the proposition. In the case g � 2, we may assume that Æ has already been
transformed into the form (0, : : : , 0, d), as yet without any information on d.

We only write the last four components of the 2g-tuple in Z

2g
r . We claim that

there are Dehn twists giving the following sequence of transformations:

(0, 0, 0, d) ! (0, �1, 0, d � 1) ! (0, �1, 0, d � 1) ! (0, 0, 0, d � 2).

Indeed, the first and third step are given by a Dehn twist (of the appropriate sign) along
wg�1,g, the second by a sequence of Dehn twists along ug�1 and vg�1.

So we can always reduce the last component to 0 or 1. If r is odd, then Dehn
twists along ug and vg allow us to transform from (0, 1) (in the last two components)
to (0, 2)—since either of 1 or 2 generates the same principal ideal in Zr , namely the
full ring.

The standard forms listed in the preceding proposition turn out to be pairwise in-
equivalent under the action of the diffeomorphism group. We first show this for the
case g D 1.

Lemma 6. For g D 1, two standard forms (0, d) and (0, d 0), where we think of

d, d 0 as integers between 1 and r (which divide r ), are equivalent if and only if d D d 0.

Proof. Assume without loss of generality that d 0

� d. The action of the diffeo-
morphism group of a hyperbolic orbifold 6 of genus 1 translates into the standard
SL(2, Z)-action on Z

2
r D Hom1(� , Zr ). The orbit of (0, d) under this action consists

of elements of the form (md, nd) (with m and n coprime). Since d is a divisor of r ,
the number nd (thought of as an integer) can be congruent to d 0 mod r only if d is a
divisor of d 0, which forces d D d 0.

The Z2-invariant that distinguishes the standard forms in the case g � 2 (and r

even) goes back to Atiyah [2]. A spin structure on an honest surface 6 has an asso-
ciated complex line bundle L . Once a complex structure has been chosen on 6, one
can speak of holomorphic sections of L . The dimension mod 2 of the vector space
of holomorphic sections turns out to be independent of the chosen complex structure;
this is Atiyah’s invariant of spin structures. As remarked earlier, Johnson [10] defined
a natural lifting of mod 2 homology classes from a surface 6 to its unit tangent bun-
dle. A spin structure on 6 then gives rise to a quadratic form on H1(6I Z2). Johnson
goes on to show that the Arf invariant of that quadratic form (whose definition can be
found on any Turkish 10 Lira note) equals Atiyah’s invariant.
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REMARK. The 2-dimensional spin cobordism group �

spin
2 is isomorphic to Z2;

the Atiyah invariant distinguishes the two cobordism classes.

Now we allow once again arbitrary orbifolds 6 of hyperbolic type. Motivated by
Johnson’s work, we define a Z2-valued invariant of an r th root Æ of ST6 (with r even),
which we write as Æ D (s1, t1, : : : , sg , tg) 2 Z2g

r , by

A(Æ) D
g
X

iD1

(si C 1)(ti C 1) mod 2.

Note that, for r even, this mod 2 reduction is well defined. The definition of this in-
variant can also be phrased as follows. Given a principal Zr -bundle M ! ST6 with
r even, there is an intermediate double covering of ST6. Thus, an r th root (with r

even) induces in a natural way a spin structure. The A-invariant is simply the Atiyah
invariant of that spin structure.

Lemma 7. The number A(Æ) 2 Z2 is a diffeomorphism invariant, i.e. for any (ori-

entation preserving) diffeomorphism f of 6 one has A( f
�

Æ) D A(Æ).

Proof. We need only consider diffeomorphisms that fix the cone points. The group
of such diffeomorphisms is generated by the Dehn twists along ui , vi and wi,iC1. The
invariance of A(Æ) under these Dehn twists can be checked easily with the formulae in
Lemma 4.

Obviously, the two standard forms (0, : : : , 0, 0) and (0, : : : , 0, 1) (for g � 2 and r

even) are distinguished by the A-invariant.

DEFINITION. For g � 2 and r even, we say an r th root Æ is of even (resp. odd)
type if A(Æ) equals 0 (resp. 1).

So the standard form (0, : : : , 0, 0) is of even type for g even, and of odd type for
g odd; the standard form (0, : : : , 0, 1) has the complementary type.

Proposition 8. For g � 2 and r even, the number of r th roots of even (resp. odd)
type equals r2g(2g

� 1)=2gC1.

Proof. Write r D 2s. An r th root Æ D (s1, t1, : : : , sg , tg) will be even if and only
if an even number of summands (si C 1)(ti C 1) in A(Æ) are odd. Such a summand is
odd if and only if both si and ti are even, which gives us s2 possibilities for choosing
si and ti . On the other hand, there are 3s2 possibilities for choosing si and ti such
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that (si C 1)(ti C 1) becomes even. It follows that the number of roots of even type is
given by

X

k even

�

g

k

�

(s2)k(3s2)g�k
D

1

2
((s2

C 3s2)g
C (�s2

C 3s2)g)

D

1

2
((4s2)g

C (2s2)g)

D

r2g(2g
C 1)

2gC1
.

For roots of odd type, the calculation is analogous.

REMARK. In the case r D 2, i.e. for spin structures, Propositions 5 and 8 are
well known—especially, it seems, among mathematical physicists. Our arguments for
deriving them generalise those of Da̧browski and Percacci [4]. An alternative approach
can be found in the work of Alvarez-Gaumé, Moore and Vafa [1]. They appeal to the
relation between spin structures and theta functions in order to describe the action of
the diffeomorphism group.

6. An algebraic reformulation

The Baer–Nielsen theorem for the orbifold 6 says, in essence, that the group of
all (not just orientation preserving) diffeomorphisms of 6 modulo those isotopic to the
identity can be identified with the group Out(�orb) of outer automorphisms of �

orb;
see [21]. We now want to use this to reformulate the action of the diffeomorphism
group on the space of r th roots of ST6 in an algebraic way. This serves as a prepara-
tion for the next section, where we tie up our discussion of r th roots with the moduli
problem for so-called taut contact circles, which was addressed in our earlier paper [8].
As announced there, the results of the present note allow us to count the connected
components of the moduli spaces in question.

There is an obvious action of Aut(�) on

Hom
�1(� , Zr ) WD {Æ 2 Hom(� , Zr ) W Æ(h) D �1}.

(The fact that we now allow Æ(h)D�1 corresponds to having orientation reversing diffeo-
morphisms included in the discussion.) This descends to an action of Out(�), since Zr

is abelian. Thus, in order to define an action of Out(�orb) on Hom
�1(� , Zr ), we should

first define a suitable lift from Aut(�orb) to Aut(�). Recall from [8, Lemma 4.13] that
there is a short exact sequence

0 ! Z

2g
! Aut(�) ! Aut(�orb) ! 1.

(This holds true for the fundamental group � of any Seifert manifold which is a left quo-
tient of fSL2 and has base orbifold 6.) Thus, algebraically, it is not clear how to define
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a lifting. Instead, we find a suitable lift by a direct appeal to the Baer–Nielsen theorem.
Put briefly, we represent a given element of Out(�orb) by an orbifold diffeomorphism f

of 6, and then find the lift as the automorphism corresponding to the differential T f .
From that construction it is clear that our algebraic definition of the action by the diffeo-
morphism group on the set of r th roots corresponds to the geometric definition in the
preceding sections (except that we have replaced a left action by a right action, which
is owed to the conventions in the algebraic setting of the next section).

Lemma 9. There is a natural right action of Out(�orb) on Hom
�1(� , Zr ), de-

fined as follows. Given a class [ N#] 2 Out(�orb), represented by an automorphism N

# 2

Aut(�orb), there is a geometrically defined lifting of this representative to an auto-

morphism # 2 Aut(�). Then the action of [ N#] on Æ 2 Hom
�1(� , Zr ) is defined by

Æ 7! Æ Æ # .

Proof. By the Nielsen theorem [21, Theorem 8.1] there is a diffeomorphism f of
6 (fixing a base point x0) covered by a diffeomorphism Qf of Q

6 (fixing a chosen lift
Qx0 of x0) such that

Qf Æ Nu Æ Qf�1
D

N

#( Nu) for all Nu 2 �

orb.

Regard the differential T f as a diffeomorphism of ST6, and let fT f be a lift to a
diffeomorphism of fSL2. Define # 2 Aut(�) by

#(u) D fT f Æ u Æ fT f
�1

for all u 2 � .

Since the fibre class h generates the centre of � , we have #(h) D h�1. So the
homomorphism Æ Æ # is still an element of Hom

�1(� , Zr ). Moreover, the definitions
imply that N

#1 Æ N

#2 lifts to #1 Æ #2, so the prescription Æ 7! Æ Æ # does indeed define a
right action, provided we can establish independence of choices.

Two different lifts of T f differ by a deck transformation of ST6, i.e. an element
of � . So the corresponding lifts # differ by an inner automorphism of � . Thus, the
homomorphism Æ Æ # into the abelian group Zr is independent of this choice of lift.

Next, we show that Æ Æ # depends only on the class [ N#], not on the choice of
representative N

# , or in other words, that for any inner automorphism N

# we have Æ Æ

# D Æ. By the Baer theorem [21, Theorem 3.1], the Nielsen realisation f of any inner
automorphism N

# of �orb is isotopic to the identity (by an isotopy not fixing the base
point, in general). Then T f is likewise isotopic to the identity. This isotopy lifts to
a fibre isotopy between fT f and a deck transformation of fSL2 ! ST6. This implies
that the resulting # will be an inner automorphism of � , and hence Æ Æ # D Æ, as we
wanted to show.

Finally, it remains to verify that the construction does not depend on the choice of
Nielsen realisation f . Two such realisations differ by a diffeomorphism whose lift to
Q

6 induces the identity on �

orb. Then the argument concludes as before by an appeal
to Baer’s theorem.
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7. The moduli space of taut contact circles

Let M be a given closed, orientable 3-manifold diffeomorphic to a left quotient of
fSL2 with fundamental group Q� . This is in a unique way a Seifert manifold over an
orbifold 6 of hyperbolic type, with a well-defined fibre index r . Recall from the end
of Section 4 the presentation of Q� involving the normalised Seifert invariants of M .

As shown in our paper [8], the Teichmüller space T (M) of taut contact circles,
i.e. the space of taut contact circles on M modulo diffeomorphisms isotopic to the iden-
tity, can be identified with Inn(fSL2) n R( Q� , fSL2), where R stands for the Weil space
of representations as in Section 2. The moduli space M(M) of taut contact circles,
i.e. the space of taut contact circles on M modulo all diffeomorphisms of M , is in
turn given by T (M)=Out( Q� ). With this algebraic translation taken for granted, nothing
further needs to be known about taut contact circles (not even their definition), i.e. the
following can be read as a discussion of these algebraically defined spaces, where we
want to understand the action of Out( Q� ) on T (M) D Inn(fSL2)nR( Q� ,fSL2) with the help
of the geometry of r th roots of ST6. See also [12] for the relevance of such questions
to the deformation theory of Seifert manifolds.

REMARK. To a large extent we follow the notational conventions of [8]. The one
difference that needs to be pointed out is that in our previous paper, � denoted the
fundamental group of M , as ST6 did not play much of a role in our discussion there.
In the present paper, � denotes the fundamental group of ST6, and Q� that of M .

Write T (6) for the Teichmüller space of hyperbolic metrics on the base orbi-
fold 6, together with a choice of orientation. This means that T (6) has two con-
nected components T C(6) and T �(6). Algebraically, T (6) may be thought of as
Inn(PSL2R) nR(�orb, PSL2R). In Section 4 of [8] it was shown that T (M) is a trivial
principal Z2g-bundle over T (6). For Aut( Q� ) there is a short exact sequence as for
Aut(�) in the previous section. The normal subgroup Z2g

� Aut( Q�) acts as (rZ)2g on
the mentioned principal bundle. This implies that T (M)=Z2g —where the quotient is
taken under the action of Z2g

� Aut( Q� )—is a trivial r2g-fold covering of T (6), and
the moduli space of taut contact circles on M can be described as

M(M) D (T (M)=Z2g)=Out(�orb).

So the following theorem essentially settles the moduli problem for taut contact circles
on left quotients of fSL2. Here � denotes, as before, the fundamental group of ST6.
For the proof below, notice that there are quotient maps Q� ! �

orb and � ! �

orb, given
by quotienting out the normal subgroup generated by the central element Qh and h,
respectively.
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Theorem 10. The quotient T (M)=Z2g of the Teichmüller space of taut contact

circles on M under the action of Z2g
� Aut( Q�) has a natural description as follows:

T (M)=Z2g
D Hom1(� , Zr ) � T

C(6) t Hom
�1(� , Zr ) � T

�(6)

On the second factors T �(M), the right action of Out(�orb) is the obvious one; on

the first factors Hom
�1(� ,Zr ), the group Out(�orb) acts from the right as described in

Section 6.

REMARK. If the Nielsen realisation f of an automorphism N

# of �

orb is orien-
tation reversing (so that N

# will exchange the components T �(6)), then the differen-
tial T f , regarded as a diffeomorphism of ST6, will reverse the fibre direction, so N

#

will also exchange Hom
�1(� , Zr ). In fact, no left-quotient of fSL2 admits any orienta-

tion reversing diffeomorphism [14].

Proof of Theorem 10. First we are going to define a map from the left-hand side
T (M)=Z2g to the right factors T C(6) t T �(6) D T (6) on the right-hand side. Re-
call from [8, Section 4] that the projection fSL2 ! PSL2R induces a covering map
R( Q� , fSL2) ! R(�orb, PSL2R), which in turn induces a well-defined map T (M) !
T (6), since any inner automorphism of fSL2 induces an inner automorphism of PSL2R.
The action of Z2g

� Aut( Q�) on Q� is given by multiplying the generators Qui , Qvi with the
corresponding power of the central element Qh. Since this central element generates the
kernel of the quotient map Q� ! �

orb, we get an induced map T (M)=Z2g
! T (6).

Next we want to define a map T (M)=Z2g
! Hom

�1(� , Zr ) to the left factors on
the right-hand side. This means that, given Q� 2 R( Q� , fSL2) representing an element
[ Q�] 2 T (M)=Z2g , and given u 2 � , we want to define Æ(u) 2 Zr in such a way that Æ
becomes a homomorphism � ! Zr sending h to �1, and such that Æ is independent
of the chosen representative Q�.

Thus, start with Q� and u as described. The element u 2 � projects to an element
Nu 2 �

orb, which in turn lifts to an element Qu 2 Q� , unique up to powers of Qh. Likewise,
the representation Q� 2 R( Q� , fSL2) projects to a representation

N� 2 R(�orb, PSL2R) D R
C(�orb, PSL2R) tR

�(�orb, PSL2R),

as observed in the first part of the proof, and then can be lifted in a preferred way to
a representation � 2 R(� , fSL2); cf. Section 2 for the notation R�.

In [8, Section 4] we gave a definition of such a preferred lift that also allowed us
to lift from a representation of �

orb to one of Q� . Here, where we only want to lift
to a representation of � , we shall make a choice that leads to a natural description
of the Out(�orb)-action. In order to allow unique lifting of maps to universal covers,
we choose base points in 6, ST6 and their universal covers in such a way that all
relevant projections are base point preserving. Likewise, we choose a base point in
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fSL2 DASTH over a base point in H; this determines a base point in any discrete quo-
tient of these spaces.

Now to the definition of �. In the sequel it is understood that all diffeomorphisms
are base point preserving. Choose a diffeomorphism gW 6! N�(�orb)nH2 whose (unique)
lift Qg to the universal cover satisfies

Qg Æ Nu Æ Qg�1
D N�( Nu) for all Nu 2 �

orb.

This is possible by the Nielsen theorem again; observe the formal similarity with the
argument in the proof of Lemma 9. Now, with L denoting left multiplication in fSL2,
define the preferred lift � of N� by

L
�(u) D fT g Æ u ÆfT g

�1
for all u 2 � .

REMARK. The preferred lift as defined in [8] depended on a choice of presenta-
tion of � . If we take the ui and vi as the tangential lifts of Nui and Nvi , then the preferred
lift defined here is the same as that in [8].

When we identify H with the upper half-plane in C, and fSL2 with H2
�R with co-

ordinates (z, �), cf. [8, p. 58], we can describe the left action of �(u) on fSL2 explicitly
(at least for some elements u 2 �). For h there is no choice in the lifting; one has

�(h)(z, �) D (z, � � 2�),

where the sign is determined by N� 2 R�(�orb, PSL2R). Similarly, one has

Q�( Qh)(z, �) D (z, � � 2�r ).

The lift �(q j ) is completely determined by the relation which q j satisfies in the group � .
For ui resp. vi , any lift other than the preferred one �(ui ) resp. �(vi ) would differ from
it by an arbitrary translation in the �-component by integer multiples of 2� . Moreover,
the action of w 2 Z

2g
� Aut( Q� ) on Q� is given by Q� 7! Q�rw, with

Q�rw( Qui )(z, �) D Q�( Qui )(z, �)C (0, 2�rw2i�1),

Q�rw( Qvi )(z, �) D Q�( Qvi )(z, �)C (0, 2�rw2i ).

Now back to the construction of the homomorphism Æ corresponding to the class
[ Q�] 2 T (M)=Z2g . Since both �(u) and Q�( Qu) are lifts of N�( Nu) 2 PSL2R to fSL2, their
actions on the �-component differ by a shift by some integer multiple of 2� , so we
can define Æ(u) 2 Z by

(3) �(u)(z, �) D Q�( Qu)(z, �) C (0, 2�Æ(u)).
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Since � is fixed to be the preferred lift of N�, the only ambiguity in this equation is the
lift Qu of Nu, which may be changed by powers of Qh. From the described action of Q�( Qh)
we conclude that Æ(u) is well defined mod r , so we may regard it as a map into Zr .
By construction it is clear that Æ has the homomorphism property. For u D h we may
choose Qu D 1; this gives Æ(h) D �1, where the sign again corresponds to N� 2 R�, as
it should. Hence Æ 2 Hom

�1(� , Zr ).
Inner automorphisms of fSL2 act trivially on the �-component, so Æ only depends

on the class of Q� in T (M). Moreover, Æ(u) does not change mod r when Q� is re-
placed by some Q�rw in the same orbit under the Z2g-action on T (M). This finishes
the construction of the map

T (M)=Z2g
! Hom1(� , Zr ) � T

C(6) t Hom
�1(� , Zr ) � T

�(6).

We show this map to be a bijection by exhibiting an explicit inverse. The defining
equation (3) for Æ can be read backwards, as it were, in order to define the desired
inverse map. Thus, given N� 2 R�(�orb, PSL2R) and Æ 2 Hom

�1(� , Zr ) (with matching
signs), we would like to use (3) to define Q�. This is indeed possible, if we take a
little care. First of all, we know that there is no choice in defining Q�( Qh) and Q�( Qq j ),
so we only need to consider elements Qu 2 Q� which are not stabilised under the Z2g-
action Q�( Qu) 7! Q�rw( Qu). Let Nu 2 �

orb be the projection of Qu, and u 2 � a lift of Nu. In
the equation

Q�( Qu)(z, �) D �(u)(z, �) � (0, 2�Æ(u)),

with � taken as the preferred lift of N�, the right-hand side can be made sense of if
the �-component is read as lying in R=2�rZ, and it does not depend on the choice
of lift u. So for Qu of the described kind, we can use this equation (given N�, Æ and Qu)
to get a well-defined element [ Q�] 2 T (M)=Z2g . This prescription obviously defines an
inverse of the previously constructed map.

It remains to show that the right action of Out(�orb) is as claimed in the the-
orem. Given [ N#] 2 Out(�orb), let Q

# 2 Aut( Q�) be any lift of N

# , and # 2 Aut(�) the
lift constructed in the proof of Lemma 9. The action of [ N#] on T (M)=Z2g is given by
Q� 7! Q� Æ

Q

# . This is indeed well defined: the choice of representative N

# of the class [ N#]
is irrelevant, because in T (M) we have taken the quotient under Inn(fSL2); the spe-
cific lifting to Q

# is of no importance in the quotient T (M)=Z2g . That the action of
Out(�orb) on the right-hand side of the identity in the theorem is also as claimed now
follows from equation (3) and the observation that our construction of the preferred lift
of N� entails that � Æ # is the preferred lift of N� Æ

N

# .
This concludes the proof of Theorem 10.

REMARK. With � being the preferred lift of N�, equation (3) is precisely the al-
gebraic reformulation of the geometric definition of Æ as a monodromy homomorphism
given in Section 4.
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When we take the quotient under the action of Out(�orb), the trivial covering
T (M)=Z2g

! T C(6) t T �(6) given by Theorem 10 becomes a possibly branched
covering M(M) !M(6), where M(6) D T (6)=Out(�orb) denotes the moduli space
of hyperbolic metrics on 6.

We are now interested in the number of connected components of M(M), and the
number of sheets in each connected component of the covering M(M) !M(6). The
space M(6) is connected, so the number of connected components of M(M) equals
the number of orbits of the Out(�orb)-action on Hom

�1(� ,Zr ). Geometrically, this cor-
responds to the number of orbits of the action on Hom1(� ,Zr ) given by the orientation
preserving diffeomorphisms of 6. Moreover, the number of sheets in each connected
component of the covering M(M) !M(6) is given by the length of the correspond-
ing orbit.

So the following theorem, the larger part of which was announced in [8], is a dir-
ect consequence of Propositions 5 and 8, and Lemma 6. (As before, we write r for the
fibre index of the unique Seifert fibration M ! 6; the genus of 6 is denoted by g.)

Theorem 11. The moduli space M(M) of taut contact circles on M is a branched

covering over the moduli space M(6) of hyperbolic metrics on 6.

For g D 0, the covering map M(M) !M(6) is a homeomorphism.

For g D 1, the number of connected components of M(M) equals the number of

divisors of r . The number of sheets in the component of M(M) corresponding to d j r

equals the number of ordered pairs (s, t) of integers mod r that generate the same ideal

in Zr as d.

For g � 2 and r odd, M(M) is connected, and the branched covering M(M) !
M(6) has r2g sheets.

For g � 2 and r even, M(M) has two connected components, and the number of

sheets in the two components equals r2g(2g
� 1)=2gC1.
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