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1 Introduction

The T- and U-duality symmetries of supergravity act on spacetimes with abelian isometries.
A first version of a generalised duality is non-Abelian T-duality (NATD) [1], which provides
a mechanism that dualises a space with non-Abelian isometries to a space with fewer
isometries. Both abelian and non-abelian T-duality are special cases of the Poisson-Lie
T-duality [2, 3], which can be applied to backgrounds lacking isometries, and which are
characterised by an underlying double algebra structure called the Drinfeld double algebra.
Further extension of these dualities leads to notions of generalised U-duality, originally
proposed using a generalised geometric approach (building on [4, 5] in the T-duality case)
to describe the background, and generalises the Drinfeld double algebra to the so-called
exceptional Drinfeld algebra (EDA), that generically is a Leibniz algebra instead of a Lie
algebra [6–9].

In our earlier papers [10, 11] we used this approach to study an attractive example
of a generalised U-duality solution generating construction based on the Sl(5) U-duality
group acting in four dimensions. The relevant exceptional Drinfeld algebra was the Lie
algebra ISO(4). The generalised U-duality map took solutions of type IIA supergravity
on a three-sphere with NSNS flux to new solutions of eleven-dimensional supergravity: a
basic example was provided starting with the near horizon NS5 brane.

In this paper, we revisit the generalised U-duality on another example based on the E7
U-duality group acting in seven dimensions, with the relevant EDA now being an extension
of the ISO(7) Lie algebra. We take a near horizon D2 brane solution as a test example,
and show how to transform this into a new supergravity solution in eleven dimensions.
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The appearance of ISO(4) and ISO(7) algebras is not a choice made a priori but a
consequence of choosing to study particular natural algebraic structures, which appear in
the definition of the underlying Drinfeld double algebra. First of all, we were motivated
by the fact that in solutions obtained by NATD, the breaking of translational isometries
in the new dual directions can be linked to the appearance of ‘dual’ Lie algebra structure
constants f̃abc.1 For the dual of SU(2) i.e. NATD on S3, these are f̃abc = εabc.

In the exceptional Drinfeld algebra [6–9] these dual structure constants are generalised
to 3- and 6-algebra structure constants, f̃abcd and f̃abcdef g.2 In the four-dimensional Sl(5)
case only the former appear. Choosing f̃abcd = εabcd (a = 1, . . . , 4) produced the ISO(4)
algebra studied in [10, 11]. The solutions obtained could be seen to directly generalise
many of the properties of the solutions resulting from NATD.

In this paper we generalise to the seven-dimensional case, where in principle we can
have both the 3- and 6-algebra structures. We choose f̃abcd = 0 and take f̃abcdef g = εabcdef g,
which as we explicitly show corresponds to the ISO(7) algebra.

This ISO(7) example can be viewed as being a sort of electromagnetic dual of our pre-
vious ISO(4) case. This is reflected in the replacement of the 3-algebra structure constants
with 6-algebra structure constants, explicitly linked numerologically to the three-form and
its magnetic dual six-form, and in the natural choices of NS5 brane (M5 brane on a circle)
and D2 brane (M2 brane) as starting points for the construction.

Our approach to constructing new solutions relies on the fact that the generalised
geometric realisation of the exceptional Drinfeld algebra provides a mechanism for carrying
out a consistent truncation from 10- or 11-dimensional supergravity to a lower-dimensional
gauged supergravity. Such truncations allow for both reduction and uplift of solutions.
The algebra that is gauged is exactly the EDA. When a different consistent truncation is
known leading to the same lower-dimensional theory, we can apply ‘generalised U-duality’
by mapping solutions to solutions by reducing via one consistent truncation and uplifting
via the other. The example of [11] gave a consistent truncation of eleven-dimensional
supergravity to seven-dimensional ISO(4) gauged maximal supergravity, distinct from the
previously known origin of this theory via consistent truncation of type IIA supergravity
on a three-sphere with NSNS flux.

In this paper, we will play the same game using reduction and uplift by inequivalent
consistent truncations leading to the four-dimensional ISO(7) gauged maximal supergrav-
ity. The first known consistent truncation in this case is provided by type IIA SUGRA on
S6 [12–14]. We apply our solution generating technique by taking any solution of type IIA
fitting into the appropriate reduction ansatz, consistently truncating it to a 4-dimensional
solution, and then uplifting it to a new 11-dimensional SUGRA solution using the E7 gen-
eralised geometry formulation based on the EDA [9]. It follows that this method gives
an alternative consistent truncation, starting with eleven-dimensional supergravity and
leading to ISO(7) gauged supergravity in four dimensions.

1In Poisson-Lie T-duality more generally, these can be interpreted as a coycle of a physical Lie algebra,
which in this case is trivial.

2With interpretations as n-cocycles of a physical Lie algebra, which again will be trivial in our examples.
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In fact, this alternative consistent truncation was identified in the paper [15] (which
indeed demonstrated the existence of inequivalent consistent truncations for CSO gaugings
more generally). Here we extend, or use, the observation of [15] in the following ways.
Firstly we demonstrate explicitly how to use these inequivalent consistent truncations to
perform a generalised U-duality, and explicitly produce a new 11-dimensional supergravity
solution using this approach. We further highlight the algebraic interpretation of the second
consistent truncation, by concretely connecting it to the EDA proposal with accompanying
n-algebra structure, and by comparison to our previous papers [10, 11] we demonstrate
how this all fits into the pattern of generalised dualities naturally extending non-abelian
T-duality of a three-sphere.

In this paper we specifically apply the uplift procedure to produce a new 11-dimensional
solution starting with an extremal D2 brane solution after taking the near horizon limit.
Then we analyse the properties of the new 11-dimensional solution, which turn out to be
as follows:

• The new solution can be described by using the generalised geometry techniques with
a 6-vector linear in the dual 4-dimensional coordinates. (See sections 2.2 and 3.2.)

• The new solution can be viewed as carrying an electric (M2) charge. (See sec-
tion 3.3.1.)

• The new solution can be viewed as a warped product of AdS4, S6 and an interval,
and it possesses a 1

2 -BPS solution of the 11-dimensional Killing spinor equation. (See
section 3.3.2.)

In section 2.1 we review the ISO(7) subalgebra of the E7 Drinfeld algebra that we will
use in our solution. In section 2.2 we construct the frame fields of E7 Drinfeld subalgebra.
Then, in section 3 we show an example of how to obtain a new 11-dimensional solution using
this technology. In subsection 3.1 we start with the initial D2 brane solution that we use as
an example of non-vacuum type IIA SUGRA solution. After that, in subsection 3.2 we write
down the scalar matrix that we take to uplift the initial D2 brane solution and construct
the new uplifted 11-dimensional SUGRA solution. Then, in sections 3.3.1 and 3.3.2 we
describe the properties of the uplifted solution, its charges, local vs global nature, and the
amount of supersymmetry it possesses. We conclude with some brief discussion in section 4.

2 ISO(7) exceptional Drinfeld algebra and generalised frame

2.1 The algebra

The whole E7 exceptional Drinfeld algebra was described in [9]. The 56 generators of the
E7 exceptional Drinfeld algebra are denoted TA = (Ta, T a1a2 , T a1...a5 , T a1...a7,a′), where
the Latin indices run from 1 to 7 and sets of multiple indices a1 . . . ap are understood to
be antisymmetric. The (generically non-antisymmetric) brackets of these generators can
be written generally as:

[TA, TB] = XAB
CTC . (2.1)
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The EDA structure constants XAB
C are specified in terms of structure constants fabc,

fa1...a3
b, fa1...a6

b and Za. The former three can be formally associated with Lie algebra,
3-algebra and 6-algebra structures. In this paper, we focus on non-zero 6-algebra structure
constants only, fa1...a6

b 6= 0, in which case the algebra is given by the following non-zero
brackets:

[Ta, T b1...b5 ] = −f b1...b5c
aTc, [Ta, T b1...b7,b′ ] = 7f [b1...b6

aT
b7]b′ (2.2)

[T a1...a5 , Tb] = fa1...a5c
bTc, [T a1...a5 , T b1b2 ] = 2fa1...a5[b1

cT
b2]c (2.3)

[T a1...a5 , T b1...b5 ] = −5fa1...a5[b1
cT

b2...b5]c (2.4)
[T a1...a5 , T b1...b7,b′ ] = −7fa1...a5[b1

cT
b2...b7]c,b′ − fa1...a5b′

cT
b1...b7,c (2.5)

[T a1...a7,a′
, Tb] = −21f [a1...a6

cδ
a7]a′c
bd1d2

T d1d2 ,

[T a1...a7,a′
, T b1b2 ] = 7f [a1...a6

cT
a7]a′cb1b2 (2.6)

[T a1...a7,a′
, T b1...b5 ] = 21f [a1...a6

cδ
a7]a′c
d1d2e

T b1...b5d1d2,e (2.7)

In the absence of the other structure constants, the 6-algebra structure constants must
obey the identity

fda1...a5
cf
b1...b6

d − 6fa1...a5[b1
df

b2...b6]d
c = 0 , (2.8)

ensuring closure of the algebra. This can be viewed as a generalisation of the Jacobi identity
for Lie algebras and the fundamental identity for 3-algebras.

We now further restrict to the following special case:

f b1...b6
a = εb1...b6cδac (2.9)

where εb1...b6c is a 7-dimensional Levi-Civita symbol and δab is seven-dimensional identity
matrix. This is easily verified to obey (2.8). After defining the dualised notations

T̃ a = 1
7!εa1...a7T

a1...a7,a, T̃bc = 1
5!εbca1...a5T

a1...a5 , (2.10)

the non-trivial brackets of the algebra then simplify to

[Ta, T̃bc] = 2δa[bTc], [Ta, T̃ b] = −δacT bc ,

[T̃bc, Ta] = −2δa[bTc], [T̃ab, T cd] = −4δe[aδ
[c
b]T

d]e , (2.11)

[T̃ab, T̃cd] = 4δ[
a[c
T̃
d]b
], [T̃ab, T̃ c] = 2δd[aT̃

dδcb] .

The generators (Ta, T̃bc) generate the ISO(7) Lie algebra.3 The other brackets (note that
these are not antisymmetric and e.g. [T̃ a, Tb] = 0) match those specified by the ISO(7)
gauging of four-dimensional maximal supergravity (for example, compare with appendix
C of [16] where the full structure constants XAB

C appearing in (2.1) are given).
3This can be generalised by replacing δab in (2.9) by a symmetric matrix of indefinite signature, which

would correspond to the algebra of the CSO(p, q, r + 1) gaugings with p + q + r = 7; replacing δab by
a matrix with both symmetric and antisymmetric parts would give something more exotic in which the
28-dimensional ‘electric’ algebra is no longer Lie.
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2.2 The generalised frame

Given any exceptional Drinfeld algebra, a generalised frame can be constructed realising
the algebra under the generalised Lie derivative of the appropriate exceptional generalised
geometry. This explicit construction is described in [6–9]. The data that enters the gener-
alised frame consists of a (left- or right-)invariant vielbein eam, obeying the Maurer-Cartan
equation with Lie algebra structure constants fabc, a 3-vector πb1b2b3 and a 6-vector πb1...b6 ,
as well as a scalar function ∆. The vielbein is linked to a group manifold and the n-vectors
and scalar obey equations of the form:

Daπ
b1b2b3 = f b1b2b3

a + . . . ,

Daπ
b1...b6 = f b1...b6

a − 10f [b1b2b3
aπ

b4b5b6] + . . . ,

Da∆ = Za ,

(2.12)

whereDa ≡ eai∂i and the . . . corresponds to the terms with Lie algebra structure constants,
which are absent in our case.

Now let’s construct the necessary data and generalised frame fields for the E7 subalge-
bra with only the six-algebra structure constants f b1...b6

a non-trivial. The above differential
equations then yield eam = δam, πb1b2b3 = 0, ∆ = 1 and allow for a six-vector linear in the
coordinates, πb1...b6 = xiδai f

b1...b6
a. Then, referring to eq. (5.34) of [9], we can construct

the generalised frame, which will by definition obey

LEA
EB = −XAB

CEC (2.13)

under the E7 generalised Lie derivative, thereby realising the algebra of the ISO(7) gauging.
A generalised frame for the E7 generalised geometry gives a basis EAM for generalised
vectors, which correspond to vectors, two-forms, five-forms and seven-forms tensored with
one-forms. In form notation, the EDA generalised frame describing the ISO(7) algebra has
the following elements:

Ea = (ea, 0, 0, 0) ,
Ea1a2 = (0, ea1 ∧ ea2 , 0, 0) ,
Ea1...a5 = (−πba1...a5eb, 0, ea1 ∧ · · · ∧ ea5 , 0) ,

Ea1...a7,a′ = (0,−7π[a1...a6ea7] ∧ ea′
, 0, (ea1 ∧ · · · ∧ ea7)⊗ ea′) ,

(2.14)

where in particular the vielbein ea and one-form ea have trivial components, eai = δia,
eai = δai , and πa1...a6 = xbε

a1...a6b.
It is useful to record an explicit expression for this frame as a 56 ×56 E7 val-

ued matrix. The natural decomposition of the generalised vector index is VM =
(V m, Vm1m2 , Vm1...m5 , Vm1...m7,m′) but it is convenient to dualise the five-form and mixed
symmetry components (as with the algebra generators above) such that the seven-
dimensional decomposition used is VM = (V m, Vm1m2 , V

m1m2 , Vm′). Using this convention
for both M and A indices we can write the ISO(7) exceptional Drinfeld algebra generalised
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frame, or rather its inverse which is more useful for our purposes below, as

E A
M =


δam 0 0 0
0 2δm1

[a1
δm2
a2] 0 0

2x[m1δ
a
m2] 0 2δ[a1

m1δ
a2]
m2 0

0 2x[a1δ
m
a2] 0 δma

 . (2.15)

This generalised frame (which could also have been constructed using the results of [15])
can be used to construct solutions of 11-dimensional supergravity by uplifting solutions
of ISO(7) gauged supergravity. Given such a solution, depending on four-dimensional co-
ordinates y, and given in terms of the four-dimensional metric gµν(y), the scalar matrix
MAB(y), and one-form AµA(y), a solution to eleven-dimensional supergravity can be con-
structed by computing the following quantities:

gµν(y,x)=gµν(y), MMN (y,x)=EM
A(x)ENB(x)MAB(y), AµM (y,x)=EA

M (x)AµA(y),
(2.16)

which correspond to the external metric, generalised metric and external one-form of the
E7 exceptional field theory/exceptional generalised geometry description of 11-dimensional
supergravity in a 4 + 7 split [17, 18]. Using the known dictionary between this formulation
and the standard variables of 11-dimensional supergravity, the uplifted solution can be
extracted. Conversely the ansatz (2.16) with the generalised frame (2.15) specifies the
general form (again on making use of the exceptional geometry dictionary) of a consistent
truncation from 11-dimensional supergravity to the ISO(7) gauged supergravity. This is a
standard application of exceptional geometric techniques (see e.g. [19, 20]).

Rather than slavishly work out the full explicit details (which we defer for future work),
we will illustrate how this uplift mechanism works on an explicit example, in keeping with
our motivation in terms of generalised dualities. A question which needs to be addressed
at this point is how to find examples of solutions which we can feed in to this mechanism.
The ISO(7) gauged supergravity has no known vacua, so we need to consider other sorts of
solutions. A natural candidate is that obtained by the near horizon limit of the D2 brane,
which gives a domain wall solution in four dimensions [21]. We now turn to this solution
and its transformation to a new eleven-dimensional solution.

3 New 11-dimensional solution

3.1 The initial D2 brane solution

In our previous study [11] of the ISO(4) exceptional Drinfeld algebra, we constructed an
example of generalised U-duality where we started with the near horizon NS5 solution in
type IIA, reduced to seven-dimensional ISO(4) gauged supergravity and uplifted using an
Sl(5) exceptional Drinfeld algebra frame to eleven dimensions. Here we will start with the
D2 brane solution in type IIA instead, whose near horizon geometry has the appropriate
form for the ISO(7) consistent truncation. Lifting everything to 11-dimensions, this D2
comes from the M2 while the previously considered NS5 comes from the M5. Swapping M5

– 6 –
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for M2 reflects the fact that on switching from ISO(4) to ISO(7) we exchange a trivector
for a six-vector, mirroring the exchange of the role of the eleven-dimensional three- and
six-forms in the M2 and M5 solutions. In other words, we are applying electromagnetic
duality to the entirety of our previous generalised U-duality described in [11].

The D2 brane solution in the string frame is:

ds2
S = H−1/2[−dt2 + dy2

1 + dy2
2] +H1/2[dr2 + r2dΩ2

(6)] , (3.1)

e−2φ = H−1/2 , Cty1y2 = H−1 − 1 , (3.2)

with H = 1 + 1
r5 .4 The Einstein frame metric is:

ds2
E = H−5/8[−dt2 + dy2

1 + dy2
2] +H3/8[dr2 + r2dΩ2

(6)] . (3.3)

To perform the reduction to a four-dimensional solution, we use the ansatz as in [13] for
a consistent truncation of type IIA SUGRA on S6 in the Einstein frame. Assuming all
the vector fields A(1) and B(2) appearing in the ansatz are turned off, for the metric and
dilaton this ansatz has the form:

ds2
E = ∆−1ds2

4 + gmndy
mdyn , e− 3

2φ = ∆µaµbMa8,b8 (3.4)

where
µaµbδab = 1 in R7, ∆2 = det gmn/ det ĝmn (3.5)

and ĝmn is the round SO(7) symmetric metric on S6. The matrixMa8,b8 represents a block
of the scalar matrix of the four-dimensional theory. For the D2 solution, we can use the
simplified ansatz

Ma8,b8 ≡ δabM . (3.6)

Then comparing the dilaton forms we find

∆M = H−3/8 , (3.7)

and comparing the metric ansatz we deduce

gmn = H3/8r2ĝmn, ∆ = r6H9/8, M = r−6H−3/2 , (3.8)

and the 4-dimensional metric is then

ds2
4 = r6H1/2

[
− dt2 + dy2

1 + dy2
2 +Hdr2

]
. (3.9)

Since in the D2 brane solution we have a 3-form with all external components, we have to
match it with a non-trivial external 3-form of the type IIA gauged SUGRA ansatz on S(6).
This ansatz is:

C(3) = µIµJCIJ , where CIJ = C IJ
ty1y2 dt ∧ dy1 ∧ dy2 (3.10)

4Assuming that by choice of units and rescaling of coordinates we can set all constants to 1.
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thus
Cty1y2 = µIµJC IJ

ty1y2 (3.11)

Comparing with the D2 solution, it’s not hard to see that

C IJ
ty1y2 = δIJ(H−1 − 1) . (3.12)

Although this three-form appears in the tensor hierarchy of the gauged supergravity, it
does not constitute part of the degrees of freedom of the theory which will be uplifted to
eleven dimensions. In 4 dimensions the field strength of this potential is dual to a scalar
(which would therefore require a −1 form potential) and in fact this field strength can be
related to the scalar potential of the theory [13, 14]. It thus serves as part of the definition
of the gauged supergravity and not an independent field within it.

3.2 Uplifting the scalar matrix and obtaining the new solution

Let’s construct the full 56 × 56 scalar matrix MAB (the flat index A = (ab, a8), where a
runs from 1 to 7):

MAB =


Ma8,b8 M

cd
a8 Ma8,cd M

c8
a8

Mab
cd M

ab,cd Mab
c8 M

ab,c8

Mab,c8 M
cd

ab Mab,cd M
c8

ab

Ma8
cd M

a8,cd Ma8
b8 M

a8,b8

 , (3.13)

from which the generalised metric of the eleven-dimensional uplift is constructed as follows

MMN = E A
M MABE

B
N . (3.14)

In order to construct the MAB matrix we refer to the dictionary described in [13], from
where, comparing with the form of the D2 brane solution of the previous section

MAB =


r−4H−1/2δab 0 0 0

0 r−8H−3/2δa1[b1δb2]a2 0 0
0 0 r−2H−1/2δa3[b3δb4]a4 0
0 0 0 r−6H−3/2δa5b5

 (3.15)

Here to meet the requirement of detM= 1 we have to impose the near-horizon limit of the
D2 brane solution by setting H = 1

r5 .
The generalised metric describing the new uplifted solution is, after using the gener-

alised frame (2.15)

MMN =


r−3/2δmn 0 2r−3/2δm[n2xn1] 0

0 2r−1/2δm1[n1δn2]m2 0 2r−1/2x[m1δm2]n

2r−3/2δn[m2xm1] 0 r1/2Km1m2,n1n2 0
0 2r−1/2δm[n2xn1] 0 r3/2Kmn

 (3.16)

where

Km1m2,n1n2 = 2δm1[n1δn2]m2 + 4r−2x[m2δm1][n1xn2], Kmn = δmn(1 + r−2xax
a)− r−2xmxn ,

(3.17)
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We need to compare this with the expression for the parametrisation of the E7 generalised
metric in terms of the internal seven-dimensional components of the metric φmn, three-form
and six-form. Referring for example to [22], we see that (3.16) corresponds to a generalised
metric with vanishing three-form but non-trivial six-form. The precise parametrisation of
the generalised metric that we need (taking care to follow the conventions of [9] which we
used to construct the EDA generalised frame) then has the form:

MMN =


φ

1
2Lmn 0 2φm[n2Un1] 0

0 φ
1
2 (2φm1[n1φn2]m2 + 4U [m1φm2][n1Un2]) 0 2φn[m2Um1]

2φn[m2Um1] 0 2φ− 1
2φm1[n1φn2]m2 0

0 2φm[n2Un1] 0 φ− 1
2φmn


(3.18)

where φ = det(φmn),

Um = 1
6!φ

−1/2εmn1...n6Cn1...n6 , Lmn ≡ φmn(1 + UpU
p)− UmUn , (3.19)

and Um = φmnU
n, where here ε denotes the alternating symbol.

Comparing the two expressions we find that the seven-dimensional internal metric is:

φmn = r−1/3(1 + r−2xpx
p)−1/3[δmn + r−2xmxn

]
(3.20)

and that the six-form is:

Cm1...m6 = εm1...m6nx
nr−2(1 + r−2xpx

p)−1 . (3.21)

The latter gives rise to the field strength components

Fm1...m7 = εm1...m7r
−2(1 + r−2xnx

n)−2[7 + 5r−2xpx
p] , (3.22)

Frm1...m6 = −2εm1...m6nx
nr−3(1 + r−2xpx

p)−2 . (3.23)

Now using the ExFT construction we can build the full new 11-dimensional solution. The
11-dimensional metric is:

ĝµ̂ν̂ =
(
|φ|ωgExFTµν +Aµ

kAν
lφkl A

k
µφkn

Akνφkm φmn

)
, (3.24)

where ω = − 1
n−2 = −1

2 in our case of n = 11− d = 4. The 4-dimensional ExFT metric is
that extracted in (3.9) from the D2 brane solution, in the near horizon limit:

(ds2)ExFT = r7/2[−dt2 + dy2
1 + dy2

2 + r−5dr2] , (3.25)

and as there is no one-form present we have Akµ = 0. Thus, the new 11-dimensional metric is

d̂s
2
11 = r−1/3(1 + r−2xkx

k)−1/3
[
r5(1 + r−2xpx

p)[−dt2 + dy2
1 + dy2

2 + r−5dr2]

+ (δmn + r−2xmxn)dxmdxn
]

(3.26)
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The only gauge field components present are those of the six-form given in (3.21). We can
rewrite our solution in different coordinate systems. We can pass to spherical coordinates
in place of the xi, in terms of which we can rewrite the new 11-dimensional metric as

d̂s
2
11 = r1/3(r2 +ρ2)2/3

[
r3(−dt2 +dy2

1 +dy2
2 + r−5dr2)+ r−2dρ2

]
+ r1/3(r2 +ρ2)−1/3ρ2dΩ2

(6)
(3.27)

where ρ2 ≡ xix
i and dΩ2

(6) denotes the metric on the unit six-sphere. The six-form
potential and its field strength are:

C(6) = ρ7

r2 + ρ2 VolS6 , F(7) = − 2ρ7

(r2 + ρ2)2 rdr ∧VolS6 + 7r2 + 5ρ2

(r2 + ρ2)2 ρ
6dρ ∧VolS6 . (3.28)

The four-form field strength obtained by Hodge dualisation is

F(4) = r4(7r2 + 5ρ2)dt ∧ dy1 ∧ dy2 ∧ dr + 2r5ρdt ∧ dy1 ∧ dy2 ∧ dρ . (3.29)

A further coordinate change relates the 4-dimensional part of the metric to a familiar form
of the metric on AdS4. This is a property inherited from the original D2 solution, whose
near horizon string frame metric is a function of the radial coordinate times AdS4 × S6

(in a dual frame [21] the metric is exactly AdS4 × S6). By introducing a new coordinate

r̃ ≡ 2
3r

3/2 (3.30)

then the 4-dimensional bit of the solution can be shown to involve an AdS4 metric in the
Poincare patch, using the fact that

r3[−dt2 + dy2
1 + dy2

2 + r−5dr2] = R−2r̃2[−dt2 + dy2
1 + dy2

2] +R2dr̃
2

r̃2 (3.31)

where R = 2/3 is the AdS radius.
We can finally comment on the behaviour of our metric as r → 0. The Ricci scalar is

R = −1
6r

−1/3(49r2 + 25ρ2)(r2 + ρ2)−5/3 (3.32)

and so the solution is singular for r → 0. This is also a feature of the D2 brane near horizon
solution.

3.3 Properties of the new solution

3.3.1 Charges and global properties

The solution that we have obtained is a local solution: we have not yet specified the range
of the coordinates xi, or alternatively that of ρ if we change to spherical coordinates. The
situation is entirely analogous to that found when obtaining solutions via non-abelian T-
duality, and to our previous generalised U-duality construction [11]. If the xi are to be
regarded as periodically identified then our solution can be regarded as a non-geometric
background, globally identified up to a non-trivial E7 transformation acting as a constant
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shift of the six-vector used in constructing the solution, as noted in [15] and similar to ex-
amples in [11, 23–25]. Alternatively, we can work in the spherical coordinates and attempt
to fix the range of ρ by requiring the solution carry well-defined brane charges.

Accordingly, let’s consider the charges of the new uplifted solution. It only carries
electric M2 charge, namely

QM2 ∼
∫
?F4 =

∫
dC6 , (3.33)

where from above C6 = ρ7/(r2 + ρ2)VolS6 . We could try to specify a seven-cycle to
evaluate this charge (generalising the argument of [26] for non-abelian T-dual solutions) by
integrating from ρ = ρ0 to some value ρ = ρ1 at a fixed value of r = r0, and then integrate
from r = r0 to r = r1 at fixed ρ = ρ1, such that the six-sphere part of the solution vanishes
at ρ = ρ0 and r = r1. The result is independent of r0, and gives 16π3ρ7

1/15(r2
1 + ρ2

1).
Choosing ρ0 = 0 and r1 = 0 would give an electric charge QM2 ∼ 16π3ρ5

1/15, which
on properly reinserting dimensionful constants could be argued to fix ρ1 by requiring the
charge is an integer times the M2 charge.

Note that this M2 charge is analogous to the M5 charge appearing in our earlier
solution [11], hence in this “dual” example the electric and magnetic charges are swapped,
mirroring the swap of trivector and six-vector we noted earlier. To be more specific,
the relevant M5 charge of [11] is that which is present when the initial solution there is
solely the near horizon NS5 brane. It was also possible in [11] to start with an F1-NS5
intersection. The resulting new 11-dimensional solution then required a different global
completion which was possible at least for its AdS3 limit. This limit fit into a class of
solutions [27] in a manner reminiscent of AdS solutions obtained via non-abelian T-duality.
This involved a linear function of ρ2, defined on a series of subintervals with jumps in slope
across each subinterval. It is unclear if it is possible to apply similar thinking to our example
in this paper (which has a more complicated functional dependence on the r coordinate
alongside ρ), or to find or classify other solutions built using the ISO(7) generalised frame.

3.3.2 SUSY analysis

Let us now look at the solution of the Killing spinor equation and find out how many
supersymmetries the new uplifted solution has. The Killing spinor equation we need to
solve is5

δεψµ = 2∂µε−
1
2ωµ

abΓabε+ i

144(Γαβγδ µ − 8Γβγδηαµ)εFαβγδ = 0 (3.34)

where the Greek indices are the curved coordinates, and Latin indices are the flat ones.
For the t-component (and similarly for y1 and y2), using the hatted indices for the curved
coordinates, and unhatted for the flat ones, we explicitly have:

Γt∂t̂ε+
1
6r

1/2(1+r−2ρ2)−1
[
2ρΓρ+7r

(
1+5

7r
−2ρ2

)
Γr−i

(
2ρΓty

1y2ρ+7r
(

1+5
7r

−2ρ2
)

Γty
1y2r

)]
ε=0.

(3.35)

5We follow the conventions we used in [11], in particular {Γa,Γb} = 2ηab with ηab having mostly minus
signature.
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Assuming that ε is t-independent (similarly y1 and y2 independent), and looking at the
similar coordinate dependence in front of the same gamma-matrix combination, we can
extract the following projection condition on ε

(1 + iΓty1y2)ε = 0 (3.36)

which we can use in solving the rest of the equations.
The r and ρ equations become

∂r̂ε = r−1(1 + r−2ρ2)−1
[
1 + 1

6(1 + 5r−2ρ2)− 1
2r

−1ρΓrρ
]
ε (3.37)

∂ρ̂ε = 1
6r

−1(1 + r−2ρ2)−1[2r−1ρ+ 3Γrρ]ε (3.38)

with the common solution

ε = εrρε̄ , εrρ = r7/6(1 + r−2ρ2)1/6 exp
[
−1

2Γrρ tan−1
(
r

ρ

)]
, (3.39)

where ε̄ depends on the S6 coordinates only. Now, working in round spherical coordinates
(χ, θ1, . . . , θ5) on S6, we can find a solution of the form ε̄ = εχεθ1 . . . εθ5ε0 with ε0 a constant
spinor. Indeed, we firstly have the equation

∂χ̂ε = 1
2(1 + r−2ρ2)−1/2[Γρχ + r−1ρΓrχ]ε (3.40)

where we can commute the gamma matrices from the εrρ part, moving it to the left of both
sides of the equation, and end up solving for εχ

εχ = exp
[1

2Γrχχ
]

(3.41)

and in a similar manner for the rest of the 5 angles θ1 . . . θ5 we find

εθ1 = exp
[1

2Γχθ1θ1

]
, εθ2 = exp

[1
2Γθ1θ2θ2

]
, etc. . . (3.42)

so the final solution is of the form

ε = εrρεχεθ1 · · · εθ5ε0 (3.43)

where after applying the condition (3.36) ε0 is a constant spinor satisfying

(1 + iΓty1y2)ε0 = 0 (3.44)

which kills a half of the total degrees of freedom, thus, our solution is 1
2 -BPS. This is

consistent with the supersymmetry of the initial D2 solution and with the supersymmetry
preservation of our previous example of ‘generalised U-duality’ [11].
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Solution obtained by: Algebraic structure Generalised frame
Non-abelian T-duality of S3 f̃abc = εabc bivector

Sl(5) generalised U-duality of S3 (w/NSNS flux) f̃abcd = εabcd trivector
E7 generalised U-duality of S6 (w/RR flux) f̃abcdef g = εabcdef g six-vector

Table 1. Properties of generalised dualities

4 Conclusion

In this paper we discussed another example of a solution generating mechanism which can
be viewed as a generalised U-duality transformation. We used a special case of the E7 ex-
ceptional Drinfeld algebra, describing the four-dimensional ISO(7) gauging, and used this
to construct a new 11-dimensional solution starting with the near horizon limit of the D2
brane solution of type IIA SUGRA. This can be seen as a “dual” construction (in the elec-
tromagnetic sense) of our previous example, based on the Sl(5) exceptional Drinfeld algebra
corresponding to the seven-dimensional ISO(4) gauging [11]. Together these examples gen-
eralise, in a particular manner, features of non-abelian T-duality to the 11-dimensional
setting (see table 1), using the natural exceptional Drinfeld algebra cases with either non-
trivial 3- and 6-algebra structure constants, and hence non-trivial tri- and six-vectors.

We have so far only considered the M-theory realisation of the EDA, but it would be in-
teresting to systematically explore similar features in its IIA and IIB decompositions. Here
we would expect to construct a variety of other generalised frames involving n-vectors with
a linear coordinate dependence, and identify the lower-dimensional gaugings these capture.

The usefulness of these constructions depends on whether the choice of EDA allows one
to access gauged supergravities with either interesting known solutions or known alternative
origins as consistent truncations from 10- and 11-dimensions. In this paper and in [11] we
used the latter approach to identify brane solutions at the 10-dimensional level to which we
could apply reduction and uplift. The ISO(7) example of this paper is a case where there
are in fact no known vacua (the D2 brane solution reducing to a domain wall solution). We
have made choices for the EDA which seemed algebraically ‘natural’ and to some extent
gotten lucky in finding that these corresponded to uplifts of known gauged supergravities
in fact corresponding to consistent truncations already identified from a different, though
related, perspective in [15]. It would be good to extend and improve this search strategy,
including to situations with simultaneously non-trivial 3- and 6-algebra structure constants,
and more broadly to try to understand exactly what is the common feature (spheres with
flux?) of the initial solutions ‘dual’ to the solutions built using these EDA generalised
frames, and how the n-algebra symmetry manifests in these background (if at all).

A natural question about the ISO(7) case concerns whether we can do anything with
the dyonic ISO(7) gaugings [28–30], which have a richer vacuum structure. These gaugings
can be obtained by a consistent truncation from the massive type IIA theory on S6 [13, 14]:
we have been using this consistent truncation in the massless limit for the ISO(7) gauging.
It can be quickly checked that this gauging modifies the algebra (2.11) with additional non-
zero brackets including [T̃ a, T̃ b] ∼ T ab. This bracket is however always zero in the EDA
construction [9]. Hence the dyonic ISO(7) algebra is not an EDA — if it were we would

– 13 –



J
H
E
P
1
2
(
2
0
2
2
)
0
9
3

immediately know how to construct a [geometric] generalised frame realising it. Indeed we
have been informed by Y. Sakatani that making this bracket non-zero in an extension of
the EDA always requires locally non-geometric R-fluxes, in agreement with the statement
of [15] implying the dyonic ISO(7) gauging does not admit a locally geometric uplift.
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