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Abstract: Medical image analysis plays an important role in clinical diagnosis. In this paper, we
examine the recent Segment Anything Model (SAM) on medical images, and report both quantitative
and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks,
covering various imaging modalities, such as optical coherence tomography (OCT), magnetic reso-
nance imaging (MRI), and computed tomography (CT), as well as different applications including
dermatology, ophthalmology, and radiology. Those benchmarks are representative and commonly
used in model development. Our experimental results indicate that while SAM presents remarkable
segmentation performance on images from the general domain, its zero-shot segmentation ability
remains restricted for out-of-distribution images, e.g., medical images. In addition, SAM exhibits
inconsistent zero-shot segmentation performance across different unseen medical domains. For
certain structured targets, e.g., blood vessels, the zero-shot segmentation of SAM completely failed. In
contrast, a simple fine-tuning of it with a small amount of data could lead to remarkable improvement
of the segmentation quality, showing the great potential and feasibility of using fine-tuned SAM to
achieve accurate medical image segmentation for a precision diagnostics. Our study indicates the
versatility of generalist vision foundation models on medical imaging, and their great potential to
achieve desired performance through fine-turning and eventually address the challenges associated
with accessing large and diverse medical datasets in support of clinical diagnostics.

Keywords: Segment Anything Model (SAM); medical image segmentation; zero-shot segmentation;
large AI models; foundation models; deep Learning

1. Introduction

Recently, large AI models (LAMs) have been actively researched as they manifest im-
pressive performance on various downstream tasks and offer a foundation to advance and
foster future research in manifold AI areas, such as computer vision and natural language
processing [1,2]. In medical and healthcare domains, LAMs are also transforming method-
ological designs and paradigms, and establishing new state-of-the-arts and breakthroughs
in various sectors including medical informatics and decision-making [3]. Despite the active
development, advances in medical LAMs often lag behind their counterparts in general
domains. To identify current discrepancies and guide the future development of medical
LAMs, we select one of these LAMs in the general domain, i.e., Segment Anything Model
(SAM) [4], which is a foundational vision model recently proposed for image segmentation
and has shown stunning performance on tasks ranging from edge detection to instance
segmentation, and thoroughly evaluate its zero-shot segmentation performance on medical
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images. Although there are few studies out there that tested SAM on medical imaging,
they either only focus on one imaging modality, i.e., pathology [5], or only showcase a few
qualitative segmentation samples [6] without reporting quantitative results. To provide
a comprehensive and objective evaluation of SAM on medical image segmentation, this
work conducted extensive experiments on nine benchmarks using the zero-shot segmen-
tation feature of SAM. The selected datasets contain a wide diversity of medical imaging
modalities and organs.

Our key findings include:

1. SAM demonstrated better performance on endoscopic and dermoscopic images than
other medical modalities, which is conjectured as SAM was trained with a large
volume of RGB image data, and endoscopic and dermoscopic images are essentially
images captured by RGB cameras. Therefore, when transferred to relevant medical
images, SAM can demonstrate a relatively decent and consistent performance as it is
tested on general RGB images.

2. SAM failed to carry out zero-shot segmentation tasks on images that have continuous
branching structures, such as blood vessels. Interestingly enough, when tested on
images of tree branches, we found SAM was actually also unable to segment them in
a zero-shot manner.

3. Compared to models specially designed for medical imaging, the zero-shot segmen-
tation capability of SAM on medical images are decent but often inferior to those
domain-specific models. Our experiments reveal that the Dice coefficients of SAM on
medical benchmarks were generally lower by 0.1–0.4 compared to previous state-of-
the-art (SOTA) models in medical image segmentation. In the worst case, the Dice
score of the zero-shot SAM is even lower than the SOTA by 0.65.

4. Preliminary experiments of fine-tuning SAM were conducted. A simple fine-tuning
of SAM on small amount of retinal vessel data led to impressive improvements of
the segmentation quality, implying the great potential of SAM on medical image
segmentation by fine-tuning. Our code is available by accessing https://github.com/
hwei-hw/Generalist_Vision_Foundation_Models_for_Medical_Imaging.

2. Segment Anything Model

SAM is a generalist vision foundation model for image segmentation, and supports a
diverse range of input prompts to enhance the segmentation quality. However, SAM does
not recognize the type of each individual segmented object. To facilitate comparison and
evaluation, the prompt for segmenting each instance is derived from the centroid of each
individual ground truth mask of that instance in our study. Upon receiving the prompt,
SAM generates three potential segmentation results and provides corresponding scores.
The highest-scored result is selected and compared with the ground truth for evaluation.
The details of implementation are introduced in Algorithm 1.

Algorithm 1: SAM on Zero-Shot Medical Image Segmentation.
Input: Pretrained SAM Model θ(·, ·), contour detector CD(·), midpoint detector MD(·), medical

image dataset I with labels of classes C.
Output: Segmentation mask set M.
for i ∈ I do

for cls ∈ C do
ic ← (label(i) == cls)
Contours← CD(ic)
Initialize image mask m
for c ∈ Contours do

P← MD(c)
mouts, scores← θ(i, P)
m← Argmax(scores(mouts))

end
M.append(m)

end
end

https://github.com/hwei-hw/Generalist_Vision_Foundation_Models_for_Medical_Imaging
https://github.com/hwei-hw/Generalist_Vision_Foundation_Models_for_Medical_Imaging
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3. Experiments

Our study was implemented on a single NVIDIA RTX 3080 GPU and the official
checkpoint of ViT-H SAM model was chosen to test the best performance of SAM on
zero-shot medical image segmentation. After conducting tests across multiple medical
imaging modalities, we observed that the segmentation outcomes were not consistently
satisfactory among those modalities.

3.1. Medical Image Segmentation Datasets

Nine datasets (summarized in Table 1), including Skin Lesion Analysis Toward
Melanoma Detection [7,8], Drishiti-GS [9], RIM-ONE-r3 [10], REFUGE [11], AMOS [12],
MICCAI 2017 Robotic Instrument Segmentation [13], Chest X-ray [14,15], Rat Colon [16]
and AROI [17] were used to examine the performance of SAM on medical image segmen-
tation, covering a wide range of medical imaging modalities, such as OCT, MRI, and CT,
as well as a diverse range of organs, including eyes, colon, spleen, kidney, gallbladder,
esophagus, liver, and stomach.

Table 1. Datasets Used for Examining the Zero-Shot Medical Image Segmentation Performance
of SAM.

Dataset Modality Details Number of Test Samples

Skin Lesion Analysis Toward Melanoma Detection [7,8] Dermoscope Skin 259 & 1000
Drishiti-GS [9] RIM-ONE-r3 [10] REFUGE [11] Fundus Eye 51 & 60 & 160

AMOS [12] CT Abdominal organs 15,361
AMOS [12] MRI Abdominal organs 3176

MICCAI 2017 Robotic Instrument Segmentation [13] Endoscope Tissue 1200
Chest X-ray [14,15] X-ray Chest 704

Rat Colon [16] Endoscopic OCT Colon 130
AROI [17] SD-OCT Retina 113

3.2. Evaluation Metrics

To assess the zero-shot segmentation capability of SAM on medical images, two
quantitative metrics were employed: Dice similarity coefficient and Intersection over Union
(IoU). The Dice coefficient measures the overlap between two sets of data and ranges from
0 (no overlap) to 1 (perfect overlap). Similarly, IoU computes the ratio of the intersection
over the union of two sets and ranges from 0 to 1. Both metrics were then averaged across
multiple samples to obtain an overall measure of the segmentation accuracy. Specifically,
the Dice coefficient and IoU were calculated as

Dice =
2|Y ∩ Ŷ|
|Y|+ |Ŷ|

(1)

IoU =
|Y ∩ Ŷ|

|Y|+ |Ŷ| − |Y ∩ Ŷ|
(2)

where Y refers to the ground truth mask and Ŷ denotes the predicted mask of SAM based
on the prompt (i.e., the centroid of the ground truth mask). Dice and IoU are both the gold
standards for evaluating the overlap of the ground truth and the predicted regions in image
segmentation tasks. However, IoU is more suitable for evaluating the worst-case scenarios,
which could provide a more comprehensive evaluation on the medical image segmentation.
As some current methods use either one of these two evaluation metrics or both to report
results, we use both Dice and IoU in our work to enable direct comparison.
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3.3. Results

This section presents the results of zero-shot medical segmentation of SAM on eight
different imaging modalities, as well as preliminary results of retinal vessel segmentation
by fine-tuning SAM.

3.3.1. Dermoscopic Images

Skin lesion analysis dataset is sourced from the challenge hosted by the International
Skin Imaging Collaboration (ISIC) [7,8]. Note that images captured by dermatoscopes
with professional lighting and better magnification always present accurate details and
precise contours. However, melanoma appears heterogeneously on different states of skin
or diseases. Table 2 summarizes the results for comparison. From the bottom two rows of
Table 2, it is evident that for the same task, there is a significant difference in the final results
due to the difference in the number of tested samples. We hypothesize that this discrepancy
may be attributed to the randomness from the small number of samples. Therefore, the
results from testing with larger number of samples may be more reliable. SAM (1000)
refers to the performance of the model assessed on the official complete testing dataset.
Additionally, as shown in Table 2, the results of SAM are not competitive compared to
existing methods. Specifically, SAM (259) denotes the outcome obtained by utilizing ten
percent of randomly selected instances from the whole dataset as a testing subset, which
facilitates a straightforward comparison with existing methods as using roughly ten percent
of data has been a common practice in prior works. Figure 1A shows two samples that SAM
perfectly segmented. As shown in Figure 1A, SAM is able to accurately segment the target
when the anomalous regions are positioned at the center and exhibit a distinct morphology.

Figure 2A shows two failure cases. When the target lesion locates in the erythematosus
or scars, the segmentation often fails due to the similarity of features between the target
and the adjacent parts or the absence of clear boundaries (or in another word, the lesion is
less obtrusive or apparent).

Table 2. Comparison with SOTA Methods on the Skin Lesion Analysis Toward Melanoma Detection
Dataset.

Method Dice IoU

U-Net [18] 0.8550 0.7850
UNet++ [19] 0.8090 0.7290
CaraNet [20] 0.8700 0.782
PraNet [21] 0.8750 0.7870

TransUNet [22] 0.8800 0.8090
TransFuse [23] 0.9010 0.840

Double-UNet [24] 0.8962 0.8212
Polyp-PVT [25] 0.8962 0.8212

DuAT [26] 0.9230 0.8670
Polar Res-U-Net++(SOTA) [27] 0.9253 0.8743

SAM (259 samples, common practice) 0.6636 0.5566
SAM (1000 samples, official test set) 0.7306 0.6169
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Figure 1. Successful segmentation examples of SAM. Eight distinct modalities labeled with (A–H)
are included, corresponding to dermoscope, fundus, CT, MRI, RGB endoscope, X-ray, endoscopic
OCT, and ophthalmic OCT. Each set of images comprises four images, containing two pairs of SAM
segmentation versus corresponding ground truth (GT).

SAM GT

(B)

(A)

SAM GT SAM GTSAM GT

(C)

(D)

(F)

(G)

(H)

(E)

Figure 2. Failure segmentation examples of SAM. Eight distinct modalities labeled with (A–H)
correspond to dermoscope, fundus, CT, MRI, RGB endoscope, X-ray, endoscopic OCT, and ophthalmic
OCT. Each set of images consists of two paired SAM segmentation and ground truth (GT).
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3.3.2. Fundus Images

Retinal fundus images are considered as the primary modality in ophthalmic diagnosis.
Specifically, optic cup (OC) and optic disc (OD) segmentation from the fundus image is the
essential part. DoFE [28] is a benchmark for OC and OD segmentation that comprises three
different fundus image datasets. Due to the small size of available fundus image datasets,
we amalgamated the data used in DoFE to evaluate the performance of SAM. Apart from
an overall evaluation, we also explored and examined the domain generalization of SAM
based on the same domain partitions as DoFE.

Note that OC constitutes a whitish, cup-shaped area situated at the center of the
OD, which can be approximated as two concentric circles of different radius. Specifically,
the fundus images were first cropped to better observe the region of interest (ROI). The
positions of two prompts exhibit a high degree of proximity, occasionally coinciding with
each other. Thus, accurately segmenting between OC and OD is not easy when receiving
similar prompts. This partly causes zero-shot SAM to only have half of the accuracy of
current SOTAs. We hypothesize that manually prompting SAM (i.e., oracle) may lead
to a better accuracy though the zero-shot mode of SAM may still lag behind SOTA by a
noticeable margin.

We also investigated the performance of SAM on cross-domain scenarios following
the setting in DoFE [28]. The imbalanced performance observed in Table 3 demonstrates
that the domain generalization (DG) problem also exists in SAM. SAM achieves the best
and worst mean performance on domain 1 and domain 4. By inspecting fundus images
from four domains, we found that the degree of contrast between OC/OD and background
is proportional to the final performance. However, this proportional relationship cannot
be observed in DG-optimized algorithms in Table 3. This comparison reveals that SAM
mainly focuses on superficial features (image contrast) instead of high-level semantics
when zero-shot segmenting OC/OD in fundus images. Figures 1B and 2B show some
successful and failed fundus segmentation samples, respectively.

Table 3. Comparison with SOTA Methods on Fundus Datasets Evaluated using the Dice Similarity
Coefficient.

Method
Domain 1 Domain 2 Domain 3 Domain 4 Mean

OC OD OC OD OC OD OC OD Total

U-Net [18] 0.7703 0.9496 0.7821 0.8969 0.8028 0.8933 0.8474 0.9009 0.8554
Mixup [29] 0.7332 0.9297 0.7112 0.8678 0.8216 0.9042 0.8623 0.9076 0.8423

DST [30] 0.7563 0.9220 0.8080 0.9077 0.8432 0.9402 0.8624 0.9066 0.8683
JiGen [31] 0.8081 0.9503 0.7946 0.9047 0.8265 0.9194 0.8430 0.9106 0.8697
DoFE [28] 0.8359 0.9559 0.8000 0.9837 0.8666 0.9198 0.8704 0.9332 0.8844

SAM 0.5710 0.5563 0.5200 0.3333 0.5830 0.4157 0.3598 0.4056 0.4609

3.3.3. Endoscopic OCT

For endoscopic OCT, the OCT Rat Colon dataset [16] was used, which was captured
by an 800-nm ultrahigh-resolution endoscopic SD-OCT system [32]. The colonic wall is
composed of three distinct layers for segmentation, namely colonic mucosa (CM), submu-
cosa (SM), and muscularis externa (ME). A tenth of dataset was randomly sampled in our
experiment to evaluate the performance of SAM. Images in this dataset do not contain
much color information and complex structures, which is supposed to be easy for seg-
mentation. Nevertheless, the zero-shot segmentation performance of SAM on endoscopic
OCT is far inferior to models specifically designed for medical images as shown in Table 4.
Figures 1G and 2G show some segmentation samples of SAM. It can be observed that
compared to successful examples of other datasets, the successful examples of endoscopic
OCT are actually not perfect, while the failure cases are indeed unsatisfactory.



Diagnostics 2023, 13, 1947 7 of 15

Table 4. Comparison with SOTA Methods on the OCT Rat Colon Dataset.

Method Class Dice IoU

TransUNet [22] All 0.9265 -
LiDeOCTNet [33] All 0.9198 -

SAM

Colonic Mucosa 0.3491 0.2350
Submucosa 0.2477 0.1485

Muscularis Externa 0.2399 0.1466
All 0.2789 0.1767

3.3.4. Ophthalmic OCT

Annotated Retinal OCT Images Database (AROI) [34] contains 1136 annotated B-scans
and associated raw high-resolution images from 24 patients with age-related macular
degeneration (AMD). An ophthalmologist annotated three retinal layers and three retinal
fluids in each B-scan. The official annotations on B-scan are utilized to classify eight
layered structures, including the inner plexiform layer and inner nuclear layer (IPL/INL),
as well as regions above internal limiting membrane (ILM) and under bruch’s membrane
(BM). Pigment epithelial detachment (PED), subretinal fluid and subretinal hyperreflective
material (SRF), and intraretinal fluid (IRF) are also involved for segmentation. We did not
take the top layer (above ILM) into consideration (i.e., not tested), because it is not a part of
internal structure of retina.

As shown in Table 5, the segmentation results for under BM are much higher than
other classes, which is also confirmed by the qualitative samples shown in Figure 1H. This
indicates that SAM can accurately segment the structures of clear boundaries and large
continuous areas. However, the zero-shot segmentation performance of SAM is extremely
unsatisfactory for small holes and elongated layered structures of irregular boundaries
(such as RPE-BM), as shown in Figure 2H.

Table 5. Zero-Shot Segmentation Results of SAM for Different Classes from the AROI Dataset.

Class Dice IoU

ILM-IPL/INL 0.2378 0.1527
IPL/INL-RPE 0.4499 0.3153

RPE-BM 0.0688 0.0368
under BM 0.8704 0.7806

PED 0.1083 0.0673
SRF 0.1084 0.0656
IRF 0.0923 0.0548

Average 0.3237 0.2506

3.3.5. CT

AMOS [12] contains both CT and MRI modalities for abdominal multi-organ seg-
mentation tasks. The entire dataset introduces 500 CT and 100 MRI volume data from
15 organs in abdominal cavity. During pre-processing, we set the CT window range to
[−991, 362] HU and 15,361 slices from the dataset were generated using this standard.
Since the corresponding ground truth in the test set has not been released, we used the vali-
dation set which contains segmentation labels. Fifteen organs were segmented, including
spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach, aorta, inferior vena
cava, pancreas, right adrenal gland, left adrenal gland, duodenum, bladder, prostate and
uterus. The above described are also applied to MRI and the experimental results of CT are
therefore presented and discussed along with those of MRI in the next section for clarity.

3.3.6. MRI

The pre-processing method of MRI data is congruent with the one used for CT data
mentioned in the preceding section. A total of 3176 images originating from the validation
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set were obtained and selected for our case study. As the datasets of two modalities are
derived from the same dataset and the 3D data were pre-processed in a same way, the
average Dice scores of the two modalities are close as shown in Tables 6 and 7, although
the variations exist across individual class segmentation tasks. As shown in Figure 1C,
D, SAM can accurately segment two-dimensional organs in CT and MRI images. The
successful segmentation manifests the precise localization and clear demarcation, and a
striking resemblance to the actual organ structures in terms of visual appearance. However,
the failure cases shown in Figure 2C, D are often from the segmentation of small organs,
in which SAM exhibits a tendency to segment not only the target organ itself but also the
neighboring tissues.

Table 6. Zero-Shot Segmentation Results of SAM on Different CT Organ Classes in AMOS Dataset.

Class Dice IoU

#1 0.1616 0.1026
#2 0.2723 0.2211
#3 0.3465 0.2856
#4 0.0943 0.0630
#5 0.1023 0.0724
#6 0.3188 0.2097
#7 0.2624 0.1812
#8 0.2946 0.2310
#9 0.1555 0.1188

#10 0.1375 0.0930
#11 0.0287 0.0202
#12 0.0585 0.0454
#13 0.1831 0.1284
#14 0.1292 0.0752
#15 0.0653 0.0360

Average 0.2105 0.1548

Table 7. Zero-Shot Segmentation Results of SAM on Different MRI Organ Classes in AMOS Dataset.

Class Dice IoU

#1 0.2571 0.1785
#2 0.4622 0.3866
#3 0.4434 0.3656
#4 0.1437 0.1026
#5 0.0352 0.0207
#6 0.4480 0.3311
#7 0.1475 0.0912
#8 0.2843 0.2285
#9 0.0691 0.0452

#10 0.1175 0.0754
#11 0.0054 0.0027
#12 0.0243 0.0177
#13 0.0989 0.0642

Average 0.2264 0.1723

3.3.7. X-ray

The dataset (704 labelled images) used for testing SAM on X-ray is compiled from the
validation and training sets of [14,15]. As shown in Figure 1F, the segmentation performance
demonstrated by SAM in successful cases is impressive and the segmentation results
perfectly match with the ground truth. However, the failure cases shown in Figure 2F
reveal that the zero-shot chest X-ray segmentation of SAM is not always consistent. Table 8
shows the quantitative results of zero-shot X-ray image segmentation.
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Table 8. Quantitative Results of Zero-Shot SAM on a X-ray Dataset.

Method Dice IoU

SAM 0.6509 0.5136

3.3.8. Endoscopic Images

We further tested SAM on the MICCAI 2017 Robotic Instrument Segmentation dataset [35],
which contains 2040 stereo camera images acquired from a da Vinci Xi surgical system on
three types of segmentation task (binary, parts and instruments segmentation). The images
are essentially captured by RGB cameras. As a result, the segmentation outcomes shown in
Figure 1E are impressive when appropriate prompts are given. As we place the prompt at the
center of each individual object, a three-class segmentation of parts is the most suitable choice
for testing in order to avoid any irregular connections and interference between different
parts compared with binary segmentation and instrument segmentation. The performance
of SAM was tested using data from the official testing set, and the results were compared
against those provided in the official report. To better visualize, segmentation results of
different categories have been plotted onto the same graph for comparison, which are shown
in both Figures 1E and 2E. It should be noted that even though some examples exhibit visually
satisfactory results, they are likely due to the predicted masks partially lying within other
masks. From a quantitative perspective as shown in Table 9, SAM has already surpassed the
segmentation performance of LinkNet-34 [35,36] by only receiving prompts. However, it is
still not comparable to the current SOTA and there is a 30% relative gap between SAM and
SOTA methods.

Table 9. Comparison with SOTA Methods on the MICCAI 2017 Robotic Instrument Segmentation
Dataset.

Method Class Dice IoU

UNet [18] All 0.6075 0.4841
TernausNet-16 [35] All 0.7597 0.6550
TernausNet-11 [35] All 0.7425 0.6223

LinkNet-34 [35] All 0.4126 0.3455

SAM

Clasper 0.4296 0.3054
Wrist 0.5076 0.3674
Shaft 0.7189 0.5076
All 0.5512 0.4227

3.3.9. Retinal Vessel in Fundus Images

We also used SAM to segment vessels in fundus images. However, the experiments
revealed that zero-shot SAM is not able to accurately segment retinal blood vessels, despite
the manual provision of additional prompts focused on areas where visibility of vessels is
pronounced. At the current stage, we conjectured that the segmentation of continuously
branching structures, such as blood vessels in medical images and tree branches in nature
images, presents a challenge for SAM. As shown in Figure 3, it is found that SAM encounters
difficulties in accurately identifying vessels as distinct segmentable objects. Therefore, we
further conducted fine-tuning of SAM to examine its potential of improving segmentation
results. To fine tune SAM (SAM ViT-B in this experiment), we utilized SAM adapter [37],
a task-specific fine-tuning method proposed for SAM. Specifically, 20 image-mask pairs
were selected from the Digital Retinal Images for Vessel Extraction (DRIVE) dataset [38]
to fine-tune SAM’s mask decoder. As the fine-tuning was fully supervised, there was no
prompt provided and the ground truth masks were used to supervise the training. The
entire fine-tuning process was trained with the AdamW [39] optimizer. The learning rate
was set to 2× 10−4 with a total of 20 training epochs. The batch size was one with the input
image size of 1024 × 1024 pixels. A total of four datasets were utilized for the quantitative
assessment. Three of them are the official test sets from their respective datasets. The
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official training set from the STARE dataset [40] was also employed for testing as its own
test set is lacking. As shown in Table 10, the fine-tuned SAM demonstrated substantial
improvements in both the Dice and IoU metrics. Noticeably, the Dice scores increased by
at least 200 percent relative to its zero-shot counterpart where vessels were segmented by
manually providing the prompt. Furthermore, the improvements of IoU were even more
pronounced. In addition, as illustrated in Figure 4. The segmentation results of SAM after
fine-tuning almost perfectly match with ground truth in some cases and only some tiny
parts at the terminal ends of vessels are missing, demonstrating the potential of SAM for
precise medical image segmentation after a domain-specific fine-tuning.

Table 10. Quantitative Results of Fine-tuned SAM on Retinal Vessel Segmentation Datasets.

Dataset Dice (Manual) Dice (Fine-Tuned) Dice Relative Increase IoU (Manual) IoU (Fine-Tuned) IoU Relative Increase

DRIVE [38] 0.2267 0.7733 241% 0.1281 0.6304 392%
CHASEDB1 [41] 0.1685 0.7118 322% 0.0921 0.5526 500%

HRF [42] 0.1701 0.6776 298% 0.0931 0.5124 450%
STARE [40] 0.1902 0.7694 304% 0.1057 0.6252 491%

Figure 3. A failure sample of SAM on segmenting retinal vessels. The first row from left to right is:
the initial input image, ground truth mask, and the input image superimposed with the ground truth
mask. The second row from left to right shows three SAM segmented images with the score of 1.007,
0.993, and 0.673, respectively.
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GTInput RGB Fine-tuned SAM

Figure 4. Segmentation samples of SAM fine-tuned on retinal vessels. Each row from left to right is
the initial input image, ground truth mask and prediction of fine-tuned SAM. The column from top
to bottom shows retinal images from four different datasets.
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4. Discussion

Through extensive experiments, it is found that SAM is unable to outperform models
specially designed for medical imaging by simply using its zero-shot feature. It is worth
noting that SAM is trained primarily on natural images and has limited access to diverse
medical modalities containing pathological manifestations. As such, the medical segmenta-
tion results obtained using SAM’s zero-shot capability are actually decent and sometimes
considered impressive as shown in Figure 1. Nevertheless, given prompts in the same
way, the performance of SAM varies significantly across different medical modalities. In
endoscopy and dermoscopy, SAM demonstrated better performance compared to other
medical modalities. In segmenting the skin lesion, if there are no clear boundaries of the
lesion or if the skin itself has pigment deposition and erythematosus, the segmentation
outcome of SAM is often unsatisfactory. This phenomenon resembles the concealed pat-
terns observed in natural images, which have been previously shown to be a challenge
for SAM [43,44]. Although the retinal fundus images are also RGB images, segmenting
structural targets within the internal structure of retina is not encountered in natural scenes.
This has resulted in suboptimal segmentation of optic disc and complete failure in retinal
vessel segmentation of SAM using zero-shot segmentation.

Despite the SA-1B dataset used for training SAM contains 1B masks and 11M images,
the multiple medical domains we tested in our study are entirely unseen domains for
SAM. In particular, 3D imaging predominates as a critical medical methodology, such
as MRI, CT, and OCT. The 2D slices employed for analysis are the unique aspects of
medical imaging and cannot be found in natural domains. For instance, the features of
OCT B-scan are layered structures stretching along the entire image width, instead of
closed regions. Algorithms developed specifically for the prominent features of OCT have
demonstrated excellent performance [33,45]. However, SAM is unable to discriminate the
tissue layers in OCT images without any prior knowledge. In addition to the presence of
domain differences between medical and natural images, it has been observed in Table 3
that SAM exhibits significantly imbalanced segmentation accuracy when encountering
different domain images under the same category.

To evaluate the capabilities of SAM under zero-shot settings, experiments in this
study used a single prompt selection method and used the center point of the ground
truth mask as the prompt for each sample. Although this approach did not fully harness
the potential of SAM, it suffices to highlight the limitations of SAM in medical imaging.
Recently, SAM-Adapter [37] has been proposed for tackling complex scenario segmentation
on natural image datasets including but not limited to camouflaged targets and defocus
blur objects, which has shown better results than SAM and other task-specific approaches.
Medical images can be regarded as a distinct category of rare scenes. Consequently, it is
very likely that natural image-based large models after fine-tuning may yield excellent
performance on medical imaging modalities as revealed by our preliminary results of SAM
fine-tuned on retinal vessel data. Meanwhile, different prompt engineering techniques can
be further explored in the future. Furthermore, it is worth investigating if training a large
medical vision model from scratch using only medical data can lead to a better performance
than continual-training/fine-tuning a large vision model using medical images, which has
been previously pretrained on a large volume of natural image data. In addition, during
the development phase of large medical AI models, it is recommended to prioritize a
focus on diagnostic information and invariant features present in medical images. This
can potentially mitigate issues related to domain transfer, thus enhancing the overall
performance and interpretability of a large AI model.

The limitations of our testing method are also worth noting, and future works are
encouraged to further explore SAM on medical segmentation. Firstly, we only used one
of the three prompts provided in the official setting. For some cases, the centroid might
not be inside the region of interest, other segment modes of SAM should be taken into
consideration, such as the bounding box mode and automatically segment everything mode,
which may provide a more comprehensive evaluation of its segmentation ability. Another
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limitation is that we only performed fine-tuning on retinal vessel datasets. Although the
results indicate that the fine-tuned model demonstrates excellent segmentation quality
compared to its zero-shot counterpart, we believe experiments on a wider range of datasets
are needed to examine the segmentation performance of fine-tuned SAM, which could
provide a more holistic view of its pros and cons on different medical modalities.

Nevertheless, our work is the first research work that focuses on evaluating and
analyzing the performance of a recently developed large AI model, i.e., SAM on a wide
range of medical image segmentation tasks both qualitatively and quantitatively, with
detailed comparisons between SAM and baselines. The findings from our research help
identify where SAM works and how it can be fine-tuned to provide better performance on
medical imaging and applications. Our results may also help guide the future development
of SAM and other medical generalist AI models on domain-specific tasks. Medical image
segmentation is an important and challenging task. If the advanced large models such
as SAM become highly accurate and robust on medical image segmentation, either in a
zero-shot fashion or after fine-tuning, they may bring in far-reaching impact and help
transform and improve medical diagnostics, treatment planning, and other healthcare
applications that depend on medical imaging. This could eventually lead to great benefits
to both clinicians and patients. In summary, our study lays an important groundwork for
developing and applying large AI models on medical image segmentation. With continued
progress, such models could positively impact healthcare by assisting with and improving
critical tasks in medical diagnostics. Our current work not only highlights the potential
significance and societal benefits of this line of research, but also identifies the limitations
and the needs of further research before the achievement of substantial real-world impacts.

5. Conclusions

This work presents a benchmark study of SAM on a wide range of zero-shot medical
image segmentation tasks. Through comprehensive experiments, we identify the challenges
that SAM currently encounters in this context. Importantly, our analysis is performed on a
standardized set of prompts devoid of any prior medical knowledge, covering a diverse
range of imaging modalities, such as dermoscope, fundus, CT, MRI, endoscope, X-ray,
endoscopic OCT and ophthalmic OCT. The provision of precise and interactive prompts,
the use of specialized feature extraction methodologies tailored for medical images, and
the well-designed fine-tuning strategies of large vision models originally trained on natural
images can be explored in future works. Given the unique challenges associated with med-
ical imaging, these aspects are critical for ensuring the optimal performance of generalist
models in this domain. Additionally, it is crucial that large medical vision models possess
cross-domain generalizability, akin to that exhibited by physicians. This is important to
avoid any negative impact on diagnostic accuracy resulting from the use of new equipment
and protocols. Overall, our findings highlight the needs for medical foundation models
with careful consideration given to the specific challenges posed by this complex and
rapidly evolving field.
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