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Generalizability of machine learning 
models and empirical equations for the 
estimation of reference evapotranspiration 
from temperature in a semiarid region
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FLAVIO B. CAMPOS, SANTOS H.B. DIAS & JANNAYTON E.O. SANTOS

Abstract: The Penman-Monteith equation is recommended for the estimation of 
reference evapotranspiration (ETo). However, it requires meteorological data that are 
commonly unavailable. Thus, this study evaluates artifi cial neural network (ANN), 
multivariate adaptive regression splines (MARS), and the original and calibrated 
Hargreaves-Samani (HS) and Penman-Monteith temperature (PMT) equations for the 
estimation of daily ETo using temperature. Two scenarios were considered: (i) local, 
models were calibrated/developed and evaluated using data from individual weather 
stations; (ii) regional, models were calibrated/developed using pooled data from several 
stations and evaluated independently in each one. Local models were also evaluated 
outside the calibration/training station. Data from 9 stations were used. The original PMT 
outperformed the original HS, but after local or regional calibrations, they performed 
similarly. The locally calibrated equations and the local machine learning models 
exhibited higher performances than their regional versions. However, the regional 
models had higher generalization capacity, with a more stable performance between 
stations. The machine learning models performed better than the equations evaluated. 
When comparing the ANN models with the HS equation, mean RMSE reduced from 0.96 
to 0.87 and from 0.84 to 0.73, in regional and local scenarios, respectively. ANN and MARS 
performed similarly, with a slight advantage for ANN.

Key words: ANN, cross-station, external validation, MARS, regional models.

INTRODUCTION

Quantifi cation of evapotranspiration is of vital 
importance for irrigation scheduling. The FAO-56 
Penman-Monteith (FAO-PM) equation is widely 
recommended for the estimation of reference 
evapotranspiration (ETo) (Allen et al. 1998). 
However, it requires meteorological variables 
that are commonly unavailable or unreliable 
(Almorox et al. 2018, Pinheiro et al. 2019). Thus, 
equations that require only air temperature can 
be used as an alternative way since temperature 
is commonly measured.

The Hargreaves-Samani (HS) equation can 
be used when only air temperature data are 
available (Allen et al. 1998, Zanetti et al. 2019). 
In addition, several studies have shown that 
the FAO-56 Penman-Monteith equation using 
only measured data on temperature, commonly 
named Penman-Monteith temperature (PMT), 
can also be used (Raziei & Pereira 2013, Alencar 
et al. 2015, Almorox et al. 2018). However, both 
the HS equation and the PMT equation have 
their performance varying according to the 
climatic conditions of the place where they are 
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used. Thus, the calibration of these equations is 
extremely important (Zanetti et al. 2019).

In recent years, machine learning methods, 
such as artificial neural network (ANN), support 
vector machine (SVM) and gene expression 
programming (GEP), have been used to estimate 
environmental, hydrologic and climatological 
parameters (Ferreira et al. 2019a, Mehdizadeh et 
al. 2017, Ozoegwu 2019, Saggi & Jain 2019). These 
methods are known for their abilities in working 
with complex problems. Thus, they become 
powerful tools for ETo modeling.

Among machine learning models, ANN has 
been used for the estimation of ETo by several 
authors (Antonopoulos & Antonopoulos 2017, 
Kumar et al. 2011, Ferreira et al. 2019a). Wang 
et al. (2011), using ANN to estimate ETo in arid 
regions of Africa, reported that this technique 
outperformed empirical equations. Ferreira et 
al. (2019a), evaluating temperature-based ANN in 
several places of Brazil, reported better results 
of this technique over empirical equations. 
Kumar et al. (2011) evaluated several studies and 
concluded that ANN is superior to conventional 
methods.

Another promising technique for the 
estimation of ETo is multivariate adaptive 
regression splines (MARS). This is a nonparametric 
regression analysis used to study nonlinear 
relations between a response variable and a set 
of predictor variables (Koc & Bozdogan 2015). 
Mehdizadeh et al. (2017), working with several 
data availability scenarios, found that MARS was 
more efficient to estimate ETo than empirical 
equations, SVM and GEP. Ferreira et al. (2019b) 
reported better results for MARS in relation to 
empirical equations in several climate types and 
data availability scenarios. In contrast with ANN, 
the use of a MARS model, after its development, 
occurs through an algebraic equation, which may 
facilitate the use of the final model. Despite its 
potential, there are limited studies using MARS 

for the estimation of ETo (Ferreira et al. 2019b, 
Mehdizadeh et al. 2017). 

ETo models can be calibrated/developed with 
local or regional data. The first case is the most 
common approach in the literature. However, a 
local model can show good performance in the 
station where it was developed and show poor 
performance in other stations, which can limit its 
real applicability or even make it useless (Kiafar 
et al. 2017, Reis et al. 2019). Thus, it is important 
to evaluate the generalization capacity of the 
models, assessing their performance outside 
the calibration/training station. On the other 
hand, regional models (i.e., models calibrated/
developed with pooled data from several 
weather stations) can be key options in places 
without data for calibration or development 
of local models. In contrast with local models, 
regional models are developed to be used at 
any place of a particular region. In Brazil, studies 
addressing the development of regional models 
are scarce (Ferreira et al. 2019a, Reis et al. 2019, 
Zanetti et al. 2019).

In northern Minas Gerais, Brazil, a semiarid 
climate prevails. In this region, in addition to 
a large number of farms, there are public 
irrigation perimeters, where irrigation plays a 
fundamental role in the existence of a profitable 
agriculture. Thus, the development of studies 
that can contribute to a better irrigation and 
water resources management is of essential 
importance. In this context, this study evaluated 
the performance of ANN and MARS and the 
original and calibrated HS and PMT equations 
to estimate daily ETo in a semiarid region of 
Minas Gerais, Brazil, considering two scenarios: 
(i) local, models were calibrated/developed 
and evaluated using data from individual 
weather stations; and (ii) regional, models 
were calibrated/developed using pooled data 
from several weather stations and evaluated 
independently in each one (leave-one-out 
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cross-validation). The local models were also 
evaluated considering a cross-station approach.

MATERIALS AND METHODS
Database and study area
Daily data from nine weather stations (2002-
2016), obtained from the Meteorological 
Database for Teaching and Research (BDMEP) of 
the Brazilian National Institute of Meteorology 
(INMET), were used. The stations are located in 
northern Minas Gerais, Brazil, as shown in Figure 
1. The main meteorological characteristics of the 
stations are presented in Table I.

Maximum and minimum air temperature, 
relative humidity, sunshine duration and wind 
speed were used. Wind speed, measured at 10 m 
height, was converted to 2 m and solar radiation 
was estimated based on sunshine duration, 
according to Allen et al. (1998). Days with missing 
data were removed. The dataset was divided into 
training set (2002-2011) and test set (2012-2016), 

which were used to develop/calibrate the 
models and to test them, respectively. The mean 
numbers of samples (for each weather station) 
contained in the training and test sets were 3186 
and 1312, respectively.

Methods for the estimation of ETo
To calibrate the PMT and HS equations and to 
develop the ANN and MARS models, as well as 
to evaluate these models, daily ETo estimated 
using the FAO-PM equation with all required 
data (Equation 1) was adopted as reference.
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where: EToFAO-PM - reference evapotranspiration 
calculated by Penman-Monteith, mm d-1; Rn - net 
solar radiation, MJ m-2 d-1; G - soil heat fl ux, MJ 
m-2 d-1 (considered as null for daily estimates); 
T - daily mean air temperature, °C; u2 - wind 
speed at 2 m height, m s-1; es - saturation vapour 
pressure, kPa; ea - actual vapour pressure, kPa; 

Figure 1. Geographic location and altitude of the weather stations, as well as political divisions of Brazil, 
highlighting the state of Minas Gerais (MG).
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Table I. Daily mean values and standard deviations of meteorological variables for the weather stations used 
(2002-2016). 

Station Tx (°C) Tn (°C) n (h) RH (%) U2 (m s-1) ETo (mm d-1)

Espinosa 31.1 (±2.7) 19.8 (±2.6) 8.3 (±3.1) 60.8 (±14.6) 2.1 (±1.1) 5.0 (±1.5)

Janaúba 32.1 (±2.8) 19.2 (±2.5) 8.1 (±2.9) 57.5 (±13.9) 1.1 (±1.1) 4.4 (±1.2)

Januária 32.2 (±2.8) 18.6 (±3.1) 8.3 (±3.3) 63.5 (±15) 1.5 (±0.6) 4.6 (±1.3)

Juramento 30.1 (±2.9) 16.8 (±3.3) 7.5 (±3.1) 67.5 (±13.2) 1.1 (±0.5) 4.0 (±1.1)

Monte Azul 31.3 (±2.8) 20.4 (±2.1) 8.1 (±3) 56.6 (±14) 1.8 (±1.2) 4.9 (±1.4)
Montes 
Claros 30.1 (±2.8) 18.0 (±2.9) 7.7 (±3.4) 62.2 (±14.8) 1.4 (±0.5) 4.2 (±1.2)

Pedra Azul 28.8 (±3.3) 17.8 (±2.8) 6.7 (±3.4) 70.6 (±10.6) 1.0 (±0.5) 3.7 (±1.2)

Pirapora 31.7 (±2.9) 19.1 (±3.3) 7.7 (±3.1) 66.9 (±13.5) 1.2 (±0.5) 4.3 (±1.3)

Salinas 31.0 (±3.2) 18.6 (±3.2) 6.5 (±3.4) 68.9 (±13) 1.2 (±0.5) 4.0 (±1.3)
Tx - maximum air temperature; Tn - minimum air temperature; n - sunshine duration; RH - relative humidity; U2 - wind speed at 2 
m height; ETo - reference evapotranspiration estimated by the Penman-Monteith equation.

Figure 2. Data management scenarios used in the 
study.

∆ - slope of the saturation vapour pressure 
function, kPa °C-1; γ - psychometric constant, kPa 
°C-1.

Two data management scenarios were 
used in this study: local scenario: models were 
calibrated/developed and evaluated using 
data from each weather station individually; 
and regional scenario: models were calibrated/
developed using pooled data from all the 
weather stations, except the station in which the 
model was evaluated, performing a 9-fold cross-
validation (leave-one-out cross-validation) 
(Figure 2). The local models were also evaluated 
considering a cross-station evaluation, 
evaluating them outside the calibration/training 
station (Figure 2). All the models studied were 
calibrated/developed using data from 2002 to 
2011 (ten years) and evaluated using data from 
2012 to 2016 (five years). Both cross-station 
evaluation for local models and leave-one-
out cross-validation for regional models are 
important strategies to assess the performance 
of the models outside the training station, 
allowing a more robust evaluation.

To estimate ETo with the PMT equation, 
Equation 1 was used, with actual vapour pressure 
and solar radiation estimated using Equations 2 
and 3, respectively, and wind speed was set at 2 
m s-1, as recommended by Allen et al. (1998). 
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where: ea - actual vapour pressure, kPa; Tmin - 
minimum air temperature, °C.
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max min  0.16  ( - )=Rs Ra T T  (3)

where: Rs - solar radiation, MJ m-2 d-1; Ra - 
extraterrestrial radiation, MJ m-2 d-1; Tmax - 
maximum air temperature, °C; Tmin - minimum 
air temperature, °C.

To estimate ETo using the HS equation, the 
following equation was implemented: 

0.5

 max min  0.0023 (  1 7.8) (  - )= +
oHS a

ET R T T T  (4)

where: EToHS - reference evapotranspiration 
calculated by Hargreaves-Samani, mm d-1; 
Ra - extraterrestrial radiation, mm d-1; Tmax - 
maximum air temperature, °C; Tmin - minimum 
air temperature, °C; T - mean air temperature, 
°C.

The calibrations of the PMT and HS equations 
were performed by simple linear regression, as 
suggested by Allen et al. (1998). For this, a linear 
regression was fitted with ETo values estimated 
using the FAO-PM equation as the dependent 
variable and those estimated using the equation 
under evaluation as the independent variable. 
The obtained intercept (a) and slope (b) were 
used as calibration parameters, according to 
Equation 5.

    ( )= +
ocal o

ET a b ET  (5)

where :  ETocal -  cal ibrated re ference 
evapotranspiration, mm d-1; a and b - calibration 
parameters; ETo - reference evapotranspiration 
estimated by the original equation (equation 
under study), mm d-1.

Regarding the machine learning methods, 
ANN and MARS were developed considering 
maximum temperature, minimum temperature 
and extraterrestrial radiation as input variables. 

ANN is a supervised machine learning 
model inspired by the human brain that can 
be used for classification and regression tasks. 
It typically consists of layers of neurons, with 
weights representing the connections between 

neurons. Further details regarding ANN and its 
usage for ETo modeling can be seen in Kumar et 
al. (2011).

ANNs of the feed-forward multilayer 
perceptron type with stochastic gradient descent 
training algorithm optimized with momentum 
term were used. The ANNs architecture (i.e., 
number of layers and neurons), momentum 
term and learning rate were defined by trial 
and error. Thus, the ANNs developed were 
composed of an input layer, one hidden layer 
and an output layer. The input layer was 
composed of three variables, the hidden layer 
was composed of ten neurons, and the output 
layer was composed of one neuron, as shown 
in Figure 3. Hyperbolic tangent function was 
used as activation function in the hidden layer 
and identity function was used in the output 
layer. Learning rate and momentum term were 
set to 0.001 and 0.9, respectively. The number 
of training epochs was 500 in local scenario 
and 400 in regional scenario. ANN models were 
implemented using the TensorFlow and Keras 
libraries for the Python programming language.

Before ANN training, to avoid convergence 
problems, input and output data were 
standardized according to the following 
equation. The mean (µ) and standard deviation 
(σ) were calculated with data from the training 
set (2002-2011). 

 - 
  

µ
σ

= i

ni

x
x

 (6)

where: xni - standardized value; xi - observed 
value; µ - mean; σ - standard deviation.

Multivariate adaptive regression splines 
(MARS) is a regression technique initially 
proposed by Friedman (1991). This technique is 
able to model nonlinearities and interactions 
and automatically choose the input variables 
that are really important. A MARS model is 
composed of base functions, which are set at 
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Figure 3. Artificial neural network architecture used in 
the study.

Figure 4. One-dimensional MARS model example.

different intervals of the independent variables. 
Base functions work according to the following 
equations:

y = max(0, x - c)  (7)

y = max(0, c - x)  (8)

where: c - constant called knot; x - input variable; 
y - output variable.

To build a MARS model, two steps are 
required, the forward and backward steps. In 
the first one, an over-fitted model is built, with 
a large number of knots; in the backward step, a 
pruning technique is used to remove redundant 
knots (Kisi 2015). More details regarding MARS can 
be seen in Cheng & Cao (2014). As an example, 
a one-dimensional model is illustrated in Figure 
4. MARS models were implemented using the 
py-earth library for the Python programming 
language. Hyperparameter tuning was done by 
grid search with k-fold cross-validation (k=3). The 
following hyperparameters and their respective 
values were assessed: penalty (3.0, 5.0, 10.0, 20.0, 
30.0), endspan_alpha (0.01, 0.05, 0.1, 0.5), and 
minspan_alpha (0.01, 0.05, 0.1, 0.5). The order of 
interaction (max_degree) was limited to four to 
avoid extremely complex equations.

Performance comparison criteria
The performance of the models was evaluated 
for each weather station, with data from the 
test set, using root mean square error (RMSE), 
coefficient of determination (R²) and mean 
bias error (MBE), according to the following 
equations.

21
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1
MBE = (Pi - Oi)

n
∑  (11)

where: RMSE - root mean square error, mm d-1; R2 
- coefficient of determination; MBE - mean bias 
error, mm d-1; Pi - value predicted by the model, 
mm d-1; Oi - observed value, mm d-1;  - mean of 
values predicted by the model, mm d-1;  - mean 
of observed values, mm d-1; n - number of data 
pairs.
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RESULTS AND DISCUSSION
Empirical equations
The original PMT and HS equations had a wide 
performance variation between the weather 
stations, with RMSE ranging from 0.64 to 1.45 
and from 0.70 to 1.29 mm d-1 and MBE ranging 
from -0.99 to 0.63 and from -0.68 to 0.92 mm 
d-1, respectively for the PMT and HS equations 
(Figure 5). For R2, a variation from 0.34 to 0.77 was 
observed for both equations.

According to Raziei & Pereira (2013), empirical 
equations have their performance affected 
according to the climatic conditions of the place 
where they are applied, reinforcing the need for 
calibration. Empirical equations typically show 
poorer performance in conditions different from 
those where they were developed. Sentelhas 
et al. (2010) also reported a wide performance 
variation for the PMT and HS equations, with 
RMSE ranging from 0.90 to 1.40 and from 0.75 to 
1.95 mm d-1, respectively.

Analyzing MBE behavior for the PMT and HS 
equations, both equations obtained negative 
values only in Espinosa and Monte Azul stations. 
This is possibly explained by the higher mean 
wind speed and lower mean relative humidity 
found in these sites (Table I). According to Allen 
et al. (1998), wind has a great effect on ETo in 
dry and hot environments due to the greater 
removal of water vapour stored in the air. In 
addition, Gavilán et al. (2006) found that the HS 
equation underestimated ETo in cases in which 
wind speed exceeded 1.5 m s-1.

By evaluating R2 results, the lowest R2 
values were observed at Espinosa, Janaúba and 
Monte Azul weather stations, where there are 
the highest standard deviations of wind speed, 
1.1, 1.1 and 1.2 m s-1, respectively (Table I). This is 
probably due to the difficulty of the PMT and 
HS equations in capturing the effect of large 
wind speed oscillations since it promotes ETo 

fluctuations that are not directly captured by 
these equations. Shiri (2017), working in a hyper-
arid region, concluded that wind speed is one of 
the variables that most affects ETo.

Comparing the original PMT and HS 
equations, the PMT equation outperformed 
the HS equation at almost all weather stations, 
except at Espinosa and Monte Azul stations, 
where the PMT equation had slightly higher 
RMSE values. Alencar et al. (2015), working with 
several stations in the state of Minas Gerais, 
also reported better performance for the PMT 
equation over the HS equation. Similarly, 
Ferreira et al. (2019a) found better performance 
of the PMT equation over the HS equation. This 
behavior is probably associated to the physical 
basis of the FAO-PM equation, which is partially 
conserved when considering the PMT equation.

After local calibration, performance 
improvements were observed for the PMT 
equation and the HS equation when they were 
evaluated in the stations where the calibrations 
were performed, with lower RMSE and MBE 
absolute values (Figure 5). R2 is not affected by 
calibration based on linear regression. Although 
the PMT equation outperformed the HS equation 
before local calibration, the performance 
of both equations became very close after 
calibration, with similar RMSE, MBE and R2 
values. Calibration process incorporates local 
climatic characteristics into the model, making 
ETo estimates closer to the reference values. 
Several authors also reported improvements 
after local calibration of empirical equations 
(Kisi & Zounemat-Kermani 2014, Shiri 2017).

In the cross-station evaluation, an unstable 
behavior was observed after local calibration, 
with gains and losses of performance in relation 
to the original equations. For the PMT and HS 
equations, the models calibrated at Januária, 
Montes Claros, Pedra Azul and Pirapora stations 
had a relatively good generalization capacity, 
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Figure 5. Statistical indices for the original and calibrated (local and regional) Penman-Monteith temperature 
(PMT) and Hargreaves-Samani (HS) equations.
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showing performance improvements outside 
the calibration stations. These models exhibited 
RMSE values lower or close to those obtained 
for the original equations in most stations, 
however, they performed worse at Espinosa 
and Monte Azul stations. The models calibrated 
at the other stations showed performance 
improvements over the original equation only 
for some stations.

Regarding regional calibrations, the regional 
HS showed more expressive performance gains 
over its original version than the regional PMT 
over its original version. The regional HS only 
did not have lower RMSE values at Espinosa 
and Monte Azul stations, reducing RMSE for all 
other stations. Mean RMSE over the stations 
was reduced from 1.02 to 0.96 (6%) and median 
RMSE reduced from 0.93 to 0.77 (17%). For the 
PMT equation, although regional calibration 
reduced RMSE for some stations, it increased 
RMSE for Espinosa, Monte Azul and Montes 
Claros stations. Mean RMSE over the stations 
was increased from 0.95 to 0.97 (2%). However, 
median RMSE decreased from 0.83 to 0.80 
(4%). Comparing the regional HS and PMT, they 
generally had the same performance.

Machine learning methods
The ANN and MARS models obtained similar 
performances in local and regional scenarios, but 
the ANN models performed a little better, with 
slightly lower RMSE values and slightly higher R2 
values (Figure 6). In the cross-station evaluation, 
as reported for the empirical equations, there 
was an unstable behavior. The models with the 
best results were those developed at Januária, 
Montes Claros and Pirapora stations. The 
models developed at Espinosa, Janaúba and 
Monte Azul had the worst results outside the 
training stations. On the other hand, the regional 
models had a more stable performance, with 
RMSE values higher than those obtained with 

the local models, but lower than some of the 
values observed in the cross-station evaluation.

Overall evaluation
It is important to highlight that Espinosa, 
Janaúba and Monte Azul stations had the worst 
performances for all models studied. This is 
probably because there are larger oscillations 
of wind speed (greater standard deviations) in 
these sites (Table I), and all the models evaluated 
do not directly capture these oscillations since 
they do not use wind speed as input. In addition, 
the models calibrated/developed in these 
stations had the worst generalization capacities, 
not showing good performances outside the 
calibration/training stations.

The empirical equations, ANN and MARS 
models developed with local data outperformed 
the models developed with regional data when 
they were evaluated in the same station that 
they were calibrated/developed (Figure 7). Shiri 
et al. (2014) also obtained superior performance 
for models developed with local data. However, 
despite the higher performance of local models, 
they are commonly required in places where 
there are no data available to calibrate/develop 
them. Thus, a local model should be applied in 
places with climatic characteristics similar to the 
place where it was calibrated/developed, which 
limits its use. If this requirement is not met, the 
calibrated model can perform even worse than 
the original one.

In this study, it was observed that, in 
some cases, the use of a model developed 
or calibrated at a station more distant can 
provide better results than a model from a 
nearer station. For example, all the models 
developed at Januária station performed better 
at Montes Claros station than those developed 
at Juramento station, which is much closer 
to Montes Claros station. On the other hand, 
models calibrated/developed on a regional 
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Figure 6. Statistical indices for the artifi cial neural network (ANN) and multivariate adaptive regression splines 
(MARS) models developed in local and regional scenarios.



LUCAS B. FERREIRA et al. MACHINE LEARNING MODELS FOR THE ESTIMATION OF ETO

An Acad Bras Cienc (2021) 93(1) e20200304 11 | 15 

scale can be a more fl exible approach, allowing 
to use a single model in an entire region and 
avoiding problems with highly site-specific 
models. Therefore, regional models can be 
an interesting approach, especially for places 
without data for calibration/development of 
local models. In addition, according to Pereira 
et al. (2015), machine learning models remain 
empirical and may not translate well in time 
and space. Thus, since regional models are 
developed with a larger amount of data, they 
can be more stable in time and space than local 
models.

When comparing the machine learning 
models and the empirical equations, the 
first ones showed better performances in 
both regional and local scenarios (Figure 7). 
When comparing the ANN models with the HS 
equation, mean RMSE reduced from 0.96 to 0.87 
(9%) and from 0.84 to 0.73 (13%), in regional 
and local scenarios, respectively. It should be 
noted that at Espinosa, Janaúba and Montes 
Azul stations, there was a high increase in R2

values, mainly for the local models, indicating 
the higher capacity of machine learning models 

to capture complex relations between input 
variables and ETo (Figures 5 and 6). This behavior 
reaffi rms the superiority of machine learning 
models over traditional equations, reported by 
Kumar et al. (2011) and Mehdizadeh et al. (2017), 
among others.

Comparing the performance of the regional 
ANN and MARS with the PMT and HS equations, 
it was noted that the machine learning models 
perform better than the original and regionally 
calibrated versions of the mentioned equations 
(Figure 7) and, at Janaúba and Pirapora 
stations, even better than the locally calibrated 
equations. Shiri et al. (2014) and Feng et al. (2017) 
also reported superior performance of machine 
learning methods developed with regional data 
in relation to empirical equations. Thus, the 
regional ANN and MARS are good options to 
estimate ETo in the study region, outperforming 
traditional equations. Future studies should 
focus on the development of regional models 
with higher performances, trying to get even 
closer to the performance of local models.

Although the ANN models performed slightly 
better than the MARS models, both models 

Figure 7. Boxplots and mean values of RMSE for the artifi cial neural network (ANN) and multivariate adaptive 
regression splines (MARS) models, as well as the Penman-Monteith temperature (PMT) and Hargreaves-Samani 
(HS) equations developed/calibrated in local and regional scenarios.
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Table II. Local and regional calibration parameters for the PMT and HS equations. 

Model origin
PMT HS

a b a b

Espinosa 0.1832 1.0938 0.2927 0.9945

Janaúba 1.5807 0.5783 1.5588 0.5470

Januária -1.0889 1.1779 -0.8543 1.0616

Juramento -0.1206 0.9032 -0.0707 0.8399

Monte Azul 0.9553 0.8916 1.1128 0.7932

Montes Claros -0.7102 1.1271 -0.5210 1.0150

Pedra Azul -0.5525 1.0350 -0.5061 0.9514

Pirapora -1.0871 1.1576 -0.8631 1.0394

Salinas -0.7581 1.0309 -0.7361 0.9608

Regional -0.0951 0.9762 -0.0390 0.9015

Table III. Local and regional MARS models obtained in the study.

Model origin MARS model

Espinosa
-41.423 + 2.7196e-1.Ra

2 - 5.0390e-3.Ra
2.h(-Tn + 25.0) - 5.2382e-3.Ra.Tx.Tn + 1.0254e-1.Tx

2 + 3.9435e-3.Ra.Tx
2 - 

2.9581e-3.Tx
3 + 1.0398e-3.Ra

2.h(-Tx + 38.0) - 3.7558e-1.Ra.Tn + 6.0016.Tn - 3.5143e-4.Ra.Tn
2 - 2.6005e-3.Ra

3 + 
1.0428e-2.Ra.Tx.h(Tn - 25.0) - 6.3394e-3.Ra.Tx.h(-Tn + 25.0)

Janaúba
-325.57 + 29.956.Tx - 8.8447e-1.Ra.Tx + 10.995.Ra - 3.4319e-2.Ra

2 - 9.9053e-1.Tx
2 + 1.0720e-2.Tx

3 + 1.6784e-2.
Ra.Tx

2 - 2.9399e-4.Ra.Tx
2.h(Tx - 39.2) + 3.0681e-4.Ra.Tx

2.h(-Tx + 39.2) - 8.3129e-4.Ra
2.Tn - 4.694e-5.Ra

2.Tn
2 + 

3.0124e-5.Ra
3.Tn - 2.6418e-5.Tx

3.Tn + 4.3985e-5.Ra.Tx.Tn
2 + 8.2571e-4.Tx

2.Tn

Januária
-28.559 - 6.6592e-2.Ra.Tx - 2.2803e-3.Ra.Tx.Tn + 1.8621.Ra + 2.1953e-2.Ra.h(Tn - 24.4) + 1.6362e-2.Ra.h(-Tn + 
24.4) + 4.6810e-2.Tx

2 - 1.7234e-3.Tx
3 - 1.2138e-3.Ra

2.h(-Tn + 24.4) + 3.5961e-4.Ra.Tn.h(-Tn + 24.4) + 2.0414e-3.
Ra.Tx

2 + 1.5642e-3.Tx
2.Tn

Juramento 9.0233 - 1.0103e-1.Ra.Tx + 1.0755.Ra - 1.0932e-2.Ra.Tn - 6.1662e-3.Ra
2 + 3.1937e-4.Ra.Tx.Tn + 1.0627e-1.Tx

2 - 
1.6991e-3.Tx

3 + 1.0227e-3.Ra.Tx
2 - 5.2177e-2.Tx.h(-Ra + 41.4047)

Monte Azul
-13.936 + 4.6869e-2.Tn.h(-Tx + 37.6) - 1.8987e-1.Ra.h(-Tn + 24.4) + 7.291e-2.Ra.h(-Tx + 37.6) + 1.0629e-2.

Ra
2.h(-Tn + 24.4) + 5.1516e-1.Ra + 1.6835e-4.Tx

2.Tn.h(-Tx + 37.6) - 2.1195e-4.Ra.Tx.Tn.h(-Tx + 37.6) + 2.115e-3.
Ra

2.h(-Tx + 37.6) + 5.3726e-4.Ra
2.h(Tx - 37.6).h(-Tn + 24.4) - 1.4488e-4.Ra

2.h(-Tx + 37.6).h(-Tn + 24.4) - 
1.5856e-4.Ra

3.h(-Tn + 24.4) - 5.4953e-3.Ra.Tn.h(-Tx + 37.6) + 8.2211e-4.Ra.Tn.h(-Tn + 24.4)

Montes Claros 19.826 - 3.5816.Tx + 1.9231e-2.Ra.Tx - 2.3466e-5.Ra
2.Tx.Tn + 3.0637e-2.Ra.Tn - 1.0877e-3.Ra.Tn

2 + 1.5385e-1.Tx
2 + 

7.5849e-5.Ra.Tx.Tn.h(Tx - 38.1) - 7.5083e-5.Ra.Tx.Tn.h(-Tx + 38.1) - 2.4163e-3.Tx
3 + 2.4051e-5.Ra

2.Tn
2 + 5.168e-1.Tn

Pedra Azul 3.6091 - 1.855.Tx - 7.4244e-2.Ra.Tx + 1.0663.Ra - 1.0333e-2.Ra
2 + 3.2964e-4.Ra

2.Tn + 9.8423e-2.Tx
2 - 2.0805e-3.

Tx
3 + 1.5451e-3.Ra.Tx

2 + 8.9347e-4.Tx
2.Tn + 1.2795e-3.Ra.Tx.h(-Tn + 23.0)

Pirapora -6.6135 - 2.8623.Tx - 8.5331e-2.Ra.Tx + 2.7956.Ra - 2.4393e-2.Ra
2 + 8.8371e-4.Ra

2.Tn + 1.4499e-1.Tx
2 - 2.4422e-

3.Tx
3 + 1.6963e-3.Ra.Tx

2 - 5.5077e-2.Ra.Tn + 4.5415e-4.Tx
2.Tn - 3.1871e-4.Ra.Tn

2 + 6.6413e-1.Tn

Salinas 7.8813 - 1.3735.Tx + 8.8493e-3.Ra.Tx + 3.063e-5.Ra.Tx.Tn.h(Tx - 39.0) - 3.7837e-5.Ra.Tx.Tn.h(-Tx + 39.0) - 
7.5465e-6.Ra

2.Tx.Tn + 6.0612e-2.Tx
2 - 9.4987e-4.Tx

3 + 1.9254e-2.Ra.Tn - 4.7952e-6.Ra.Tx.Tn
2 

Regional -62.27 + 4.0581.Tx - 2.1050e-1.Ra.Tx + 2.9354.Ra - 8.3421e-4.Ra
2.Tn + 6.6552e-4.Ra.Tx.Tn - 8.4280e-2.Tx

2 + 
6.4573e-3.Ra.Tx

2 - 4.9517e-5.Ra.Tx
3 + 1.3600e-5.Ra

3.Tn - 7.7994e-6.Ra
2.Tn

2 - 5.1786e-4.Ra
2.Tx

Tx - maximum air temperature, °C; Tn - minimum air temperature, °C; Ra - extraterrestrial radiation, MJ m-2 d-1; h(x) = max(0, x).
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presented similar performances in regional and 
local scenarios (Figure 7). These results indicate 
that, in addition to ANN, which has already been 
considered by several authors as an efficient 
method (Kumar et al. 2011, Yassin et al. 2016, 
Antonopoulos & Antonopoulos 2017, Ferreira et 
al. 2019a), MARS models can also be used for 
the estimation of ETo in cases where only air 
temperature data are available. Mehdizadeh et 
al. (2017), analyzing MARS, empirical equations, 
SVM and GEP, concluded that MARS was the most 
efficient technique in several data availability 
scenarios, including the one used in this study. 
Ferreira et al. (2019b), comparing MARS and 
empirical equations in several climate types 
and data availability scenarios, also reported 
superior performance for MARS. It is also 
important to remember that MARS can be used 
in the form of an algebraic equation, which can 
make it simpler to use by an end user.

To make the models obtained in this 
study available for future studies or practical 
applications, the local and regional calibration 
parameters of the PMT and HS equations, as 
well as the regional and local MARS models, are 
presented in Tables II and III, respectively.

CONCLUSIONS

ANN, MARS, and empirical equations (PMT 
and HS) in their original and calibrated forms 
were evaluated for the estimation of daily ETo 
based on temperature data. Two scenarios were 
considered: (i) local, models were calibrated/
developed and evaluated using data from 
individual weather stations; (ii) regional, models 
were calibrated/developed using pooled data 
from several weather stations and evaluated 
independently in each station (leave-one-out 
cross-validation). The local models were also 
evaluated considering a cross-station approach.

The original PMT equation exhibited better 
performance than the original HS equation, 
however, after local or regional calibrations, 
these had similar performances.

The local calibration of the PMT and HS 
equations promoted higher performance gains 
than those obtained with regional calibration. 
Similarly, the local ANN and MARS had better 
performance than their regional versions. 
However, the regional empirical equations, ANN 
and MARS models had higher generalization 
capacity, showing a more stable performance 
between the stations evaluated.

The machine learning techniques studied 
had better performance than the PMT and HS 
equations in their original and calibrated forms 
in local and regional scenarios. The ANN and 
MARS models showed similar performances, 
however, the ANN models performed slightly 
better. On the other hand, MARS has the 
advantage that it can be used in the form of 
algebraic expression.
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