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Abstract: This paper presents the results of an experiment that was performed at NASA Ames
Research Center using 18 participants in two different groups who trained a task for ten days,
with the goal of identifying how skill generalization would occur between two similar tasks of
varying difficulty. A cybernetic approach was used. The first group was trained in a simple one-
dimensional tracking task and transferred to a difficult two-dimensional tracking task. For the
second group, this was reversed. Training with a simple task before transferring to the difficult
task resulted in a slower convergence to final performance. However, it did allow participants to
start with a better initial performance in the difficult task. Furthermore, after training with a
simple task, participants controlled with a higher gain and generated lower lead time constants.
However, possibly due to the number of participants, this experiment did not find any statistical
evidence to support the conclusion that training with a simple task version helps in learning a
more complex task.
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1. INTRODUCTION

The goal of this experiment was to assess whether manual
control skills generalize between tasks of different diffi-
culty. It attempted to answer the following research ques-
tion: ”How does training with a simpler task representation
aid in generalizing skills to a difficult task and vice versa?”
This paper adds to the literature in two ways. Firstly, gen-
eralizability of manual control skills was investigated by
looking at changes in operator control behavior. This paves
the way for future applications in more real-life settings.
Secondly, a method new to this domain was applied: a cy-
bernetic approach [Pieters and Zaal (2019)]. This approach
has been used in many (training) experiments before and
allows to create models of human operators to identify
their control strategy. It allowed to look at the concept
of skill generalizability in a manner that could provide
information on how an operator uses a generalizable skill.

2. EXPERIMENTAL SETUP

Two tasks were present in this experiment: a simple task
with only horizontal control and a difficult task with
both horizontal and vertical control. Because the focus
lied on generalizability between tasks, two experimental
groups were present in a between-subjects design. In
group 1, participants trained with the simple task and
were evaluated on the difficult task. In group 2, this was
reversed. Fig. 1 summarizes this experimental design. Each
participant performed 10 runs per day, on 5 consecutive

days. Furthermore, on the sixth and seventh day no runs
were taken, in order to facilitate the transfer of skills.

This design allowed to compare the learning of a complex
manual control task to learning of said task while hav-
ing already trained with a simpler generalizable variant.
Furthermore, the reverse could be investigated: learning
a simple task, compared to learning a simple task after
already having learned a difficult task. The simple and
difficult task were not compared with each other.

2.1 Manual Control Task

The task that the participants performed can be repre-
sented by the closed-loop control diagram in Fig. 2. A
joystick was used to create a control input signal u. This
signal was the input for the controlled dynamics Hc(s),
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Fig. 1. Experimental design and procedure.
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Fig. 2. Closed-loop compensatory tracking task, used in
both x and y direction.

which subsequently delivered the system output. The op-
erator perceived the error e between the system output x
and the target signal fi on the display depicted in Fig.
3. In compensatory tracking tasks such as this one, the
human operator is typically modeled with a linear transfer
function Hp(s) and a remnant signal n which encapsulates
human nonlinear behavior and noise in the control loop.

The remainder of this section provides more details on the
different components of the control task in Fig. 2.

2.1.0.1. Controlled dynamics The controlled dynamics
are defined in Equation 1. In this equation, Kd is the
gain and ωd is the break frequency. The value of ωd was
chosen at ωd = 0.5 rad/s; below the crossover frequency
normally observed for the human operator, which means
that the controlled dynamics were similar to a double
integrator. The gain was chosen to be Kd = 2.0. This
resulted in a fairly difficult acceleration-based control task,
while having sufficient control activity to achieve good
performance. The task was deliberately made difficult to
give participants a challenge, and to ensure they would
have to exert effort into learning the task. The difficult
task was significantly harder, as it required controlling in
two directions.

Hc(s) =
Kd

s(s+ ωd)
(1)

2.1.0.2. Human operator model In compensatory track-
ing tasks, a human operator adjusts his or her control
behavior such that the open loop characteristics of the
human-vehicle Hp(s)Hc(s) resemble a single integrator for
a frequency range around the crossover frequency [McRuer
and Jex (1967)]. Therefore, for the controlled dynamics
described above, the human operator needs to generate
lead. The model proposed is provided by Equation 2.

Hp(s) =

equalization
︷ ︸︸ ︷

Kp(1 + TLs)

limitations
︷ ︸︸ ︷

e−τvs
ω2

n

ω2
n + 2ζnωns+ s2

(2)

In Equation 2, Kp is the operator visual gain; the relative
weight that is put on the error signal e. TL is the lead time
constant. KpTL combined represents the relative weight
that is put on the error rate ė. Together, Kp and TL are
the equalization parameters; the parameters the human
operator uses to achieve stable closed-loop control. The
remaining parameters are limitations found in humans.
τv is the time delay constant that results from delays in

perception, neural processing and action. The final two
parameters represent the combined neuromuscular system
and control interceptor dynamics, with ωn as the frequency
and ζn as the damping ratio.

2.1.0.3. Target signal The target signal fi consisted of
a sum of sines:

fi(t) =

Nf∑

k=1

Af (k)sin[ωf (k)t+ φf (k)] (3)

In this equation Af (k), ωf (k) and φf (k) represent the
amplitude, frequency and phase of the kth sine in fi,
respectively. Nf represents the number of sine waves,
which was 10 in the current study. Furthermore, two
different target signals were used: one in the x-direction
and another in the y-direction. Table 1 presents the
properties of both target signals.

Table 1. Forcing function properties.

fix fiy

nf ωf Af φf nf ωf Af φf

- rad/s deg rad - rad/s deg rad

4 0.307 0.866 -2.220 6 0.460 0.506 0.458

9 0.690 0.742 -1.429 13 0.997 0.310 -0.205

17 1.304 0.447 -1.154 21 1.611 0.175 -1.588

25 1.918 0.256 2.296 29 2.224 0.108 1.830

41 3.145 0.138 -0.822 45 3.452 0.053 2.619

53 4.065 0.092 -0.086 56 4.295 0.037 -0.839

73 5.599 0.057 -0.902 76 5.829 0.024 -1.640

103 7.900 0.036 2.989 106 8.130 0.015 1.345

139 10.661 0.027 0.436 142 10.891 0.011 -2.511

194 14.880 0.021 1.468 195 14.956 0.009 2.191

The sinusoidal frequencies were all integer multiples nf

of the measurement time base frequency, ωm = 2π/Tm =
0.0767 rad/s. The runs lasted for 90 seconds, but only
the last 81.92 s of data were used, to eliminate the
effects of participants adjusting to a constant control
strategy. The two forcing function signals were used in a
previous experiment [Zaal and Mobertz (2017)] and were
approximately normally distributed and with average crest
factors. The forcing function frequencies were selected to
cover the range of manual control with relatively regular
intervals on a logarithmic scale.

2.2 Apparatus

Participants were seated in front of a display and were
instructed to perform the manual control task using a BG
Systems joystick located on their right side, see Fig. 4.

The seat position was fixed and determined such that
participants were able to control comfortably. The display
showed a cross symbol, which participants controlled using
the joystick. A fixed target circle was present in the center
of the display and to more easily perceive the error between
the cross and the target a horizontal and vertical line were
drawn, see Fig. 3. The color of the background of the
screen was black, in order to make it more comfortable
for participants to look at the screen. The lines, cross and
circle were the same shade of bright green. Prior to the
experiment, participants received a briefing, explaining the



ex

ey

Fig. 3. Display with the errors
indicated. For the simple
task ey = 0.

Fig. 4. Experimental
setup.

task and how to operate the joystick. Participants were
instructed to continuously minimize the error between the
cross and the circle giving smooth, continuous inputs.

2.3 Participants

In total, 18 participants participated in this experiment,
all task-naive before commencing training. All participants
were comfortable with controlling a joystick with their
right hand. Twelve pilots were used in the data analysis
and 6 were eliminated because they performed below
standards or used control inputs that did not allow for
accurate pilot model parameter estimates. This left 6 pilots
in group 1 and 6 pilots in group 2. The median ages of the
final groups were 32 and 26, respectively, with standard
deviations of 9.0 years and 3.9 years.

2.4 Dependent Variables

The goal of this experiment was to investigate in which
manner generalization of manual control skills occurs be-
tween tasks of varying difficulty. Therefore, human control
behavior and performance parameters were the variables
of interest.

The root mean square (RMS) of the error signal RMSe

was used as a measure for tracking performance. A lower
RMSe indicates better tracking performance. The RMS
of the control input RMSu was used as a measure for
control effort. A higher RMSu indicates a higher control
effort. For the difficult task, both these parameters were
obtained separately for both directions.

Manual control behavior was characterized by the visual
error position gain Kp, lead time constant TL, time de-
lay τv, neuromuscular frequency ωnm, and neuromuscular
damping ratio ζnm.

The parameters of the human manual control model pre-
sented in Equation 2 were obtained using a time-domain
parameter estimation technique, based on maximum like-
lihood estimation [Zaal et al. (2009)]. A genetic algorithm
was used to obtain initial parameter estimates, which were
subsequently refined using a gradient-based Gauss-Newton
estimation. For the difficult task, the pilot model in the x
direction and y direction were determined separately.

To all dependent variables learning curves were fit to
model learning effects during the runs.

ylc = pa + (p0 − pa)(1− F )x (4)

This learning curve form has been used in previous ex-
periments to capture learning effects, for example in Zaal
et al. (2015) and Pool et al. (2016). The equation features
three variables: the asymptotic performance pa, the initial
performance p0 and the learning rate F . A least squares
error minimization scheme was used to fit the curve to the
dependent variables. Pearson’s coefficient R was computed
to assess the quality of fit.

2.5 Hypotheses

Training a simple task representation to proficiency can
be argued to be equal to partially training for a real
task. In this vein, the simple task can be seen as a
generalizable skill, which can be applied to more specific
and harder tasks. The learning rate F of the RMSe

learning curve is a measure of how fast a task is learned.
Firstly, it was hypothesized that the learning rate F of
RMSe of the difficult task would be higher for the scenario
where participants had already trained on a simple task
(Hypothesis 1). This would indicate that the presence of a
simple and generalizable task version helps in training for
a real task.

Secondly, it was hypothesized that training with a simple
task version would result in a better initial performance
in the difficult task, as compared to not having had initial
training at all (as is the case in group 2). For Hypothesis 2
the initial performance p0 of the RMSe is of importance. It
is hypothesized that the initial performance in x direction
would be better, as well as the initial performance in y
direction (Hypothesis 2), even though for the latter no
specific initial training with that direction was present,
thus requiring generalizability of skills.

Thirdly, it was hypothesized that training on a simple
task would allow participants to develop a more effective
control strategy faster, and hence show a lower control
activity for a higher performance, than if no training was
present (Hypothesis 3). For this hypothesis, the RMSu

and its learning rate FRMSu
were of importance.

It was hypothesized that if a generalizable skill would
be present after training, it could be seen in the pilot
model parameters Kp and TL. The pilot error position
gain Kp would show an increase, when comparing group 1
to group 2 (Hypothesis 4a), for the difficult task. This is
consistent with an improvement in task performance and
control activity, as described by McRuer and Jex (1967).
Furthermore, the lead time constant TL would show a
decrease in group 1, compared to group 2 for the difficult
task (Hypothesis 4b).

3. RESULTS

For all results the time-average of two runs was taken,
in order to lower the noise present in the measurements
and to increase the model identification quality. In order
to test statistical significance a two-way mixed analysis of
variance (ANOVA) was performed on the time-averaged
first two and last two runs of each participant, for each
of the tasks that were compared. Unless otherwise stated,
the assumptions necessary for this statistical analysis were



satisfied. The presence of outliers was determined with
boxplots. Shapiro-Wilk’s test (p > .05) was used to assess
the normality of the dataset. Homogeneity of variances
was assessed with Levene’s test of homogeneity of vari-
ance (p > .05). Finally, homogeneity of covariances, was
assessed by Box’s test of equality of covariance matrices.
Learning curves were fit to the averaged data. The good-
ness of fit was assessed by computing Pearson’s coefficient
R. For the purpose of this experiment, a minimum correla-
tion of 0.3 was deemed strong enough, due to the relatively
low number of participants and the considerable measure-
ment noise which is typically present in this kind of data
[Pool (2012)]. All learning curve fits with lower correlations
were disregarded in further data analysis, since the data
cannot be sufficiently explained by the learning curve fit.
All figures in this section follow the structure of Fig. 1;
the simple tasks are shown on the top left and bottom
right and the difficult tasks on the top right and bottom
left. The learning curve parameters are shown above the
figures.

For the purpose of brevity, it was decided to omit the
results of the limitation parameters τv, ζnm and ωnm.

3.1 Tracking Performance and Control Activity

Fig. 5 shows participants’ tracking performance in terms
of the root mean square of the error signal. In the x direc-
tion data, there was no statistically significant interaction
between training type (having trained with a simple gen-
eralizable skill or not) and the tracking performance, but
the main effect of number of training runs showed a statis-
tically significant difference in tracking performance over
the length of the sessions (F (1, 10) = 11.987, p = 0.006,
η2 = 0.545); the performance thus improves with training.
The main effect of experimental group showed that there
was no statistically significant difference in tracking perfor-
mance between groups. The learning curves showed similar
initial and asymptotic performance, regardless of having
received initial training, as can be seen in Fig. 5. For the y
direction, there was no statistically significant interaction
between training type and the tracking performance. The
main effect of number of training runs showed a statis-
tically significant difference in tracking performance over
the length of the sessions (F (1, 10) = 22.367, p = 0.001,
η2 = 0.691). The main effect of experimental group showed
that there was no statistically significant difference in
tracking performance between groups. The presence or
absence of a generalizable skill therefore is not visible
in the initial performance, the final performance or the
learning rate of the difficult task, in either direction. For
the simple task, group 2 participants had a higher learning
rate, but both their initial and final performance were
worse. Group 1 participants showed a better initial per-
formance and a better final performance. However, also
here there was no significant interaction between train-
ing type and the tracking performance. The main effect
of number of training runs did show a significant effect
(F (1, 10) = 15.741, p = 0.003, η2 = 0.612), indicating
that participants improved their performance over the
training sessions. The main effect of the difference in group
showed a statistical interaction as well (F (1, 10) = 5.903,
p = 0.035, η2 = 0.371). Participants thus performed better
on the simple task when they are task-naive, instead of

Fig. 5. Pilot performance.

Fig. 6. Pilot control activity.

having performed the difficult task first. Negative transfer
was present in this case.

Fig. 6 shows the control activity in terms of the root
mean square of the control input signal u. In the x
direction of the difficult task, it can be observed that
participants who trained with the simple task (group 1)
controlled with less activity, especially after being fully
trained. One outlier is present in the data of group 2. When
comparing the results of the ANOVA with or without
the outlier, little difference in the statistical analysis was
seen. There was no significant interaction between training
type and the control activity. The main effects of training
runs and experimental groups did not show a significant
effect either. Therefore, using these data it could not be
concluded that there were differences in control activity
between groups. Furthermore, control activity remained
constant over the sessions, according to the statistical
analysis. The learning curve of group 2 reflects this, as can
be seen from the very low learning rate. The curve of group
1 however does show a gradual decrease in control activity.
For the y direction, the results from the x direction were
supported; the initial control activity was lower for pre-
trained participants, as well as their final control activity.
The pre-trained participants did have a lower learning



Fig. 7. Pilot model gain Kp.

rate. There was no significant interaction between training
type and tracking performance. The main effect of training
runs did show a significant effect (F (1, 10) = 18.086,
p = 0.002, η2 = 0.644) and the main effect of experimental
group showed no statistical interaction. For the simple
task, the difference between participants who started the
task without any experience (group 1) and those who
trained with the difficult task (group 2) is clearly visible
from the learning curves. Group 2 participants controlled
with higher activities, especially after being fully adjusted
to the task. This is reflected as well in a higher RMSe,
as can be seen from Fig. 5. However, statistical analysis
showed that the interaction between training type and the
tracking performance was not statistically significant. The
main effect of training runs did not show a significant effect
either, although Fig. 6 clearly shows an increase in control
activity for group 2 participants over the runs. Finally,
the main effect of the difference in training type showed
no statistical interaction.

3.2 Control Behavior

Fig. 7 shows the pilot model gain Kp. Participants who
had initial training on the simple task controlled with a
higher asymptotic pilot model gain. It can be seen that the
learning curve of group 2 participants showed a different
trend from group 1 for the difficult task. Even though the
figure shows that the pre-trained participants (group 1)
controlled with a higher gain, no statistical significance
between training type and pilot model gain was found.
Furthermore, this dataset did not reveal an interaction of
increasing gain over the number of training runs either,
even though the learning curves adequately described the
data and did show such an effect. No difference between
groups was found. In the y direction the outcome of the
statistical analysis was the same; no interaction was found
between gain and training type, nor were the two main
effects significant. For the simple task, it can be seen
that the gain with which participants control is generally
higher for group 1, where participants did not have any
initial training. Participants who performed the difficult
task before the simple one showed a lower pilot model
gain. No statistically significant effects were found.

Fig. 8. Pilot model lead time constant TL.

Fig. 8 shows the pilot model lead time constant TL. Par-
ticipants who had initial training on the simple task gen-
erated less lead. The x direction of the difficult task shows
two different learning curve trends. Three outliers were
present. The results of the ANOVA did not change when
the outliers were removed. The data of the x direction did
not reveal any statistical significance, which is reflected by
relatively scattered data points. In the y direction the ini-
tial performance of both groups of participants was equal.
However, the learning curve shows that the participants
who were task-naive and had no initial training (group
2) generated more lead. Furthermore, they reached their
asymptotic value quicker. Statistical analysis revealed no
significant difference between training type and lead time
constant. However, the main effect of the number of runs
was significant (F (1, 10) = 5.661, p = 0.039, η2 = 0.361),
indicating that the lead time constant did change over the
runs. No significance in the between-participant differences
were found. For the simple task, the learning curve of the
participants who had initially performed the difficult task
(group 2) can be found above the curve of the task-naive
participants, indicating that trained participants generate
more lead time. The ANOVA did not discover any signifi-
cant differences.

4. DISCUSSION

A human manual control behavior experiment, where par-
ticipants had to learn one task and transfer to another with
the goal of researching generalizability was performed.
Eighteen participants divided over two groups performed a
difficult tracking task either having received initial training
or starting task-naive. In the final analysis six participants
per experimental condition were present. Previous studies
looking at learning effects, such as Pool et al. (2016), used
12 participants per group. Even though the ANOVA’s
showed no statistical significance in many of the dependent
variables, the results and the learning curves still indicated
interesting trends.

Looking at the difficult task, as the pre-trained partici-
pants showed lower learning rates, hypothesis 1 is rejected.
Participants who had initially trained already reached a
certain performance level and struggled to adapt to a more



difficult version of the task. For the simple task these
results were opposite, which suggested that it was easier
to adapt to a new, more simple, task variation. In both
the x direction and y direction of the difficult task, the
learning curves indicated that the initial performance was
lower for the pre-trained participants, which is in support
of Hypothesis 2. This indicates that training with a simple
task allowed participants to start with better performance,
even for the y direction, which suggests the simple task was
generalizable to the more difficult task.

For the difficult task, the control activity RMSu mostly
remained constant, or decreased over the runs. This de-
crease in RMSu over runs was found to be significant in
the y direction. In this direction, previously it was found
that the performance significantly increased over the runs.
Thus, both the RMSu and the RMSe decreased, showing
that participants were able to track the signal better, while
showing less control activity. For the x direction perfor-
mance increased with constant control activity. Hypothesis
3 is thus accepted. The fact that the control activity did
not display a significant change in x direction, but did
show one in y direction might be due to the fact that the
training was in x direction; the pre-trained participants
thus already had a feel for the control task in this direction.

Looking at the pilot model parameters of the difficult
task, the gain was higher in both directions in group 1
compared to group 2, as was hypothesized in Hypothesis
4a. Participants controlled with a higher gain when they
pre-trained on a simple task compared to when they
had no previous training at all. Due to the two different
learning curve trends, it is difficult to infer information
from the learning rate. Hypothesis 4a could therefore
be accepted, however the ANOVA indicated that the
data did not contain any significant interactions. The
lead time constant TL was hypothesized to be smaller in
group 1, which Fig. 8 indeed reflects; participants have
to generate less lead with the presence of a generalizable
skill. Furthermore, adapting from the simple task seems
to negatively impact the convergence of the lead time
constant of the difficult task to the final value, in both
the x direction and the y direction. Hypothesis 4b can
not be accepted however, because also here no statistically
significant interaction was found, apart from the main
effect of the number of training runs in the y direction.

Apart from the gain in x direction, it seems that pre-
training with a simple task variant negatively influences
the learning rate of a difficult manual control task; in all
other parameters the learning rates were lower when com-
pared to a group of task-naive participants. Participants do
seem to use the simple task as a generalizable skill, because
of the increased gain and lower lead time. Both changes
are consistent with McRuer and Jex (1967), however more
research is required to support these results with statistical
evidence.

Results in manual control experiments always involve
high levels of noise due to between-subject variability,
the effects of which could be mitigated by adding more
participants. Due to the nature of the investigation, a
between-subjects approach was chosen, which typically
requires more participants to gather statistical power.
Furthermore, several of the group 2 participants indicated

that the switch from the difficult to the simple task
challenged them in terms of their attention span: the
simple task was deemed too simple after having performed
the difficult one. If a follow-up experiment were to be
executed, care should therefore be taken to have both tasks
be sufficiently challenging.

5. CONCLUSION

This paper investigated the generalizability of manual
control skills in two tasks with varying difficulty. Twelve
participants divided over two experimental groups trained
on a compensatory manual control task for five days,
before switching to a different task. One group switched
from a simple one-dimensional task to a difficult two-
dimensional task and another group performed these two
tasks in reverse order. The human operator gain showed
an increase after initial training, compared to having no
training, especially in the y direction, where the operator
did not control before. The lead time constant showed a
decrease after possession of a generalizable skill. Further-
more, training with a simpler generalizable skill variant
lowered the convergence to final performance, as opposed
to having no prior training at all. More research into
generalizability of manual control tasks is required to be
able to adjust training practices and to prove whether the
results are statistically significant. Although no statistical
evidence was found indicating that training simple gen-
eralizable skills helps the training of difficult operational
tasks, application of the method was proven for looking at
the problem of generalizability of training.
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