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the vast quantities of data generated and collected in the intensive care Unit (icU) have given rise to 

large retrospective datasets that are frequently used for observational studies. the temporal nature 

and fine granularity of much of the data collected in the ICU enable the pursuit of predictive modeling. 
in particular, forecasting acute hypotensive episodes (AHe) in intensive care patients has been of 

interest to researchers in critical care medicine. Given an advance warning of an AHe, care providers 

may be prompted to search for evolving disease processes and help mitigate negative clinical 

outcomes. However, the conventionally adopted definition of an AHE does not account for inter-
patient variability and is restrictive. To reflect the wider trend of global clinical and research efforts 
in precision medicine, we introduce a patient-specific definition of AHE in this study and propose 
deep learning based models to predict this novel definition of AHE in data from multiple independent 
institutions. We provide extensive evaluation of the models by studying their accuracies in detecting 

patient-specific AHEs with lead-times ranging from 10 min to 1 hour before the onset of the event. 
The resulting models achieve AUROC values ranging from 0.57–0.87 depending on the lead time of the 
prediction. We demonstrate the generalizability and robustness of our approach through the use of 

independent multi-institutional data.

Intensive care units (ICU) care for a hospital’s sickest patients who require around the clock monitoring and life 
saving treatment. In the ICU, complex patient conditions and ailments can develop suddenly and o�en mani-
fest in physiologically unique ways. Despite the heterogeneity among the patient population, conventional ICU 
treatments generally adopt a “one-size-�ts-all” approach, leading to variable patient outcomes and potentially 
ine�ective use of hospital resources. As such, the concepts of precision medicine and individualized therapy 
have garnered increasing attention in critical care  research1. To advance the concept of precision medicine, the 
development of e�ective and useful big data and machine learning applications has been of great  interest2–5. 
Predictive modeling has o�en been explored in ICU research, and increasingly relies on machine learning meth-
ods. �e motivation of such research is to predict future events that may be indicative of a deteriorating patient 
state so that preemptive measures may be taken to mitigate its potential impact. In particular, the prediction of 
the onset of an acute hypotensive episode (AHE) has been of interest to the critical care research  community6. 
Hypotension is a term that denotes low blood pressure. An AHE is broadly de�ned as a sudden drop in blood 
pressure that is sustained over a period of time. Prolonged hypotension has been shown to be a risk factor for 
organ failure and death in the  ICU7,8. Advanced warning of a AHE can prompt the clinical team to investigate 
developing illness states such as occult bleeding or sepsis.

�e prediction of AHE using computational methods was spurred by the annual Computing in Cardiology/
Physionet Challenge in 2009, in which participants were tasked with predicting the onset of an AHE up to an 
hour in advance. �e de�nition of AHE used in this event was speci�ed as a period of 30 min or more in which 
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90% of mean arterial blood pressure (MAP) readings were below 60  mmHg6. �is de�nition of AHE has been 
commonly used in the literature when developing predictive models for the ICU since the initial  challenge9–13. 
However, as discussed by Moody et al.6, common false positive predictions of an AHE in many of these studies 
may have been annotated as an actual episode by a less restrictive de�nition and considered a true positive in 
practice. Aside from the physionet de�nition of AHE, a paper by Hatib et.al.14 proposed a de�nition of a period 
of 1 min or greater in which a patient’s MAP fell below 65 mmHg. Prior literature has explored a number of 
computational methods to analyze ICU data and forecast the rigid threshold de�nition of AHE. Many stud-
ies have used statistical features derived from a window of data prior to the forecast window. For example, the 
winner of the 2009 Physionet Challenge, Chen et al.15, utilized a simple rule-based classi�cation scheme using 
indices derived from as little as 5 min of data prior to the forecast window. Recently, more sophisticated feature 
extraction techniques have been explored by Hatib et al.14, in which commercial so�ware extracted features 
such as cardiac output, stroke volume, and slope from high-�delity arterial waveforms to predict AHE through 
logistic regression.

�e conventional de�nition of AHE and other similar constructs is based on a single cuto� value and thus 
may not be suitable for individual patients. Normal blood pressure varies between individuals and patients may 
tolerate hypotension to varying degrees before organ damage ensues. In treating critically ill patients, it has been 
suggested that di�erent blood pressure targets may improve outcomes for certain subgroups of  patients16. In 
patients unlikely to bene�t from this, personalized management can mitigate the complications and side e�ects 
of treatments intended to raise blood pressure. It may also prompt treatment for patients whose blood pressure 
is relatively low for their physiologic needs, but which might not otherwise be �agged as abnormal. �erefore, 
the conventional threshold-based approach to describe an AHE fails to capture patient speci�c dynamics that 
can be encountered in the ICU.

In the current literature, state of the art techniques such as deep learning have not been applied to the predic-
tion of hypotensive episodes. �e ability of deep methods to handle sequences of large data and automatically 
engineer features is well suited for the use of multivariate physiological time series data collected in the  ICU17,18. 
In particular, recurrent neural networks (RNNs) are of interest when analyzing sequential data. RNNs are charac-
terized by the loop-like connections of nodes in the network, allowing the output of a prior step in learning to be 
used as input to the current step. �is feedback allows such networks to retain memory of recent input  events19. 
One of the limitations of the RNNs is di�culties in learning long-term  dependencies20. To mitigate this, Long 
Short-Term Memory (LSTM) networks which use “information gates” to overcome the problem of vanishing 
gradients were  proposed19. �ese gates allow LSTM modules to not only retain memory from relevant past data, 
but also forget temporal data that are unnecessary for the �nal prediction. Another �avor of RNN, the Gated 
Recurrent Unit (GRU)21 overcomes the limitations of classical RNNs in a similar fashion. A recent modi�cation 
of the GRU, namely the GRU-D proposed by Che et at. is able to tolerate missing data in its inputs and has been 
shown to perform well on data collected in the  ICU22.

Most prior literature on the prediction of AHE lack the use of an institutionally independent validation 
data set and thus raise questions regarding the ability of developed algorithms to generalize across care centers. 
Furthermore, generalization of predictive machine learning algorithms in medicine has been recently demon-
strated to be di�cult in regards to other target outcomes such as disease  activity23. To re�ect the wider trend 
of international clinical and research e�orts, the primary aim of this study is to introduce and incorporate a 
patient-speci�c de�nition of AHE in the context of predictive modeling in the ICU. In pursuit of a generalizable 
model, data routinely collected by bedside monitors found in many ICUs is used to develop a predictive model. 
To validate the generalizability of the proposed patient-speci�c AHE, and of the predictive models presented in 
this study, we utilize an independent multi-institutional hold-out dataset. Given the moving target nature of the 
patient-speci�c outcome and the sequential properties of the data being used, a deep learning approach explored 
with LSTMs and GRU-Ds is presented. To evaluate the predictability of a patient-speci�c AHE, we investigate 
the performance of models trained to forecast the onset of an AHE from 10 min up to 60 min in advance. 

Results
Two sources of data were used in this study: an internal cohort from Kingston General Hospital (KGH) and a 
cohort from the open-source MIMIC-III database. KGH data was used to develop the deep models in addition 
to logistic regression and Support Vector Machine (SVM) models for comparison. All models were evaluated on 
independent test sets from both the internal and external data sources. �e experimental work�ow is summarized 
in Fig. 1. Figure 2 demonstrates the concept of patient-speci�c de�nition of AHE. Comparing the patient speci�c 
de�nition (le�) of AHE to the threshold based de�nition commonly used currently (right) is demonstrated in a 
sample patient recording in this �gure. �e patient speci�c de�nition we present is based on the use of two mov-
ing averages of MAP recordings in which the outcome of interest is a 20% drop in the averages. �e conventional 
de�nition of AHE is based on a hard threshold such as 60 mmHg as highlighted in red. In this case, the threshold 
based de�nition would not annotate an AHE in this patient recording while the drop demonstrated around the 
60 min recording time would be a clinically signi�cant event to be aware of.

In this study, the prediction of the onset of an AHE is explored with respect to the amount of data needed 
to make a prediction and the amount of time the prediction can be made in advance. �e data utilized by the 
model to make a prediction is referred to as an observation window throughout this paper, whereas the time a 
prediction is made in advance of the onset of an AHE is referred to as the gap length.

Figure 3 shows the achieved area under the receiver operator characteristics curve (AUROC) for our proposed 
deep learning solutions in the form of a colormap matrix. We also compare the results with a logistic regression 
and SVM approach in this �gure. Each matrix illustrates the respective AUROC of models at each explored 
observation length and gap length. �e four matrices on the right side of Fig. 3 shows the scores of the models 
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evaluated on the external test set, while the four matrices on the le� side show the scores of the models on the 
internal test set. For the deep learning models evaluated on the internal test set, the range of AUROC scores is 
[0.60–0.85] and [0.57–0.85] for the LSTM and GRU-D models respectively. In comparison, the AUROC scores 
of the same models evaluated on the external test set have a range of [0.59–0.84] and [0.59–0.87]. �e logistic 
regression models reported a range of AUROC scores of [0.58–0.75] on the internal test set and [0.58–0.71] 
on the external test set. �e SVM models performed similar to the regression models, with AUROC ranges of 
[0.57–0.75] and [0.57–0.70] for the internal and external test sets respectively. �ere is a general trend of decreas-
ing model performance as the predictive gap length increases in both the regression and deep models, and deep 
models outperform the logistic regression classi�er at a majority of the gap lengths explored.

Figure 4 depicts the receiver operator characteristic (ROC) curves and 95% con�dence intervals of the deep 
models predicting at a gap length of 10-min, 20-min, and 30-min.

Figure 1.  Experimental work�ow and study design. Data from both the KGH and MIMIC-III databases are 
annotated and processed before being partitioned into three sets that are used for training, validation, and 
testing. Initial model development is performed using data from KGH exclusively. �e models are then adapted 
via transfer learning using MIMIC-III data. All models are evaluated using held-out internal and external test 
sets.

Figure 2.  Comparing a patient speci�c de�nition (le�) of AHE to the threshold based de�nition (right). Our 
patient speci�c de�nition is based on the use of two moving averages of MAP recordings in which the outcome 
of interest is a 20% drop in the averages. �e conventional de�nition of AHE is based on a hard threshold such 
as 60 mmHg as highlighted in red. In this case, the threshold based de�nition would not annotate an AHE in 
this patient recording as a MAP below 60 mmHg is not sustained.
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Application of transfer learning. Across all explored combinations of observation and gap length the 
e�ects of transfer learning on AUROC scores when compared to the initial evaluation of the external test set 
ranged from [− 0.002 to + 0.01]. �e highest gains in AUROC were observed when transfer learning was applied 
on the models trained to predict at a gap length of 40 min (+ 0.01). �e largest decrease in AUROC was observed 
when transfer learning was applied to the model trained to predict at a gap length of 10 min (− 0.002).

Discussion
In this study, we presented a generalizable model for the prediction of a patient speci�c de�nition of AHE that 
was externally validated on an institutionally independent dataset. Using RNN-based architectures, the developed 
models demonstrate generalizable results on data collected at an outside institution a decade before the collec-
tion of data from the local cohort. In almost all de�nitions of the prediction task, the deep models were able to 

Figure 3.  Comparison of AUROC between the logistic regression models, SVM models, and deep models on 
both the internal and external test sets at each investigated observation and gap length.

Figure 4.  Comparison of ROC curves and corresponding 95% con�dence intervals of models trained to make 
predictions using a 60 min observation window at a gap length of 10 (le�), 20 (center), and 30 (right) minutes. 
Red curves denote performance of the LSTM model on the internal test set, green the LSTM model on the 
external test set, blue the GRU-D model on the internal test set, and purple the GRU-D model on the external 
test set.
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outperform a logistic regression model on both the KGH and MIMIC-III test sets. �e performance gains of 
the deep model are more noticeable when comparing against the external test set, suggesting the ability of the 
deep model to learn generalizable features that apply across institutions. Performance on the internal test set was 
observed to be marginally higher than the external test set in most de�nitions of the prediction task.

As seen in Fig. 3 there is a trend of increasing model performance when more historical physiological infor-
mation is utilized by the model (larger observation window) and the time-to-prediction is reduced (smaller gap 
length). It is interesting to note that regardless of model type or use of internal or external test sets, there is a 
drop in performance around a gap length of 40–50 min.

�e models did not demonstrate an increase in prediction performance when transfer learning was applied. 
A possible explanation may be that the amount of data used to �ne tune the models during transfer learning was 
insu�cient. �e limited number of patients in the tune set may not o�er an adequate representation of the target 
domain and as such may not have o�ered much to learn or adapt to. When further analysis was conducted to 
compare the distributions of the three vital signs of interest between internal and external test sets, it was found 
that they were relatively similar. Additionally, preliminary experiments involving training the deep models on 
the MIMIC-III dataset and testing on the KGH cohort did not demonstrate any clear performance gains. �e 
similarities in distributions and model performance may support the notion that the domains are similar enough 
that transfer learning would have minimal e�ect. Conversely, transfer learning may not have bene�ted the per-
formance of the proposed methodology as both the patient speci�c de�nition of an event and the deep models 
we built are inherently generalizable. �is is particularly interesting to note as the bedside monitors used to col-
lect sensor data in each cohort are of di�erent make and model. Furthermore, it is noted that most equipment 
manufacturers of patient monitors have some form of artifact removal process integrated into the  product24.

Our study has a number of key strengths. First, we introduced a patient-speci�c de�nition of AHE which 
accounts for individual physiologic responses among patients, and has improved face validity over conventional 
single-threshold de�nitions. Under prior de�nitions, such as where AHE are de�ned as having 90% of values 
below a MAP of 60 over a 30 min  interval6, a patient with baseline MAP of 61 that dri�ed down to 59 for 30 
min would be relegated to the same class as a patient with a baseline MAP of 90 that dropped precipitously to 40 
over the same interval; these patients are clearly physiologically distinct. Our relative AHE de�nition overcomes 
these e�ects, providing a physiologically grounded and interpretable construct. Second, we validated our model 
in an entirely external dataset that was both temporally and geographically distinct from the �rst. �is practice, 
though essential for the development of generalizable prediction models, is not o�en seen in clinical machine 
learning studies.

Our study has some limitations as well. First, our AUROC values did not exceed 0.9, suggesting discrimination 
that was good but not excellent. When analyzing the performance of the models on a per-patient basis, it can 
be seen that a large number of the classi�cation errors are contributed only by a handful of patients in both the 
internal and external test sets. In particular, a large number of false-negatives can be traced back to a subgroup 
of patients. Preliminary investigation into these patients done by examining the distribution of the recorded 
signals does not indicate any di�erence from the general cohort. It would be ideal to further investigate the char-
acteristics of such patients in order to identify any systematic di�erences that might explain why classi�cation 
performance was di�erent in this group.

Second, we note that the positive predictive values (PPV) of the model were relatively low, ranging from 0.04 
to 0.16 in the internal test set, and 0.07 to 0.32 in the external test set. �is re�ects the low prevalence of AHEs in 
the datasets ( 3%), which in�uences PPV, and has implications for clinical implementation. A decision support 
system based on this model would have to account for the low PPV in determining how to deal with positive 
alerts, speci�cally by implementing a response system that accounts for the likelihood of false alarms. With 
the current performance, a system that identi�es low risk patients may perform better than one that identi�es 
those at high risk. Our results suggest that AHE detection and prediction may bene�t from speci�c measures to 
handle class imbalance in machine learning, which could lead to a higher PPV, and reduced rate of false alarms.

Lastly, in this study, we did not incorporate supplementary patient data such as diagnostic codes or notes, 
therefore this investigation is a topic of future research. Examination of patient-speci�c model performance 
also illustrates some of the strengths of the developed models and reported results. 414 of the 996 patients in the 
external test set had a classi�cation rate of 90% or higher when considering a gap length of 10 min. At a clas-
si�cation rate threshold of 85%, 493 patients were covered.

Although the presented deep models perform similarly, it is discussed by Che et al. that the GRU-D model 
may be considered more  interpretable22. A common drawback of deep learning methods can be their relative 
opacity. However, recent guidelines for the development of predictive models in a critical care setting emphasize 
the utility in making an accurate prediction so long as it is understood that the model makes no claim about 
 causation25. Regardless, interpretability is an area of active interest in the research community and may be con-
sidered in future work.

�e proposed de�nition of a hypotensive episode was de�ned to be a 20% drop in MAP. Although a larger 
drop may be clinically more signi�cant, a preliminary annotation of the data indicated too few cases of larger 
drops in MAP to be considered feasible for study. Nonetheless, the ability of the developed models to predict a 
relatively subtle drop in MAP is notable. Further research is warranted to determine the optimal de�nition and 
its clinical signi�cance when compared with the conventional de�nition of AHE.

In summary, this study demonstrates that the proposed patient-speci�c de�nition of a sudden episode of 
hypotension is generalizable across patient populations, and that the deep models used to predict these show 
generalizability between institutionally independent patient cohorts.
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Methods
Data. �e institutional dataset for model development was composed of data collected from the 33-bed com-
bined medical and surgical tertiary care ICU retrospectively collected at the KGH in Canada between 2015 and 
2019. �e collection and use of the data in this study was granted ethical clearance by the institutional health eth-
ics board. �is study used archival data that was fully de-identi�ed, and collected as part of routine clinical care. 
�e local ethics board therefore waived the need to obtain informed consent. All methods were also developed 
in accordance with relevant guidelines and regulations. From the available data, 538 patients were identi�ed to 
have a minimum of 2 hours of MAP recordings. Other than the minimum length requirement of MAP records, 
no further exclusion criteria were applied to patient selection. Exclusion criteria were intentionally chosen to be 
liberal to best approximate general performance metrics in an ICU.

�e MIMIC-III database, composed of data collected from the Beth Israel Deaconess Medical Center in the 
United States between 2001 and 2012, was used for external  validation26. A random subset of 1060 patients that 
adhered to the same exclusion criteria used in the KGH cohort was used in this study. �ree physiological time-
series were extracted as input features: MAP, Heart Rate (HR), and Peripheral Blood Oxygenation (SPO2%). To 
match the sampling frequency of the MIMIC-III vital signs data, the vital signs recordings of the institutional 
cohort was down-sampled from 0.5 Hz to a per-minute frequency using the mean value of the data points 
encompassing each 1 min window.

Patient specific definition of AHE and annotation. �e patient speci�c de�nition of an AHE used in 
this study was set out as a 20% or greater drop between a 60 min moving average and a 5 min moving average 
of a patient’s MAP recordings (Fig. 5). To be stringent against sensor drop-o�s or abnormalities in the data, the 
MAP values 10 min a�er the initial detection of a 20% drop are required to be above 20 mmHg and not a “miss-
ing value”. Furthermore, it has been discussed that in patients undergoing surgery, a short period of time such as 
10 min or less with a low MAP may increase the risk of kidney or heart  injury27. As such, the minimum duration 
of an AHE with this proposed de�nition is 10 min.

To annotate the data, a sliding window approach was utilized. Each patient record was scanned sequentially, 
identifying points in the recordings in which a 20% drop in MAP was accompanied by the annotation criteria 
described above (10 min window of continuous MAP over 20 mmHg). �e end of an AHE was also annotated 
as the point in time in which the di�erence between the 5 min and 60 min moving averages was less than 20%.

Identification and extraction of data windows. In the development of a predictive model for the onset 
of an AHE, the data needed to make a prediction (observation window) and time-to-event (gap length) need 
to be considered when processing the data. Figure 5 depicts an arbitrary relationship between the observation 
window, gap length and the annotated drop in MAP. For the purpose of model development, a number of obser-
vation windows with associated class labels need to be extracted. When considering the binary prediction task 
of whether an AHE will occur or not, both positive and negative cases need to be de�ned.

A positive data sample is de�ned as an observation window in which an AHE onsets a�er a de�ned amount 
of time (gap length) from the end of the observation window. In the case of multiple AHEs occurring in the same 
patient recording, a minimum 2 hour gap was required between the end of an AHE and the beginning of an 
observation window of a following AHE. �is 2 hour boundary was utilized to enforce a degree of independence 
of the following observation window. A negative data sample was de�ned as an observation window in which an 
AHE does not occur within 2 hour prior to the observation and within 2 hour a�er the end of the observation. 
In the case of multiple negative observation windows in a single patient case, none of the extracted samples 
overlapped one another. Negative data samples were also extracted from patient recordings that did not have 

Figure 5.  An example of an identi�ed event in a patient recording. �e annotated 20% drop is representative 
of the di�erence between a 60 min moving average (orange) and a 5 min moving average (green) of MAP. �e 
relationship between the intervals of time that represent the observation window (highlighted green) and gap 
length (highlighted red) are also depicted relative to the identi�ed drop in MAP.
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any occurrence of an AHE during their stay. For each extracted window, the MAP, HR, and SPO2% recordings 
were extracted. �e window extraction process was repeated for each of the studied gap lengths.

prepossessing. To inhibit the propagation or “leaking” of information beyond the bounds of the observa-
tion window, prepossessing is performed on the extracted windows of data rather than the entire patient record. 
For each identi�ed and isolated observation window, both positive and negative labeled samples were processed 
to address missing and erroneous data points. First, values outside normal physiological ranges were temporarily 
removed and replaced with NaN. Second, missing values were replaced with back�lling—a method that propa-
gates the next �nite value backwards to replace missing values. To address the possibility of missing values at the 
end of the observation window, and to prevent the propagation of information of the future into the window, 
forward�lling was used—a method that propagates �nite values forward to replace missing values. As a means 
of quality assurance, windows with more than 10% erroneous values were excluded from use in this study. Erro-
neous values in this case are de�ned as a combination of both values outside normal physiological ranges and 
the occurrence of NaN values. For the experimentation with the missing value tolerant GRU-D architecture, a 
separate instance of the data was processed without back�lling or forward�lling applied.

To improve the training of the Deep Models, the data were normalized to a [0, 1] scale for each feature using 
a per-feature static range. �e static ranges for each feature are between 40 and 160 for both MAP and HR, and 
between 60 and 100 for SPO2%. �ese ranges were determined by consulting with physicians and analyzing the 
distribution of each data type across patients in the training cohort.

Model development and evaluation. Division of data for model development. To properly gauge the 
performance of the model being developed, the available data was partitioned, by patient, into independent 
training, validation, and testing sets. Furthermore, to ensure independence of the sets, each data set was divided 
by patient rather than shu�ing and dividing the extracted data windows.

�e data from KGH was divided into a training set consisting of 380 patients, a validation set of 61 patients, 
and a test set of 74 patients. �e training set contained 703 positive data samples and 18,643 negative data 
samples. �e validation set contained 113 positive data samples and 2,933 negative data samples. �e test set 
contained 114 positive data samples and 4,250 negative data samples. To address the severe class imbalance, the 
number of negative samples in both the training and validation sets were randomly down sampled to the number 
of positive samples in the respective set. Experiments with a training set composition of up to 66% negative cases 
and 33% positive cases were conducted, however, an evenly balanced training set was found to provide the best 
results. To provide a more robust measure of model performance in a real-world application, the test set retained 
all the available negative data samples.

�e MIMIC-III data was randomly divided into tuning and validation sets for the purpose of domain adap-
tation using transfer learning and an independent test set that is used to evaluate the performance of each 
experiment conducted. �e MIMIC-III cohort consisted of a total of 1060 patients. Data from 996, 29, and 35 
patients were allocated to the test, tuning, and validation sets respectively. �e test set contained 1,741 positive 
data samples and 31,237 negative data samples. �e tune set contained 52 positive data samples and 574 nega-
tive data samples. �e validation set contained 40 positive data samples and 808 negative data samples. Like 
the previously described KGH cohort, the number of negative samples in the tuning and validation sets were 
down sampled to match the number of positive cases. Similarly, the test set retained all negative data samples to 
evaluate the model on the full suite of data.

All models were evaluated on both the held out, independent KGH and MIMIC-III test sets. In addition 
to AUROC, sensitivity, and speci�city as performance metrics, model performance was further evaluated by 
calculating con�dence intervals through the use of  bootstrapping28.

Comparative machine learning models. A logistic regression model was considered for initial experimentation, 
as the method is an approach commonly used for prediction tasks in critical  care14,29–31. To establish a compara-
tive baseline to existing literature, the mean of MAP over a given observation window is calculated as a feature 
to predict the onset of a hypotensive episode with a logistic regression  classi�er15. Additionally, an SVM model 
was considered for additional experimentation using the mean of MAP, HR, and SPO2% over an observation 
window as inputs. �e regression and SVM models were �tted using the training set from the KGH cohort and 
evaluated on both the KGH and MIMIC-III test sets. For this study, six observation window lengths and six gap 
lengths were considered, each spanning a range of 10 min to 1 hour at 10 min increments. A model was �tted for 
each de�ned pair of observation window and gap length explored in this study, resulting in a total of 36 models 
being evaluated. Implementation of the models described was done in Python using the Scikit-learn  package32. 
�e development of the logistic regression models was conducted on a system with an Intel Core i7-7770k pro-
cessor and 32GB of memory.

Deep models. To predict the onset of an AHE, we utilized LSTM networks as our main architecture for mod-
eling. �rough a coarse exploration and grid search of the number of LSTM layers and units, it was found that 
an architecture with two LSTM layers each with 60 units performed well on the data. �e output of the second 
LSTM layer is fed into a fully-connected layer to predict a binary outcome representing the probability of an 
AHE occurring at a certain time into the future. As a result, our model has an input shape of [number of time 
steps, 3] and an output shape of 1. �e number of time steps pertains to the number of observations per win-
dow, depending on the de�ned observation window length, this takes a value of 10, 20, 30, 40, 50, 60. �e �nal 
dimension refers to the three input features, MAP, HR, and SPO2%. �e structure of the network is summarized 
in Fig. 6.
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Training is performed by minimizing a binary cross-entropy loss via stochastic gradient descent. �e use of 
a cosine annealing schedule for learning rate has been shown to improve training in deep  networks33. We used 
such an approach with warm restarts and the Adam optimization  algorithm34 to update model parameters. 
Furthermore, as L2 regularization and dropout have been shown to e�ectively prevent over�tting of models to 
training data, we used an L2 regularization of 1e−3 for all parameters and a dropout of 0.4 between the LSTM and 
fully connected  layers35,36 �e value of the hyperparameters outlined above were determined using a grid search.

We also evaluated a GRU-D22 on the non-back�lled data. �is architecture augments the base GRU archi-
tecture with a trainable decay to handle missing or irregularly-sampled data. In lieu of back�lling, the model is 
provided with three inputs: the original un�lled signal, an index identifying the timestamp of each observation 
and a mask on timesteps with invalid or missing data. In keeping with the training procedure documented by 
Che et al., all models used a �xed learning rate of 1e−4, dropout of 0.3 and a single recurrent layer. To compen-
sate for lack of stacking, the recurrent unit count was increased from 60 to 100. Hidden layer size, loss and other 
hyperparameters matched those of the LSTM.

For each the LSTM and GRU-D architectures, a separate model was trained using the same hyperparameters 
for each combination of the observation window and gap length explored in this study. As a result, a total of 72 
deep models were trained and evaluated (36 LSTM and 36 GRU-D models).

Models were implemented using  tensor�ow37 and took between 11 and 37 min to train with an average time 
of 13 min. �e development of the models described were conducted on a system with an Intel Core i7-7700K 
CPU, 32GB of memory, and an Nvidia RTX 2070.

Application of transfer learning. To adapt the models to the target domain, model weights from the previously 
trained models were transferred to an identical model architecture and �ne-tuned using a variable number of 
training samples from the tuning set, using the MIMIC-III validation set to select the best tuned model. �e 
number of tuning samples used started at 10 and increased by 10 to a maximum of 50. �e set of samples used 
to tune the network were class balanced to an equal number of positive and negative samples. �e �ne tuning 
process utilized the same optimization and regularization techniques as the development of the initial models 
previously described, but with a reduced learning rate of 0.0001. A reduction in learning rate was adopted as the 
propose of the transfer learning was to �ne-tune the models to the target domain rather than retrain the model.
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