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Abstract

The vast majority of genome-wide association study (GWAS) findings reported to date are from populations with European
Ancestry (EA), and it is not yet clear how broadly the genetic associations described will generalize to populations of diverse
ancestry. The Population Architecture Using Genomics and Epidemiology (PAGE) study is a consortium of multi-ancestry,
population-based studies formed with the objective of refining our understanding of the genetic architecture of common
traits emerging from GWAS. In the present analysis of five common diseases and traits, including body mass index, type 2
diabetes, and lipid levels, we compare direction and magnitude of effects for GWAS-identified variants in multiple non-EA
populations against EA findings. We demonstrate that, in all populations analyzed, a significant majority of GWAS-identified
variants have allelic associations in the same direction as in EA, with none showing a statistically significant effect in the
opposite direction, after adjustment for multiple testing. However, 25% of tagSNPs identified in EA GWAS have significantly
different effect sizes in at least one non-EA population, and these differential effects were most frequent in African
Americans where all differential effects were diluted toward the null. We demonstrate that differential LD between tagSNPs
and functional variants within populations contributes significantly to dilute effect sizes in this population. Although most
variants identified from GWAS in EA populations generalize to all non-EA populations assessed, genetic models derived
from GWAS findings in EA may generate spurious results in non-EA populations due to differential effect sizes. Regardless of
the origin of the differential effects, caution should be exercised in applying any genetic risk prediction model based on
tagSNPs outside of the ancestry group in which it was derived. Models based directly on functional variation may generalize
more robustly, but the identification of functional variants remains challenging.
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Introduction

In the past six years, genome-wide association studies (GWAS)

have revealed thousands of common polymorphisms (tagSNPs)

associated with a wide variety of traits and diseases, particularly as

study sample sizes have increased from thousands to hundreds of

thousands of subjects. Typically GWAS analyses stratify on genetic

ancestry, because many polymorphism allele frequencies differ by

ancestral group, easily producing false positive associations for

traits that also correlate with genetic ancestry. The large majority

of GWAS results reported to date derive from analyses in

populations of European ancestry (EA) [1,2]. Although GWAS

in Asian populations in particular are becoming more common

[3–6], it remains important to understand the degree to which the

magnitude and direction of allelic effects generalize across diverse

populations [7–10]. The multi-ethnic PAGE consortium [11]

provides a unique opportunity to assess GWAS generalization

across multiple non-EA populations and multiple traits.

Results and Discussion

Subject and genotyping panel selection for the PAGE consor-

tium have been described elsewhere [11,12]. In brief, a panel of 68

common polymorphisms previously reported to associate with

body mass index (BMI) [13], type 2 diabetes (T2D) [14], or lipid

levels [15] was genotyped in up to 14,492 self-reported African

Americans (AA), 8,202 Hispanic Americans (HA), 5,425 Asian

Americans (AS), 6,186 Native Americans (NA), 1,801 Pacific

Islanders (PI), and 37,061 EA (for details, see Materials and

Methods, Table S1 and Table S2). We also analyzed a subset of

5863 AA from PAGE who were genotyped on the Illumina

Metabochip, which contains approximately 200,000 SNPs densely

focused on 257 regions with reported GWAS associations to traits

that include lipids, BMI, and T2D [16].

For a replication analysis it would be overly conservative to use

the Bonferroni correction, so the Benjamini-Hochberg method

[17] was applied to assess replication of previous EA reports in the

PAGE EA population. Reported effects in EA were replicated for

51 out of the 68 index SNPs at a 5% FDR. Power to replicate at

most of these 68 SNPs far exceeded 80%; 16 of the 17 SNPs that

did not replicate exceeded 80% power to replicate the reported

effect size, and the 17th exceeded 70% power, as described

previously [13–15]. The originally reported effect sizes tend to be

less extreme for these seventeen index SNPs, but in 63 out of 79

comparisons between non-EA and EA populations involving these

17 SNPs, the direction of effect was the same in EA and non-EA

groups (p,1025 for the null hypothesis of random effects in either

direction, data in Table 1 column ‘‘Index SNPs Not Replicated in

EA’’). Only 79 of the 85 possible pairwise comparisons against EA

were assessed, because some of the 17 SNPs were not genotyped in

all five non-EA populations. Thus, it appears likely that most of the

17 failures to replicate represent weak effects that were under-

powered in PAGE EA, rather than false-positive primary reports.

Therefore, all 68 index SNPs were carried forward in the

generalization analysis.

In all non-EA groups, we observe significantly more effects in

the same direction as in EA than expected under the null

hypothesis, ranging from 68% in Asians to 88% in Hispanics

(p,0.001 in all non-EA groups, Table 1 and Figure 1). Even in the

relatively small Pacific Islander population (N=1801), where only

four index SNPs were significantly associated with reported traits,

48 out of 62 effects were in the same direction as EA (p,0.001), so

in larger samples from this population we would expect additional

loci to generalize. Although a higher proportion of effects in the

opposite direction of EA was observed in Asians and Pacific

Islanders, the opposite effects were neither significantly different

from no effect, nor significantly different from the observed effect

in the EA population. This suggests that the greater number of

effects in the opposite direction observed in these smallest groups

simply reflects greater uncertainty in estimating effect sizes for

these populations, rather than any true trend toward opposite

effects. The proportion of effects in the same direction as EA was

similar across all non-EA populations, suggesting that for at least

70% of index SNPs, a significant effect in a consistent direction

will ultimately be observed in non-EA populations of adequate

size.

Whereas the direction of effect was consistent between EA and

non-EA populations, the magnitude of effect varied considerably,

consistent with prior meta-analyses of generalization [18]. Because

effect sizes were correlated among non-EA populations, we

applied the Benjamini-Hochberg method within each population

to identify index SNPs with significantly inconsistent effects

between EA and non-EA populations. Inconsistent effects

(bpop?bEA at 5% FDR) were observed for 17 of 68 index SNPs

in at least one non-EA population (Table 2 and Table S2, see Box

1 for definitions). Inconsistent effects were most frequent in the AA

population (12 out of 68 loci), but examples were also observed in

Pacific Islanders and Native Americans. Although most effects

were consistent between EA and non-EA populations, the

relatively high frequency with which differential effects were

observed in non-EA populations suggests that genetic risk models

Generalization of GWAS to Non-European Ancestries
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derived from GWAS in EA will predict risk less reliably in non-EA

populations, particularly AA. Consequently, caution should be

exercised in applying risk models based upon risk variants

genotyped outside of the ethnic background in which they were

derived [19], regardless of the factors causing the observed

variation between populations,.

Four index SNPs showed differentially generalized effects

(ßpop?ßEA and ßpop?0). Two of these did not replicate in EA

(rs7578597 and rs7961581 for T2D in NA) so consistency of

direction cannot accurately be inferred. Direction of effect in EA

and non-EA was the same for the remaining two index SNPs;

rs3764261 was significantly weaker for HDL in AA, and

rs28927680 was significantly stronger for TG in Pacific Islanders.

There were no observations of opposite effects where both the EA

effect and the non-EA effect were significant.

Considering only the 15 SNPs with a significantly inconsistent

effect between EA and at least one non-EA population, 14 of 15

diluted toward the null (p,0.01, Table 2), a trend driven by the

AA population, where all 12 out of 12 significant inconsistencies

were diluted. Expanding analysis to all 51 loci replicated in EA,

regardless of whether a significant difference was observed

between EA and non-EA at a given SNP, we observed a

significant excess of effects diluted toward the null (ßpop/ßEA,1)

in AA, HA, and NA populations (Table S5). Comparisons between

non-EA populations revealed that diluted effect sizes were

significantly more likely in AA than in any other non-EA

population.

Given that differential effect sizes were observed for many

tagSNPs, we sought to leverage the data in order to assess the

relative contributions of several factors that might contribute to the

significant trend toward diluted effects, including gene–environ-

ment interaction with an exposure that varies across populations

(differential environment), differences in the correlation between

the index SNP and the functional variant across populations

(differential tagging), modulation of the index SNP effect by

additional, population-specific polymorphism (differential genetic

background), population-specific synthetic alleles (combinations of

rare, functional alleles tagged by a single common tagSNP [20]),

or some combination of these factors. It seems unlikely that

differential environments would be much more frequent in AA

than other non-EA populations, or that differential environment

would consistently bias toward the null within AA. Differential

tagging is consistent with differentially diluted effects in AA;

because linkage disequilibrium extends over significantly shorter

Table 1. Summary of direction and strength of b relative to EA.

Direction relative to EAa

All Index SNPs

Index SNPs Replicated in

EA

Index SNPs Not Replicated

in EA Strength Relative to EA

Pop. Nb Same:Oppositec Same:Oppositec Same:Oppositec Stronger:Weakerd

AA 14,492 57:11*** 43:8*** 14:3 0:12**

HA 8,202 60:8*** 46:5*** 14:3 0:0

AS 5,425 45:21** 34:15* 11:6 0:0

NA 6,186 45:10*** 35:8*** 10:2 0:2

PI 1,801 48:14*** 34:12*** 14:2 1:0

ap values were computed from the binomial sign test against null expectation of 50% in same direction, not adjusted for multiple tests.
bMaximum number of samples per population. Not all SNPs were genotyped in all PAGE substudies; detailed numbers genotyped per variant are available in Table S2.
cAlthough some effects were observed where the sign of the coefficient differed between EA and AA, in none of these cases were both coefficients significantly
different from zero, so no significantly opposite effects were observed in any non-EA population.
dStrength was evaluated only for index SNPs that replicated in EA, and showed differential effects in the non-EA population (ßpop?ßEA). p values computed from the
binomial sign test against null expectation of 50% stronger, not adjusted for multiple tests.
*p,0.05,
**p,0.01,
***p,0.001.
doi:10.1371/journal.pbio.1001661.t001

Author Summary

The number of known associations between human
diseases and common genetic variants has grown
dramatically in the past decade, most being identified in
large-scale genetic studies of people of Western European
origin. But because the frequencies of genetic variants can
differ substantially between continental populations, it’s
important to assess how well these associations can be
extended to populations with different continental ances-
try. Are the correlations between genetic variants, disease
endpoints, and risk factors consistent enough for genetic
risk models to be reliably applied across different
ancestries? Here we describe a systematic analysis of
disease outcome and risk-factor–associated variants
(tagSNPs) identified in European populations, in which
we test whether the effect size of a tagSNP is consistent
across six populations with significant non-European
ancestry. We demonstrate that although nearly all such
tagSNPs have effects in the same direction across all
ancestries (i.e., variants associated with higher risk in
Europeans will also be associated with higher risk in other
populations), roughly a quarter of the variants tested have
significantly different magnitude of effect (usually lower) in
at least one non-European population. We therefore advise
caution in the use of tagSNP-based genetic disease risk
models in populations that have a different genetic
ancestry from the population in which original associations
were first made. We then show that this differential
strength of association can be attributed to population-
dependent variations in the correlation between tagSNPs
and the variant that actually determines risk—the so-called
functional variant. Risk models based on functional
variants are therefore likely to be more robust than
tagSNP-based models.

Generalization of GWAS to Non-European Ancestries
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distances in African populations than in non-African populations

[21,22], common functional variants (or synthetic alleles) are likely

to be less strongly tagged by the index tagSNPs in AA. Differential

genetic background effects in AA would also be consistent with the

high nucleotide diversity known to exist in this population. The

rare functional variants contributing to synthetic alleles will tend to

be younger than common variants, and therefore are more likely

to be population-specific, so synthetic alleles are compatible with

the trend toward dilution. Thus, although differential environ-

mental effects cannot be excluded, the observed data are more

consistent with differential tagging and/or differential genetic

background effects, and synthetic alleles cannot be excluded.

Genetic background effects can be subdivided into modifying

effects, where variants elsewhere in the genome directly alter the

effect associated with a given index SNP, and interference effects,

where secondary variants change the proportion of variance

explained by the index SNP. Interfering functional variants with

effects in the same direction as the index SNP would tend to dilute

the apparent effect size at the index variant. The most likely source

of such variants is the region surrounding an index SNP, as

demonstrably functional variants already exist in that region.

Although examples have been described of genes carrying both

risk and protective mutations [23–25], others clearly exhibit trends

toward risk alleles with similar effects (e.g., preferentially toward

breast cancer risk alleles at BRCA1 [26]). If the direction of effect

for functional variants in a given region is consistently biased, then

an increase in the number of interfering variants within a given

population would be consistent with a trend toward dilution of

index effects. The higher nucleotide diversity observed in African

populations relative to non-African populations [27,28] would be

consistent with a greater burden of secondary functional variants

in AA than other populations.

In order to assess contribution of the factors outlined above to

differential effect sizes between EA and AA in the index tagSNP

associations, high density genotype data were collected from a

subset of the PAGE African American sample. The number of AA

individuals used for index tagSNP analyses varied by phenotype,

with an average of 7501 (Table S3). Similar data on other

populations are currently unavailable, so only loci showing

differential effects between EA and AA could be analyzed.

Genotype data were collected using the Metabochip, a high

density genotyping array commercially available from Illumina.

Detailed methods for the Metabochip genotype data collection,

calling, and quality control are available elsewhere [12].

In order to measure the contribution of differential LD to

dilution, we need a model of how changes in LD between tagSNP

and a functional variant would be expected to alter the observed

effect size at the tagSNP, assuming that the effect size at the

functional variant is the same in both populations. Given a

functional SNP (fSNP) and an associated tagSNP, linkage

disequilibrium between the two SNPs can be described as the

measurement error introduced by genotyping the tagSNP, rather

than genotyping the fSNP directly. As such, by appealing to prior

work on regression dilution bias, it can be shown that the effect

size b9 at the tagSNP is related to the effect size b at the fSNP by

the following equation: b’~br2 (see Text S1 for details). Thus,

assuming that the effect size at the fSNP is constant between

populations, when linkage disequilibrium between tagSNP and

fSNP is weaker in a given population, we expect to see a greater

degree of dilution bias for the estimated tagSNP effect size.

Rearranging this equation, b’=b~r2. Extrapolating to compare

the degree of dilution bias between AA and EA populations, we

expect changes in linkage disequilibrium across populations to be

reflected by changes in relative effect size:

b0

AA

�

bAA
� �

b0

EA

�

bEA
� �~

r2AA

r2EA
:

Assuming the effect size of the functional variant is the same in

both populations, this reduces to:

b0

AA

b0

EA

~
r2AA

r2EA
:

The above equation allows us to directly compare the observed

distribution of relative effect sizes at the tagSNPs in AA and EA

Box 1. Definitions

ßpop: The effect size of a given SNP in linear or logistic
regression models for a specific PAGE population. Where
available and when allowed by the informed consent
protocols, effect sizes were estimated in models that
included estimated genetic ancestry, as previously report-
ed (see Text S1).
ßEA: The effect size of a given SNP in the PAGE EA
population. We use the PAGE EA effect size for compar-
isons to PAGE non-EA populations rather than the original
report for two reasons: to minimize the impact of winner’s
curse on these comparisons, and because several of the
SNPs genotyped in PAGE were proxies strongly correlated
with the original tagSNP, and might not match the
reported effect size.
We define replicated SNPs as SNPs with direction of
effect consistent with the original report in EA, and
significant ßEA in PAGE (using a= 0.05 as the threshold for
hypothesis rejection, unadjusted for multiple testing, as
these are considered specific prior hypothesis being
validated).
When comparing two populations, the direction of effect
can be either the same (ßpop and ßEA are either both
positive, or both negative) or opposite (either ßpop or ßEA
is positive, and the other is negative).Magnitude of effect
was evaluated only for SNPs that replicated in EA and can
be either stronger (|ßEA|,|ßpop|), the same (|ßEA| = |ßpop|),
or weaker (|ßEA|.|ßpop|).
In order to describe the generalization of EA findings to
non-EA populations, SNPs are categorized in terms of (a)
significance in the non-EA population and (b) consistency
between non-EA and EA populations. Here we use the
Benjamini-Hochberg procedure to adjust for testing up to
68 SNPs in each non-EA population.
Significant SNPs reject the null hypothesis of no effect in
the non-EA population (ßpop?0) at q = 0.05.
Inconsistent SNPs reject the hypothesis of equal effect
size in EA and non-EA populations (ßpop?ßEA) at q = 0.05.
Combining these parameters yields four categories of
generalization:

N Ambiguous SNPs are neither significant in non-EA, nor
inconsistent between non-EA and EA.

N Differential SNPs are not significant in non-EA, but are
inconsistent between non-EA and EA.

N Differentially Generalized SNPs are significant in
non-EA, and inconsistent between non-EA and EA.

N Strictly Generalized SNPs are significant in non-EA,
and consistent between non-EA and EA.

Generalization of GWAS to Non-European Ancestries
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(B’AA=B’EA) against the relative strength of tagging in AA and EA

(r2AA=r
2

EA). Considering the subset of index tagSNPs in regions that

were present on the Metabochip, we observed 51 index tagSNPs

that fell into 47 independent loci on the Metabochip. We identified

the set of SNPs tagged by each index tagSNP at r2.0 .8 in an EA

population [29,30], yielding a total of 1,093 tagged SNPs for the

51 index tagSNPs. For each of these 1,144 SNPs, we then

calculated r2AA=r
2

EA. Let this represent the expected distribution of

differential LD between AA and EA. Next, we calculated

B’AA=B’EA for the subset of 40 of the 51 index tagSNPs that

replicated at q = 0.05 in EA, truncating at 0 if the signs were

opposite between populations. These two distributions (r2AA=r
2

EA in

all 1,144 SNPs versus B’AA=B’EA for the 40 index tagSNPs) were

not significantly different by two-tailed t test. Thus, we cannot

reject the hypothesis that the observed dilution bias in AA effect

sizes at the index tagSNPs is consistent with the observed

distribution of differential LD between the two populations. A

single-locus example of the potential for differential LD to

contribute to diluted effect sizes is shown in Figure 2.

Considering the 12 SNPs showing differential effect size in AA,

regions spanning 11 were present on the Metabochip (Table S3).

Before comparison with EA, we compared the observed effect sizes

at the index tagSNPs in the full AA sample and the subsample of

AAs genotyped on the Metabochip (AAmchip). Three of the index

tagSNPs failed to genotype on the Metabochip, leaving eight index

tagSNPs for this direct comparison (Table S4). No significant allele

frequency differences were observed between the AAmchip subset

and the full AA population, consistent with AAmchip being a

representative subsample. A significantly inconsistent and diluted

effect size in AAmchip compared to EA was still observed for five of

these eight tagSNPs (p,0.05, Table S4). The index tagSNPs

without a significant difference likely reflect reduced power to

detect the differential effect size in the AAmchip subsample, as these

three index tagSNPs also had the least significant differential effect

when comparing the full PAGE AA subpopulation against EA.

Figure 1. Generalization analysis in the PAGE populations. We
plot the ratio of bpop=bEA on the y-axis as an indicator of both
consistency of direction (positive values are consistent with effects in
the same direction) and relative magnitude of effect (consistent but
weaker effects in the non-EA will have ratios between 0 and 1). The p
value for trait association in the PAGE European American population
(pEA) is an indicator of the strength of the original association. For each
index SNP, we plot bpop=bEA against 2log10(pEA). Data points are

colored as follows: ambiguous SNPs are light blue (bpop~0 and

bpop~bEA), strictly generalized SNPs are dark blue (bpop=0 and

bpop~bEA), differentially generalized SNPs are dark red (bpop=0 and

bpop=bEA), and differential SNPs are pink (bpop~0 and bpop=bEA). The

y-axis has been constrained to (24,4) for illustrative purposes; some loci
yielded bpop=bEA ratios outside this range, but pEA.0.05 for all of these.

As expected, larger non-EA populations show less scatter in bpop=bEA
than the smaller non-EA populations (particularly Pacific Islanders),
consistent with more precise estimates of bpop in the larger non-EA

populations. Two clear trends are apparent in these plots: first, a trend
toward bpop=bEA ratios greater than zero in all populations, especially

for stronger effects in EA (2log10(pEA).10), reflecting consistency of
direction between EA and non-EA populations. Second, a trend toward
ratios greater than zero but less than one is observed in African
Americans, representing the trend toward dilution in this population,
relative to EA. The second trend is not apparent in the other non-EA
populations. Similar plots of bpop=bEA against observed allele frequency

in the non-EA populations demonstrate that the allele frequency
distribution for differential observations in AA is not different from the
distribution of either ambiguous or strictly generalized loci, so the
significantly diluted effects are not attributable to variants with low
allele frequency in this population (Figure S1).
doi:10.1371/journal.pbio.1001661.g001
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Table 2. Summary of generalization results.

Significance:

ßpop versus Null Not Significant (ßpop=0) Significant (ßpop?0)

Consistency:

ßpop versus ßEA Consistent (ßpop=ßEA) Inconsistent (ßpop?ßEA) Consistent (ßpop=ßEA)

Population Ambiguousa Differentiala Differentially Generalizeda Strictly Generalizeda Totalb

AA 42 11 1 14 68

HA 46 0 0 22 68

AS 52 1 1 12 66

NA 35 2 2c 16 55

PI 59 0 1c 2 62

aSee Box 1 for definitions.
bTotals differ between populations because not all SNPs were genotyped in all populations.
cNot visible in Figure 1 because of very small ßEA.
doi:10.1371/journal.pbio.1001661.t002

Figure 2. Dilution of effect size at PSRC1 for LDL. In panel (a), we show a locuszoom plot for the tagSNP rs599839 and LDL, using imputed data
in a meta-analysis of more than 100,000 European individuals (image from the GLGC consortium locuszoom website [31]). The y-axis plots 2log10(p
value), which is a proxy for effect size, assuming similar allele frequencies. In panel (a) the size of the dot for each tagSNP represents the effective
number of samples for which imputed data were available. The cluster of overlapping red dots at the top represents a bin of SNPs that are in very
strong LD with the tagSNP, and have indistinguishable effect sizes in the EA study. Panel (b) shows data from our metabochip analysis in African
Americans, but with dots color-coded using LD from the EA population. The scale of the y-axis has changed due to dramatically different sample
sizes, but p value is still a useful proxy for effect size. Note how the tagSNP and several strongly associated SNPs (red data points) have effect sizes
indistinguishable from background, while several other EA strongly associated SNPs remain significant, including rs12740374, the strongest signal in
our data. Panel (c) shows our metabochip data again, but now color coding LD with the tagSNP rs599839 in our AA samples, rather than using EA LD.
Rs599839 continues to tag several SNPs strongly in AA, and these are all among the SNPs with nonsignificant effect sizes in AA, while the SNPs with
strongest residual signal are weakly tagged in AA. These data suggest that rs12740374 is the functional SNP; if so, then differential LD between
rs12740374 and rs599839 in EA (r2.0.8) and AA (r2,0.2) would explain the diluted effect observed at rs599839 in AA.
doi:10.1371/journal.pbio.1001661.g002
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The Metabochip genotype data allowed us to evaluate regions

spanning each of the 11 variants for the underlying contributions

of population-specific alleles, differential tagging, and secondary

alleles to differential effect sizes. Detailed discussion of each locus is

provided in Text S1. In summary, the 11 SNPs fell in 10

Metabochip regions, so all SNPs in each of the 10 regions were

assessed for association with the reported trait in AAmchip. The

threshold level for significance within each region was conserva-

tively adjusted for multiple testing by Bonferroni adjustment for

the number of SNPs successfully genotyped on the Metabochip

within the region, with minor allele frequency greater than 1% in

the AAmchip sample. For example, the Metabochip region

spanning CETP contained 84 SNPs, so our significance threshold

for that region was p,0.05/84=1.1*1024. One locus (APOE)

could not be dissected confidently as LD data for the index

tagSNP were not available in EA, and two loci were underpow-

ered to draw strong conclusions, as evidenced by the failure of any

variant in the region to show a significantly inconsistent effect with

the index tagSNP effect in EA. Among the remaining seven loci,

we observed one clear example of a diluted signal consistent with

EA-specific functional alleles, either common or synthetic

(Figure 3a), and five loci showed patterns consistent with fine-

mapping of the index tagSNP bin (Figure 3d–f, Figure 4a, 4d).

One of these fine-mapped the EA association to a variant that was

not strongly associated with the index tagSNP in EA (r2,0.5,

Figure 3f), potentially consistent with a synthetic allele in EA. We

also observed statistically significant secondary functional alleles at

three loci (Figure 4).

Thus, although the overall pattern of effect dilution in AA is

consistent with expectations on the basis of differential LD patterns

between AA and EA populations, putative examples of EA-specific

alleles and secondary alleles in AA were also observed. A

contribution from synthetic alleles cannot be excluded, and may

well account for the EA-specific allele at CILP2 (Figure 3a).

However, at half of the 10 loci we observed at least one of the tagged

SNPs in EA that showed an effect size in AA consistent with the

effect size at the tagSNP in EA. These examples of fine-mapping EA

signal suggest that at least half of EA GWAS signals tag a common,

functional variant. The observed excess of dilution effects in AA (as

compared to other non-EA populations) suggests that African-

descended populations will be the most useful single subpopulation

for fine-mapping of EA GWAS associations, although the

significant trend toward excess dilution in HA and NA populations

(Table S5) suggests that trans-ethnic fine-mapping may prove more

powerful than fine-mapping with any single non-EA population.

In conclusion, we have assessed the generalization of GWAS

associations from EA populations across five clinically relevant

traits, in five non-EA populations. Our results demonstrate that

although most EA GWAS findings can be expected to show an

effect in the same direction for non-EA populations, a significant

fraction of GWAS-identified variants from EA will exhibit

differential effect sizes in at least one non-EA population, and

these differential results will be far more frequent in the AA

population. These findings suggest that expanded GWAS and fine-

mapping efforts focused on non-EA populations, especially AA,

will substantially enhance our understanding of the genetic

architecture of common traits within non-EA populations. It will

be particularly important to extend GWAS discovery efforts to

non-EA populations if genetic risk prediction models using tagSNP

genotypes demonstrate clinical utility, because risk estimates

derived from European GWAS clearly generalize imperfectly to

non-EA populations. Our analyses suggest that variable LD in its

many guises accounts for much of the heterogeneity of effect size at

index tagSNPs, rather than any ‘‘true’’ differences in effect size

between populations for the functional variants that were tagged.

Thus, risk models derived directly from genotypes at functional

variants (rather than tagSNPs) may generalize more effectively to

non-EA populations.

Materials and Methods

Selecting Index SNPs from Prior Reports
Traits considered were those for which more than 10 GWAS-

identified variants were genotyped in the first year of PAGE.

Variants considered for this analysis included 13 previously

reported to associate with body mass index, 20 for type 2 diabetes,

27 for HDL, 19 for LDL, and 14 for triglycerides. Eleven of these

GWAS-identified variants were previously reported to associate

with more than one trait in EA (Table S1), so we constrained the

analysis of each such SNP to whichever trait had the most

significant association (smallest p value) in the PAGE EA

population, leaving a panel of 82 unique variants.

Because highly correlated SNPs might overweight specific

results toward a specific trait or gene, we extracted a subset of

minimally correlated index GWAS-identified variants from this

panel of 82. At each step, we added the SNP with the most

significant association in PAGE EA to a list of index SNPs, and

then filtered the remaining SNPs not yet in the index list to

exclude those exceeding r2=0.2 in the PAGE EA population with

any index tagSNP. The panel of 82 SNPs was recursively filtered

in this manner, leaving a final panel of 69 index SNPs, each of

which was minimally associated with any other index SNP in the

PAGE EA (r2,0.2). One additional SNP (rs11084753) was

removed from the analysis due to concerns regarding power to

replicate, leaving a final panel of 68 index SNPs for analysis,

including seven index SNPs for BMI, 18 for HDL, 15 for LDL,

nine for triglycerides, and 19 for T2D (Table S2).

Assessing Power to Replicate Previous Reports
Power estimates are taken directly from Fesinmeyer et al. [13]

for BMI, Dumitrescu et al. [15] for lipids, and Haiman et al. [14]

for T2D. For details, see the original publications.

Defining Generalization results for Each SNP
In order to assess the generalization of effects to each

population, we used effect sizes (b) and standard errors derived

from minimally adjusted (age, sex, and study), ancestry-specific

meta-analyses described in the primary PAGE publications

[15,13,14]. Using these data, we tested two hypotheses: first, that

the GWAS-identified variant has no effect in the non-EA

population (i.e., the coefficient ßpop=0 in a linear or logistic

regression model), and second, that the effect size in the non-EA

population is the same as the effect size in EA (bpop~bEA). The

first hypothesis was tested by assuming the estimate b̂bpop is

normally distributed (which is reasonable as sample sizes exceeded

500 for all populations) and calculating the probability that

bpop=0 given b̂bpop and the standard error of b̂bpop. The second

hypothesis was tested by defining Db~bpop{bEA and calculating

the probability that Db=0, again assuming Db̂b to be normally

distributed. These tests are all carried out at a nominal signi-

ficance level of 0.05, as we see them as the (single) test that an

investigator may carry out to validate a result first observed in

EA in another ethnic group, and then significance was assigned

using the Benjamini-Hochberg method at a false discovery rate of

5%.

A reasonable concern in these analyses is that population

stratification can distort effect size estimates in some circumstanc-
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es. Some of the effect sizes from trait-specific PAGE manuscripts

were not adjusted for genetic ancestry, due to either availability of

data [15] or informed consent in specific populations [13,14];

where available and allowed we have used the ancestry adjusted

effect sizes. Both ancestry adjusted and unadjusted data were

available for the PAGE obesity analysis [13], where ancestry

adjustment did not significantly alter effect size estimates.

Supporting Information

Figure S1 Generalization analysis in the PAGE popula-

tions. We plot the ratio of ßpop/ßEA on the y-axis as an indicator

of both consistency of direction (positive values are consistent with

effects in the same direction) and relative magnitude of effect

(consistent but weaker effects in the non-EA will have ratios

Figure 3. Examples of loci without evidence of association in AAmchip or fine mapping EA signal. (a) At rs16996148 (CILP2/LDL) we are
reasonably well powered, and no significant associations were observed in AA, suggesting that either the associated variant, or the synthetic allele
that tags it is EA-restricted. Similar null results at (b) rs5219 (KCNJ11/T2D) and (c) rs17145738 (MLXIPL/logTG) were underpowered to draw strong
conclusions. (d) At rs780094 (GCKR/logTG) and (e) rs599839 (PSRC1/LDL) the index tagSNP from EA showed significantly diluted signal in AA (purple
dot). However, in each region a tagged SNP showed an effect size consistent with the EA index tagSNP, and after adjustment for this variant no
residual evidence for association was observed at any additional variants in the region. (f) At rs2954029 (TRIB1/logTG) a similar effect was observed,
save for the fact that the strongest AA association was imperfectly tagged in EA (r2=0.33).
doi:10.1371/journal.pbio.1001661.g003
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Figure 4. Examples of secondary alleles in the AA population. (a) At rs28927680 (APOA1/C3/A4/A5 gene cluster, logTG) the index tagSNP fine
maps (red point in upper right of a). Panel (b) shows residual signal in the same region after adjustment for genotype at this variant, and significant
secondary signals are observed. (c) At FTO, the SNPs tagged by rs9939069 in EA are all null in the subsample, but a secondary association is observed
at very low frequency SNP (rs75569526, MAF 1% in AAmchip). In this example the secondary SNP is the only significant association in the region from
our subsample analysis. Panels (d–f) illustrate multiple, independent associations at CETP. At CETP, the significant residual signal after adjusting for
the best signal in each EA-tagged bin (Figure S2) is consistent multiple factors that might contribute to differential signal in the region. The number
of independent statistical associations observed within the locus is a rough proxy for the number of functional alleles. Here we show a series of
LocusZoom plots sequentially adjusting results for the SNP with the strongest observed association in the previous cycle. LD in EA samples is color
coded relative to rs3764261 in all panels, and the region-wide threshold for significance after Bonferroni adjustment for the 84 SNPs genotyped in the
25 kb region (residual p,1.1 * 1024) is shown as a horizontal red line. (d) CETP/HDL regional data adjusted only for ancestry. The strongest observed
association at rs17231520 is indicated with an arrowhead. (e) After adjustment for genotype at rs17231520, the strongest residual association at
rs4783961 is indicated with an arrowhead. (f) After adjustment for genotype at rs17231520 and rs4783961, the strongest residual association is still
significant. These results suggest the presence of at least three statistically independent associations with HDL in the CETP region, in the AA
population. Assuming that the functional variation has been directly genotyped, rather than tagged by LD, this would indicate the presence of at
least three functional alleles, clustered within a 5 kb window spanning the putative CETP promoter region.
doi:10.1371/journal.pbio.1001661.g004
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between 0 and 1). We plot the coded allele frequency (CAF) in the

non-EA population on the x-axis, as a proxy for power to replicate

in the available sample size. Data points are colored as follows:

ambiguous SNPs are light blue (ßpop=0 and ßpop=ßEA), strictly

generalized SNPs are dark blue (ßpop?0 and ßpop=ßEA),

differentially generalized SNPs are dark red (ßpop?0 and

ßpop?ßEA), and differential SNPs are pink (ßpop=0 and

ßpop?ßEA). The y-axis has been constrained to (24.4) for

illustrative purposes; some loci yielded ßpop/ßEA ratios outside

this range, but pEA.0.05 for all of these. As expected, larger non-

EA populations show less scatter in ßpop/ßEA than the smaller non-

EA populations (particularly Pacific Islanders), consistent with

more precise estimates of ßpop in the larger non-EA populations. A

clear trend is observed toward ßpop/ßEA ratios greater than zero in

all populations, reflecting consistency of direction between EA and

non-EA populations. An additional trend toward ratios greater

than zero but less than one is observed in African Americans,

representing the trend toward dilution in this population, relative

to EA. No such trend is apparent in the other non-EA populations.

Differential and ambiguous SNPs are observed throughout the

CAF range, consistent with the assertion that these categories do

not reflect a systematic bias toward underpowered, low-frequency

variants.

(TIF)

Figure S2 Multiple associations at CETP. Two index

tagSNPs with differential effect size were observed at CETP:

rs3764261 and rs9989419. (a) CETP regional LocusZoom plot

with LD in EA samples color coded relative to rs3764261.

Although this index tagSNP exhibited differential effect (purple

point indicated with arrow), several of the tagged SNPs (red data

points near 2log10(p) = 34, rs247616, rs247617, rs183130)

exhibited effect sizes consistent with fine-mapping of this

association (r2=0.99 in EA, r2=0.74 in AA). Interestingly, the

strongest effect observed in the region was at a SNP uncorrelated

with rs3764261 (rs17231520, r2EA,0.001). (b) Same plot, but

adjusting genotype at rs274616 (the best signal from a tagged SNP

in the EA rs3764261 bin). The signal from tagged SNPs has clearly

been reduced to background levels, and residual signal is clearly

visible for untagged SNPs. (c) Same plot, but now adjusting for

genotype at rs274616 and rs193695 (the best signal from a tagged

SNP in the EA rs9989419 bin). Again, significant residual signal is

observed. Figures S2d–f show the same data, but with LD in EA

samples color coded relative to rs9989419. Although rs9989419

failed to genotype on the Metabochip, a strongly tagged SNP is

visible in (d). Although this variant was weakly tagged by

rs3764261 (compare panel a with d), the association signal does

not appear to be independent of rs3764261, as residual association

is not significant at this variant after adjustment for rs247616 (e).

Thus, there is clearly residual association at this locus after

adjusting for both of the strongest EAtaggedSNPs, consistent with

either additional functional variation in the region, differential

tagging, or differential synthetic alleles at this locus.

(TIF)

Table S1 Categorization of tagSNPs. TagSNPs are catego-

rized on the basis of the primary phenotype in the original GWAS

report, and by whether these SNPs were categorized as index

SNPs or not in the present analysis.

(XLSX)

Table S2 Raw meta-analysis data for each of the index

SNPs is given in each PAGE subpopulation, including the

number of individuals in the subpopulation, the ob-

served effect size and s.e., the p value associated with

testing the hypothesis that the observed effect was

significant within the subpopulation (p_Beta_,subpo-

pulation._= _0), and the p value associated with testing

the hypothesis of equal effect size in European and non-

European populations (p_Beta_,subpopulation._e-

qual_Beta_Eur.Am.), as well as the generalization

category for that SNP in the subpopulation (,subpopu-

lation._snpcat).

(XLSX)

Table S3 Details of the effect sizes and generalization

results for the 12 tagSNPs with inconsistent effect size

observed in the EA and AA PAGE populations, extracted

from Table S2.

(XLSX)

Table S4 Summary of Metabochip variants that passed

QC with minor allele frequency greater than 1% in the

PAGE AAmchip subpopulation is given, along with the

generalization results comparing only the index tagSNP

from the AAmchip against PAGE EA.

(XLSX)

Table S5 Summary of dilution effects in subpopula-

tions. Data are shown first for the subset of 51 tagSNPs replicated

in EA, then for all 68 tagSNPs in Table S2. Within each

subpopulation, we first assessed the probability of the observed

frequency of dilution (ßpop/ßEA,1) against the null hypothesis of

no such trend, by chi-square test. Then we compared the

frequency of dilution effects between other subpopulations and

the AA subpopulation. As noted, we observed a significant excess

of effects diluted toward the null (ßpop/ßEA,1) in AA, HA, and

NA populations, and this trend toward diluted effects was

significantly stronger in the AA subpopulation than in any other

subpopulation.

(XLSX)

Text S1 Supplemental methods.

(DOCX)
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