
Generalization and Equilibrium in Generative Adversarial Nets (GANs)

Sanjeev Arora 1 Rong Ge 2 Yingyu Liang 1 Tengyu Ma 1 Yi Zhang 1

Abstract

It is shown that training of generative adversar-

ial network (GAN) may not have good gener-

alization properties; e.g., training may appear

successful but the trained distribution may be

far from target distribution in standard metrics.

However, generalization does occur for a weaker

metric called neural net distance. It is also shown

that an approximate pure equilibrium exists in the

discriminator/generator game for a natural train-

ing objective (Wasserstein) when generator ca-

pacity and training set sizes are moderate. This

existence of equilibrium inspires MIX+GAN pro-

tocol, which can be combined with any existing

GAN training, and empirically shown to improve

some of them.

1. Introduction

Generative Adversarial Networks (GANs) (Goodfellow

et al., 2014) have become one of the dominant methods for

fitting generative models to complicated real-life data, and

even found unusual uses such as designing good crypto-

graphic primitives (Abadi & Andersen, 2016). See a survey

by (Goodfellow, 2016). Various novel architectures and

training objectives were introduced to address perceived

shortcomings of the original idea, leading to more stable

training and more realistic generative models in practice

(see (Odena et al., 2016; Huang et al., 2017; Radford

et al., 2016; Tolstikhin et al., 2017; Salimans et al., 2016;

Jiwoong Im et al., 2016; Durugkar et al., 2016) and the ref-

erence therein).

The goal is to train a generator deep net whose input is

a standard Gaussian, and whose output is a sample from

some distribution D on R
d, which has to be close to some

target distribution Dreal (which could be, say, real-life im-

Authors listed in alphabetical order. 1Princeton Univer-
sity, Princeton NJ 2Duke University, Durham NC. Corre-
spondence to: Rong Ge <rongge@cs.duke.edu>, Yi Zhang
<y.zhang@cs.princeton.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Figure 1. Probability density Dreal with many peaks and valleys

ages represented using raw pixels). The training uses sam-

ples from Dreal and together with the generator net also

trains a discriminator deep net trying to maximise its ability

to distinguish between samples from Dreal and D. So long

as the discriminator is successful at this task with nonzero

probability, its success can be used to generate a feedback

(using backpropagation) to the generator, thus improving

its distribution D. Training is continued until the generator

wins, meaning that the discriminator can do no better than

random guessing when deciding whether or not a particular

sample came from D or Dreal. This basic iterative frame-

work has been tried with many training objectives; see Sec-

tion 2. But it has been unclear what to conclude when the

generator wins this game: is D close to Dreal in some met-

ric? One seems to need some extension of generalization

theory that would imply such a conclusion. The hurdle is

that distribution Dreal could be complicated and may have

many peaks and valleys; see Figure 1. The number of peaks

(modes) may even be exponential in d. (Recall the curse of

dimensionality: in d dimensions there are exp(d) directions

whose pairwise angle exceeds say ⇡/3, and each could be

the site of a peak.) Whereas the number of samples from

Dreal (and from D for that matter) used in the training is

a lot fewer, and thus may not reflect most of the peaks and

valleys of Dreal.

A standard analysis due to (Goodfellow et al., 2014) shows

that when the discriminator capacity (= number of parame-

ters) and number of samples is “large enough”, then a win

by the generator implies that D is very close to Dreal (see

Section 2). But the discussion in the previous paragraph

raises the possibility that “sufficiently large” in this analy-

sis may need to be exp(d).

Another open theoretical issue is whether an equilibrium

always exists in this game between generator and discrim-

Generalization and Equilibrium in Generative Adversarial Nets (GANs)

inator. Just as a zero gradient is a necessary condition for

standard optimization to halt, the corresponding necessary

condition in a two-player game is an equilibrium. Con-

ceivably some of the instability often observed while train-

ing GANs could just arise because of lack of equilibrium.

(Recently Arjovsky et al. (2017) suggest that using their

Wasserstein objective in practice reduces instability, but

we still lack proof of existence of an equilibrium.) Stan-

dard game theory is of no help here because we need a so-

called pure equilibrium, and simple counter-examples such

as rock/paper/scissors show that it doesn’t exist in general1.

1.1. Our Contributions

We formally define generalization for GANs in Section 3

and show that for previously studied notions of distance

between distributions, generalization is not guaranteed

(Lemma 1). In fact we show that the generator can win

even when D and Dreal are arbitrarily far in any standard

metric.

However, we can guarantee some weaker notion of gener-

alization by introducing a new metric on distributions, the

neural net distance. We show that generalization does hap-

pen with moderate number of training examples (i.e., when

the generator wins, the two distributions must be close in

neural net distance). However, this weaker metric comes at

a cost: it can be near-zero even when the trained and target

distributions are very far (Section 3.1)

To explore the existence of equilibria we turn in Section 4

to infinite mixtures of generator deep nets. These are

clearly vastly more expressive than a single generator net:

e.g., a standard result in bayesian nonparametrics says that

every probability density is closely approximable by an in-

finite mixture of Gaussians (Ghosh et al., 2003). Thus un-

surprisingly, an infinite mixture should win the game. We

then prove rigorously that even a finite mixture of fairly

reasonable size can closely approximate the performance

of the infinite mixture (Theorem 4.2).

This insight also allows us to show for a natural GAN set-

ting with Wasserstein objective there exists an approximate

equilibrium that is pure. (Roughly speaking, an approxi-

mate equilibrium is one in which neither of the players can

gain much by deviating from their strategies.)

This existence proof for an approximate equilibrium unfor-

tunately involves a quadratic blowup in the “size” of the

generator (which is still better than the naive exponential

blowup one might expect). Improving this is left for future

theoretical work. But we propose a heuristic approxima-

tion to the mixture idea to introduce a new framework for

1Such counterexamples are easily turned into toy GAN sce-
narios with generator and discriminator having finite capacity, and
the game lacks a pure equilibrium. See supplementary material.

training that we call MIX+GAN. It can be added on top of

any existing GAN training procedure, including those that

use divergence objectives. Experiments in Section 6 show

that for several previous techniques, MIX+GAN stabilizes

the training, and in some cases improves the performance.

2. Preliminaries

Notations. Throughout the paper we use d for the dimen-

sion of samples, and p for the number of parameters in the

generator/discriminator. In Section 3 we use m for number

of samples.

Generators and discriminators. Let {Gu, u 2 U}
(U ⇢ R

p) denote the class of generators, where Gu is a

function — which is often a neural network in practice —

from R
` ! R

d indexed by u that denotes the parameters

of the generators. Here U denotes the possible ranges

of the parameters and without loss of generality we

assume U is a subset of the unit ball2. The generator Gu

defines a distribution DGu
as follows: generate h from

`-dimensional spherical Gaussian distribution and then

apply Gu on h and generate a sample x = Gu(h) of the

distribution DGu
. We drop the subscript u in DGu

when

it’s clear from context.

Let {Dv, v 2 V} denote the class of discriminators, where

Dv is function from R
d to [0, 1] and v is the parameters of

Dv . The value Dv(x) is usually interpreted as the probabil-

ity that the sample x comes from the real distribution Dreal

(as opposed to the generated distribution DG).

We assume Gu and Dv are L-Lipschitz with respect to their

parameters. That is, for all u, u0 2 U and any input h, we

have kGu(h)�Gu0(h)k Lku� u0k (similar for D).

Notice, this is distinct from the assumption (which we

will also sometimes make) that functions Gu, Dv are Lip-

schitz: that focuses on the change in function value when

we change x, while keeping u, v fixed3.

Objective functions. The standard GAN training (Good-

fellow et al., 2014) consists of training parameters u, v so

as to optimize an objective function:

min
u2U

max
v2V

E
x⇠Dreal

[logDv(x)] + E
x⇠DGu

[log(1�Dv(x))].

(1)

Intuitively, this says that the discriminator Dv should give

high values Dv(x) to the real samples and low values

Dv(x) to the generated examples. The log function was

suggested because of its interpretation as the likelihood,

2Otherwise we can scale the parameter properly by changing
the parameterization.

3Both Lipschitz parameters can be exponential in the number
of layers in the neural net, however our Theorems only depend on
the log of the Lipschitz parameters

Generalization and Equilibrium in Generative Adversarial Nets (GANs)

and it also has a nice information-theoretic interpretation

described below. However, in practice it can cause prob-

lems since log x ! �1 as x ! 0. The objective still

makes intuitive sense if we replace log by any monotone

function � : [0, 1] ! R, which yields the objective:

min
u2U

max
v2V

E
x⇠Dreal

[�(Dv(x))]+ E
x⇠DGu

[�(1�Dv(x))]. (2)

We call function � the measuring function. It should be

concave so that when Dreal and DG are the same distribu-

tion, the best strategy for the discriminator is just to output

1/2 and the optimal value is 2�(1/2). In later proofs, we

will require � to be bounded and Lipschitz. Indeed, in prac-

tice training often uses �(x) = log(� + (1 � �)x) (which

takes values in [log �, 0] and is 1/�-Lipschitz) and the re-

cently proposed Wasserstein GAN (Arjovsky et al., 2017)

objective uses �(x) = x.

Training with finite samples. The objective func-

tion (2) assumes we have infinite number of samples

from Dreal to estimate the value Ex⇠Dreal
[�(Dv(x))].

With finite training examples x1, . . . , xm ⇠ Dreal,

one uses 1
m

Pm
i=1[�(Dv(xi))] to estimate the quantity

Ex⇠Dreal
[�(Dv(x))]. We call the distribution that gives

1/m probability to each of the xi’s the empirical version

of the real distribution. Similarly, one can use a empirical

version to estimate Ex⇠DGu
[�(1�Dv(x))].

Standard interpretation via distance between distribu-

tions. Towards analyzing GANs, researchers have assumed

access to infinite number of examples and that the discrim-

inator is chosen optimally within some large class of func-

tions that contain all possible neural nets. This often al-

lows computing analytically the optimal discriminator and

therefore removing the maximum operation from the ob-

jective (2), which leads to some interpretation of how and

in what sense the resulting distribution DG is close to the

true distribution Dreal.

Using the original objective function (1), then the optimal

choice among all the possible functions from R
d ! (0, 1)

is D(x) = Preal(x)
Preal(x)+PG(x) , as shown in (Goodfellow et al.,

2014). Here Preal(x) is the density of x in the real dis-

tribution, and PG(x) is the density of x in the distribu-

tion generated by generator G. Using this discriminator —

though it’s computationally infeasible to obtain it — one

can show that the minimization problem over the genera-

tor correspond to minimizing the Jensen-Shannon (JS) di-

vergence between the true distribution Dreal and the gen-

erative distribution DG. Recall that for two distributions

µ and ⌫, the JS divergence is defined by dJS(µ, ⌫) =
1
2 (KL(µkµ+⌫

2) +KL(⌫kµ+⌫
2)).

Other measuring functions � and choice of discrimi-

nator class leads to different distance function between

distribution other than JS divergence. Notably, (Ar-

jovsky et al., 2017) shows that when �(t) = t, and

the discriminator is chosen among all 1-Lipschitz func-

tions, maxing out the discriminator, the generator is

attempting to minimize the Wasserstein distance be-

tween Dreal and Du(h). Recall that Wasserstein dis-

tance between µ and ⌫ is defined as dW (µ, ⌫) =
supD is 1-Lipschitz |Ex⇠µ[D(x)]� Ex⇠⌫ [D(x)]| .

3. Generalization Theory for GANs

The above interpretation of GANs in terms of minimizing

distance (such as JS divergence and Wasserstein distance)

between the real distribution and the generated distribution

relies on two crucial assumptions: (i) very expressive class

of discriminators such as the set of all bounded discrimina-

tor or the set of all 1-Lipschitz discriminators, and (ii) very

large number of examples to compute/estimate the objec-

tive (1) or (2). Neither assumption holds in practice, and

we will show next that this greatly affects the generaliza-

tion ability, a notion we introduce in Section 3.1.

3.1. Definition of Generalization

Our definition is motivated from supervised classification,

where training is said to generalize if the training and test

error closely track each other. (Since the purpose of GANs

training is to learn a distribution, one could also consider

a stronger definition of successful training, as discussed in

Section 3.4.)

Let x1, . . . , xm be the training examples, and let D̂real

denote the uniform distribution over x1, . . . , xm. Simi-

larly, let Gu(h1), . . . , Gu(hr) be a set of r examples from

the generated distribution DG. In the training of GANs,

one implicitly uses Ex⇠D̂real
[�(Dv(x))] to approximate

the quantity Ex⇠Dreal
[�(Dv(x))]. Inspired by the observa-

tion that the training objective of GANs and its variants is

to minimize some distance (or divergence) d(·, ·) between

Dreal and DG using finite samples, we define the general-

ization of GANs as follows:

Definition 1. A divergence or distance d(·, ·) between dis-

tributions generalizes with m training examples and error

" if for the learnt distribution DG, the following holds with

high probability,

�

�

�
d(Dreal,DG)� d(D̂real, D̂G)

�

�

�
 " (3)

where D̂real is an empirical version of the true distribution

(with m samples) and D̂G is an empirical version of the

generated distribution with polynomial number of samples.

In words, generalization in GANs means that the popula-

tion distance between the true and generated distribution is

close to the empirical distance between the empirical dis-

tributions. Our target is to make the former distance small,

Generalization and Equilibrium in Generative Adversarial Nets (GANs)

whereas the latter one is what we can access and minimize

in practice. The definition allows only polynomial num-

ber of samples from the generated distribution because the

training algorithm should run in polynomial time.

3.2. JS Divergence and Wasserstein don’t Generalize

As a warm-up, we show that JS divergence and Wasserstein

distance don’t generalize with any polynomial number of

examples because the population distance (divergence) is

not reflected by the empirical distance.

Lemma 1. Let µ be uniform Gaussian distributions

N (0, 1
dI) and µ̂ be an empirical versions of µ with m ex-

amples. Then we have dJS(µ, µ̂) = log 2, dW (µ, µ̂) � 1.1.

There are two consequences of Lemma 1. First, consider

the situation where Dreal = DG = µ. Then we have that

dW (Dreal,DG) = 0 but dW (D̂real, D̂G) > 1 as long as

we have polynomial number of examples. This violates the

generalization definition equation (3).

Second, consider the case Dreal = µ and DG = D̂real =
µ̂, that is, DG memorizes all of the training examples in

D̂real. In this case, since DG is a discrete distribution with

finite supports, with enough (polynomial) examples, in D̂G,

effectively we also have that D̂G ⇡ DG. Therefore, we

have that dW (D̂real, D̂G) ⇡ 0 whereas dW (Dreal,DG) >
1. In other words, with any polynomial number of exam-

ples, it’s possible to overfit to the training examples using

Wasserstein distance. The same argument also applies to

JS divergence. See supplementary material for the formal

proof.

Notice, this result does not contradict the experiments

of (Arjovsky et al., 2017) since they actually use not

Wasserstein distance but a surrogate distance that does gen-

eralize, as we show next.

3.3. Generalization Bounds for Neural Net Distance

Which distance measure between Dreal and DG is the

GAN objective actually minimizing and can we analyze

its generalization performance? Towards answering these

questions in full generality (given multiple GANs objec-

tives) we consider the following general distance measure

that unifies JS divergence, Wasserstein distance, and the

neural net distance that we define later in this section.

Definition 2 (F-distance). Let F be a class of functions

from R
d to [0, 1] and � be a concave measuring function.

Then the F-divergence with respect to � between two dis-

tributions µ and ⌫ supported on R
d is defined as

dF,�(µ, ⌫) = sup
D2F

�

�

�

�

E
x⇠µ

[�(D(x))] + E
x⇠⌫

[�(1�D(x))]

�

�

�

�

� 2�(1/2)

When �(t) = t, we have that dF,� is a distance function 4

, and with slightly abuse of notation we write it simply as

dF (µ, ⌫) = sup
D2F

�

�

�

�

E
x⇠µ

[D(x)]� E
x⇠⌫

[D(x)]

�

�

�

�

.

Example 1. When �(t) = log(t) and F =
{all functions from R

d to [0, 1]}, we have that dF,� is the

same as JS divergence. When �(t) = t and F =
{all 1-Lipschitz functions from R

d to [0, 1]}, then dF,� is

the Wasserstein distance.

Example 2. Suppose F is a set of neural networks and

�(t) = log t, then original GAN objective function is

equivalent to minG dF,�(D̂real, D̂G) .

Suppose F is the set of neural networks, and �(t) = t, then

the objective function used empirically in (Arjovsky et al.,

2017) is equivalent to minG dF (D̂real, D̂G) .

GANs training uses F to be a class of neural nets with a

bound p on the number of parameters. We then informally

refer to dF as the neural net distance. The next theorem

establishes generalization in the sense of equation (3) does

hold for it (with a uniform convergence) . We assume that

the measuring function takes values in [�∆,∆] and that it

is L�-Lipschitz. Further, F = {Dv, v 2 V} is the class

of discriminators that is L-Lipschitz with respect to the pa-

rameters v. As usual, we use p to denote the number of

parameters in v.

Theorem 3.1. In the setting of previous paragraph, let µ, ⌫
be two distributions and µ̂, ⌫̂ be empirical versions with at

least m samples each. There is a universal constant c such

that when m �
cp∆2 log(LLφp/✏)

✏2
, we have with probability

at least 1� exp(�p) over the randomness of µ̂ and ⌫̂,

|dF,�(µ̂, ⌫̂)� dF,�(µ, ⌫)| ✏.

See supplementary material for the proof. The intuition is

that there aren’t too many distinct discriminators, and thus

given enough samples the expectation over the empirical

distribution converges to the expectation over the true dis-

tribution for all discriminators.

Theorem 3.1 shows that the neural network divergence (and

neural network distance) has a much better generalization

properties than Jensen-Shannon divergence or Wasserstein

distance. If the GAN successfully minimized the neural

network divergence between the empirical distributions,

that is, d(D̂real, D̂G), then we know the neural network

divergence d(Dreal,DG) between the distributions Dreal

and DG is also small. It is possible to change the proof to

also show that this generalization continues to hold at every

iteration of the training. See supplementary material.

4Technically it is a pseudometric. This is also known as inte-
gral probability metrics(Müller, 1997).

Generalization and Equilibrium in Generative Adversarial Nets (GANs)

3.4. Generalization vs Diversity

Since the final goal of GANs training is to learn a distri-

bution, it is worth understanding that though weak general-

ization in the sense of Section 3.3 is guaranteed, it comes

with a cost (albeit a necessary one). For JS divergence and

Wasserstein distance, when the distance between two dis-

tributions µ, ⌫ is small, it is safe to conclude that the distri-

butions µ and ⌫ are almost the same. However, the neural

net distance dNN (µ, ⌫) can be small even if µ, ⌫ are not

very close. As a simple Corollary of Lemma 3.1, we ob-

tain:

Corollary 3.1 (Low-capacity discriminators cannot detect

lack of diversity). Let µ̂ be the empirical version of distri-

bution µ with m samples. There is a some universal con-

stant c such that when m �
cp∆2 log(LLφp/✏)

✏2
, we have that

with probability at least 1� exp(�p), dF,�(µ, µ̂) ✏.

That is, the neural network distance for nets with p parame-

ters cannot distinguish between a distribution µ and a distri-

bution with support Õ(p/✏2). In fact the proof still works

if the disriminator is allowed to take many more samples

from µ; the reason they don’t help is that its capacity is

limited to p.

4. Expressive Power and Equilibrium

Section 3 clarified the notion of generalization for GANs:

namely, neural-net divergence between the generated dis-

tribution D and Dreal on the empirical samples closely

tracks the divergence on the full distribution (i.e., unseen

samples). But this doesn’t explain why in practice the gen-

erator usually “wins” so that the discriminator is unable to

do much better than random guessing at the end. In other

words, was it sheer luck that so many real-life distributions

Dreal turned out to be close in neural-net distance to a dis-

tribution produced by a fairly compact neural net? This

section suggests no luck may be needed.

The explanation starts with a thought experiment. Imag-

ine allowing a much more powerful generator, namely, an

infinite mixture of deep nets, each of size p. So long as

the deep net class is capable of generating simple gaus-

sians, such mixtures are quite powerful, since a classical

result says that an infinite mixtures of simple gaussians can

closely approximate Dreal. Thus an infinite mixture of

deep net generators will “win” the GAN game, not only

against a discriminator that is a small deep net but also

against more powerful discriminators (e.g., any Lipschitz

function).

The next stage in the thought experiment is to imagine a

much less powerful generator, which is a mix of only a few

deep nets, not infinitely many. Simple counterexamples

show that now the distribution D will not closely approxi-

mate arbitrary Dreal with respect to natural metrics like `p.

Nevertheless, could the generator still win the GAN game

against a deep net of bounded capacity (i.e., the deep net is

unable to distinguish D and Dreal)? We show it can.

INFORMAL THEOREM: If the discriminator is a deep net

with p parameters, then a mixture of Õ(p log(p/✏)/✏2) gen-

erator nets can produce a distribution D that the discrim-

inator will be unable to distinguish from Dreal with prob-

ability more than ✏. (Here Õ(·) notation hides some nui-

sance factors.)

This informal theorem is also a component of our re-

sult below about the existence of an approximate pure

equilibrium. With current technique this existence result

seems sensitive to the measuring function �, and works for

�(x) = x (i.e., Wasserstein GAN). For other � we only

show existence of mixed equilibria with small mixtures.

4.1. General �: Mixed Equilibrium

For general measuring function � we can only show the

existence of a mixed equilibrium, where we allow the dis-

criminator and generator to be finite mixtures of deep nets.

For a class of generators {Gu, u 2 U} and a class of dis-
criminators {Dv, v 2 V}, we can define the payoff F (u, v)
of the game between generator and discriminator

F (u, v) = E
x∼Dreal

[φ(Dv(x))] + E
x∼DG

[φ(1−Dv(x)))]. (4)

Of course as we discussed in the previous section, in prac-

tice these expectations should be with respect to the em-

pirical distributions. Our discussions in this section does

not depend on the distributions Dreal and Dh, so we define

F (u, v) this way for simplicity.

The well-known min-max theorem (v. Neumann, 1928) in

game theory shows if both players are allowed to play

mixed strategies then the game has a min-max solution. A

mixed strategy for the generator is just a distribution Du

supported on U , and one for discriminator is a distribution

Dv supported on V .

Theorem 4.1 (vonNeumann). There exists value

V , and a pair of mixed strategies (Su,Sv) s.t.

8v, Eu⇠Su
[F (u, v)] V , 8u, Ev⇠Sv

[F (u, v)] � V.

Note that this equilibrium involves both parties announc-

ing their strategies Su,Sv at the start, such that neither will

have any incentive to change their strategy after studying

the opponent’s strategy. The payoff is generated by the gen-

erator first sample u ⇠ Su, h ⇠ Dh, and then generate an

example x = Gu(h). Therefore, the mixed generator is just

a linear mixture of generators. The discriminator will first

sample v ⇠ Sv , and then output Dv(x). Note that in gen-

eral this is very different from a discriminator D that out-

puts Ev⇠Sv
[Dv(x)], because the measuring function � is in

Generalization and Equilibrium in Generative Adversarial Nets (GANs)

general nonlinear. In particular, the correct payoff function

for a mixture of discriminator is:

E
v⇠Sv

[F (u, v)]

= E
x⇠Dreal

v⇠Sv

[�(Dv(x))] + E
h⇠Dh

v⇠Sv

[�(1�Dv(Gu(h)))].

Of course, this equilibrium involving an infinite mixture

makes little sense in practice. We show that (as is folk-

lore in game theory (Lipton & Young, 1994)) that we can

approximate this min-max solution with mixture of finitely

many generators and discriminators. More precisely we

define ✏-approximate equilibrium:

Definition 3. A pair of mixed strategies (Su,Sv) is an ✏-

approximate equilibrium, if for some value V 8v 2 V ,

Eu⇠Su
[F (u, v)] V + ✏; 8u 2 U , Ev⇠Sv

[F (u, v)] �
V � ✏. If the strategies Su,Sv are pure strategies, then this

pair is called an ✏-approximate pure equilibrium.

Suppose � is L�-Lipschitz and bounded in [�∆,∆], the

generator and discriminators are L-Lipschitz with respect

to the parameters and L0-Lipschitz with respect to inputs, in

this setting we can formalize the above Informal Theorem

as follows:

Theorem 4.2. In the settings above, there is a univer-

sal constant C > 0 such that for any ✏, there exists

T =
C∆

2p log(LL0Lφ·p/✏)
✏2

generators Gu1
, . . . , GuT

and T
discriminators Dv1

, . . . , DvT
, let Su be a uniform distri-

bution on ui and Sv be a uniform distribution on vi, then

(Su,Sv) is an ✏-approximate equilibrium. Furthermore, in

this equilibrium the generator “wins,” meaning discrimi-

nators cannot do better than random guessing.

The proof uses a standard probabilistic argument and ep-

silon net argument to show that if we sample T generators

and discriminators from infinite mixture, they form an ap-

proximate equilibrium with high probability. For the sec-

ond part, we use the fact that every distribution can be ap-

proximated by infinite mixture of Gaussians, so the gener-

ator must be able to approximate the real distribution Dreal

and win. Therefore indeed a mixture of Õ(p) generators

can achieve an ✏-approximate equilibrium. See supplemen-

tary material for details.

In the special case of �(x) = x (Wasserstein GAN), we

show that a mixture of generator/discriminator is equiva-

lent to a specially designed, larger generator/discriminator,

therefore an approximate pure equilibrium exists. See sup-

plementary material for more details.

Theorem 4.3. Suppose the generator and discriminator

are both k-layer neural networks (k � 2) with p param-

eters, and the last layer uses ReLU activation function. In

the setting of Theorem 4.2, when �(x) = x there exists

k + 1-layer neural networks of generators G and discrim-

inator D with O
⇣

∆
2p2 log(LL0Lφ·p/✏)

✏2

⌘

parameters, such

that there exists an ✏-approximate pure equilibrium. Fur-

thermore, if the generator is capable of generating a Gaus-

sian then the value V = 1.

5. MIX+GANs

Theorem 4.2 show that using a mixture of (not too many)

generators and discriminators guarantees existence of ap-

proximate equilibrium. This suggests that using a mixture

may lead to more stable training.

Of course, it is impractical to use very large mixtures, so

we propose MIX+GAN: use a mixture of T components,

where T is as large as allowed by size of GPU memory

(usually T 5). Namely, train a mixture of T genera-

tors {Gui
, i 2 [T]} and T discriminators {Dvi , i 2 [T]})

which share the same network architecture but have their

own trainable parameters. Maintaining a mixture means

of course maintaining a weight wui
for the generator Gui

which corresponds to the probability of selecting the output

of Gui
. These weights are also updated via backpropaga-

tion. This heuristic can be combined with existing meth-

ods like DCGAN (Radford et al., 2016), WASSERSTEIN-

GAN (Arjovsky et al., 2017) etc., giving us new training

methods MIX+DCGAN, MIX+WASSERSTEINGAN etc.

We use exponentiated gradient (Kivinen & Warmuth,

1997): store the log-probabilities {↵ui
, i 2 [T]}, and then

obtain the weights by applying soft-max function on them:

wui
= eαui

P
T
k=1

e
αuk

, i 2 [T].

Note that our algorithm is maintaining weights on different

generators and discriminators. This is very different from

the idea of boosting where weights are maintained on sam-

ples. ADAGAN (Tolstikhin et al., 2017) uses ideas similar

to boosting and maintains weights on training examples.

Given payoff function F , training MIX+GAN boils down

to optimizing:

min
{ui},{↵ui

}
max

{vj},{↵vj
}

E
i,j2[T]

F (ui, vj)

= min
{ui},{↵ui

}
max

{vj},{↵vj
}

X

i,j2[T]

wui
wvj

F (ui, vj).

Here the payoff function is the same as Equation (4). We

use both measuring functions �(x) = log x (for origi-

nal GAN) and �(x) = x (for WASSERSTEINGAN). In

our experiments we alternatively update generators’ and

discriminators’ parameters as well as their corresponding

log-probabilities using ADAM (Kingma & Ba, 2015), with

learning rate lr = 0.0001.

Empirically, it is observed that some components of the

mixture tend to collapse and their weights diminish during

Generalization and Equilibrium in Generative Adversarial Nets (GANs)

the training. To encourage full use of the mixture capac-

ity, we add to the training objective an entropy regularizer

that discourages the weights being far away from uniform:

Rent({wui
}, {wvi

}) = � 1
T

PT
i=1(log(wui

) + log(wvi)).

6. Experiments

In this section, we first explore the qualitative bene-

fits of our method on image generation tasks: MNIST

dataset (LeCun et al., 1998) of hand-written digits and the

CelebA (Liu et al., 2015) dataset of human faces. Then

for more quantitative evaluation we use the CIFAR-10

dataset (Krizhevsky & Hinton, 2009) and use the Inception

Score introduced in (Salimans et al., 2016). MNIST con-

tains 60,000 labeled 28⇥28-sized images of hand-written

digits, CelebA contains over 200K 108⇥108-sized images

of human faces (we crop the center 64⇥64 pixels for our

experiments), and CIFAR-10 has 60,000 labeled 32⇥32-

sized RGB natural images which fall into 10 categories.

To reinforce the point that this technique works out of the

box, no extensive hyper-parameter search or tuning is nec-

essary. Please refer to our code for experimental setup. 5

6.1. Qualitative Results

The DCGAN architecture (Radford et al., 2016) uses deep

convolutional nets as generators and discriminators. We

trained MIX+DCGAN on MNIST and CelebA using the

authors’ code as a black box, and compared visual qualities

of generated images to those by DCGAN.

Results on MNIST is shown in Figure 2. In this experi-

ment, the baseline DCGAN consists of a pair of a genera-

tor and a discriminator, which are 5-layer deconvoluitonal

neural networks, and are conditioned on image labels. Our

MIX+DCGAN model consists of a mixture of such DC-

GANs so that it has 3 generators and 3 discriminators. We

observe that our method produces somewhat cleaner digits

than the baseline (note the fuzziness in the latter).

Results on CelebA dataset are also in Figure 2, using the

same architecture as for MNIST, except the models are not

conditioned on image labels anymore. Again, our method

generates more faithful and more diverse samples than the

baseline. Note that one may need to zoom in to fully per-

ceive the difference, since both the two datasets are rather

easy for DCGAN.

6.2. Quantitative Results

Now we turn to quantitative measurement using Inception

Score. Our method is applied to DCGAN and WASSER-

STEINGAN (Arjovsky et al., 2017), and throughout, mix-

5Related code is public online at https://github.com/
PrincetonML/MIX-plus-GANs.git

Figure 2. MNIST and CelebA Samples. Digits and Faces gener-

ated from (a) MIX+DCGAN. (b) DCGAN.

tures of 5 generators and 5 discriminators are used. At first

sight the comparison DCGAN v.s. MIX+DCGAN seems

unfair because the latter uses 5 times the capacity of the for-

mer, with corresponding penalty in running time per epoch.

To address this, we also compare our method with larger

versions of DCGAN with roughly the same number of pa-

rameters, and we found the former is consistently better

than the later, as detailed below.

To construct MIX+DCGAN, we build on top of the DC-

GAN trained with losses proposed by Huang et al. (2017),

which is the best variant so far without improved train-

ing techniques. The same hyper-parameters are used for

fair comparison. See (Huang et al., 2017) for more de-

tails. Similarly, for the MIX+WASSERSTEINGAN, the

base GAN is identical to that proposed by Arjovsky et al.

(2017) using their hyper-parameter scheme.

For a quantitative comparison, inception score is calculated

for each model, using 50,000 freshly generated samples

that are not used in training. To sample a single image from

our MIX+ models, we first select a generator from the mix-

ture according to their assigned weights {wui
}, and then

draw a sample from the selected generator.

Table 1 shows the results on the CIFAR-10 dataset. We find

that, simply by applying our method to the baseline mod-

els, our MIX+ models achieve 7.72 v.s. 7.16 on DCGAN,

and 4.04 v.s. 3.82 on WASSERSTEINGAN. To confirm that

the superiority of MIX+ models is not solely due to more

parameters, we also tested a DCGAN model with 5 times

many parameters (roughly the same number of parameters

Generalization and Equilibrium in Generative Adversarial Nets (GANs)

Table 1. Inception Scores on CIFAR-10. Mixture of DCGANs

achieves higher score than any single-component DCGAN does.

All models except for WASSERSTEINGAN variants are trained

with labels.

Method Score

SteinGAN (Wang & Liu, 2016) 6.35
Improved GAN (Salimans et al., 2016) 8.09±0.07
AC-GAN (Odena et al., 2016) 8.25 ± 0.07
S-GAN (best variant in (Huang et al., 2017)) 8.59± 0.12
DCGAN (as reported in (Wang & Liu, 2016)) 7.37
DCGAN (best variant in (Huang et al., 2017)) 7.16±0.10
DCGAN (5x size) 7.34±0.07
MIX+DCGAN (with 5 components) 7.72±0.09

WASSERSTEINGAN 3.82±0.06
MIX+WASSERSTEINGAN (with 5 components) 4.04±0.07

Real data 11.24±0.12

Figure 3. Training Curve of MIX+DCGAN v.s. DCGAN (In-

ception Score). MIX+DCGAN is consistently higher than DC-

GAN.

as a 5-component MIX+DCGAN), which is tuned using a

grid search over 27 sets of hyper-parameters (learning rates,

dropout rates, and regularization weights). It gets only 7.34

(labeled as ”5x size” in Table 1), which is lower than that

of a MIX+DCGAN. It is unclear how to apply MIX+ to

S-GANs. We tried mixtures of the upper and bottom gen-

erators separately, resulting in worse scores somehow. We

leave that for future exploration.

Figure 3 shows how Inception Scores evolve during train-

ing. MIX+DCGAN outperforms DCGAN throughout the

entire training process, showing that it makes effective use

of the capacity.

Arjovsky et al. (2017) shows that (approximated) Wasser-

stein loss, which is the neural network divergence by

our definition, is meaningful because it correlates well

with visual quality of generated samples. Figure 4

shows the training dynamics of neural network divergence

of MIX+WASSERSTEINGAN v.s. WASSERSTEINGAN,

which clearly indicates our method is capable of achiev-

ing a much lower divergence as well as of improving the

visual quality of generated samples.

Figure 4. Training Curve of MIX+WASSERSTEINGAN

v.s. WASSERSTEINGAN (Wasserstein Objective).

MIX+WASSERSTEINGAN is better towards the end but

loss drops less smoothly, which needs further investigation.

7. Conclusions

The notion of generalization for GANs has been clarified

by introducing a new notion of distance between distribu-

tions, the neural net distance. (Whereas popular distances

such as Wasserstein and JS may not generalize.) Assum-

ing the visual cortex also is a deep net (or some network of

moderate capacity) generalization with respect to this met-

ric is in principle sufficient to make the final samples look

realistic to humans, even if the GAN doesn’t actually learn

the true distribution.

One issue raised by our analysis is that the current GANs

objectives cannot even enforce that the synthetic distribu-

tion has high diversity (Section 3.4). Furthermore this can-

not be fixed by simply providing the discriminator with

more training examples. Possibly some other change to the

GANs setup are needed.

The paper also made progress another unexplained issue

about GANs, by showing that a pure approximate equilib-

rium exists for a certain natural training objective (Wasser-

stein) and in which the generator wins the game. No as-

sumption about the target distribution Dreal is needed.

Suspecting that a pure equilibrium may not exist for all ob-

jectives, we recommend in practice our MIX+GAN proto-

col using a small mixture of discriminators and generators.

Our experiments show it improves the quality of several

existing GAN training methods.

Finally, existence of an equilibrium does not imply that a

simple algorithm (in this case, backpropagation) would find

it easily. Understanding convergence remains wide open.

Acknowledgements

This paper was done in part while the authors were hosted

by Simons Institute. We thank Moritz Hardt, Kunal Talwar,

Luca Trevisan, and the referees for useful comments. This

research was supported by NSF, Office of Naval Research,

and the Simons Foundation.

Generalization and Equilibrium in Generative Adversarial Nets (GANs)

References

Abadi, Martı́n and Andersen, David G. Learning to pro-

tect communications with adversarial neural cryptogra-

phy. arXiv preprint arXiv:1610.06918, 2016.

Arjovsky, Martin, Chintala, Soumith, and Bottou, Léon.

Wasserstein gan. arXiv preprint arXiv:1701.07875,

2017.

Durugkar, I., Gemp, I., and Mahadevan, S. Generative

Multi-Adversarial Networks. ArXiv e-prints, November

2016.

Ghosh, Jayanta K, Ghosh, RVJK, and Ramamoorthi, RV.

Bayesian nonparametrics. Technical report, 2003.

Goodfellow, Ian. Nips 2016 tutorial: Generative adversar-

ial networks. arXiv preprint arXiv:1701.00160, 2016.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,

Bing, Warde-Farley, David, Ozair, Sherjil, Courville,

Aaron, and Bengio, Yoshua. Generative adversarial nets.

In Advances in neural information processing systems,

pp. 2672–2680, 2014.

Huang, Xun, Li, Yixuan, Poursaeed, Omid, Hopcroft, John,

and Belongie, Serge. Stacked generative adversarial

networks. In Computer Vision and Patter Recognition,

2017.

Jiwoong Im, D., Ma, H., Dongjoo Kim, C., and Taylor, G.

Generative Adversarial Parallelization. ArXiv e-prints,

December 2016.

Kingma, Diederik and Ba, Jimmy. Adam: A method for

stochastic optimization. In International Conference on

Learning Representations, 2015.

Kivinen, Jyrki and Warmuth, Manfred K. Exponentiated

gradient versus gradient descent for linear predictors. In-

formation and Computation, 132(1):1–63, 1997.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple

layers of features from tiny images. Technical report,

2009.

LeCun, Yann, Cortes, Corinna, and Burges, Christo-

pher JC. The mnist database of handwritten digits, 1998.

Lipton, Richard J and Young, Neal E. Simple strategies for

large zero-sum games with applications to complexity

theory. In Proceedings of the twenty-sixth annual ACM

symposium on Theory of computing, pp. 734–740. ACM,

1994.

Liu, Ziwei, Luo, Ping, Wang, Xiaogang, and Tang, Xiaoou.

Deep learning face attributes in the wild. In Proceedings

of the IEEE International Conference on Computer Vi-

sion, pp. 3730–3738, 2015.

Müller, Alfred. Integral probability metrics and their gen-

erating classes of functions. Advances in Applied Prob-

ability, 29(02):429–443, 1997.

Odena, Augustus, Olah, Christopher, and Shlens, Jonathon.

Conditional image synthesis with auxiliary classifier

gans. arXiv preprint arXiv:1610.09585, 2016.

Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsu-

pervised representation learning with deep convolutional

generative adversarial networks. In International Con-

ference on Learning Representations, 2016.

Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech, Che-

ung, Vicki, Radford, Alec, and Chen, Xi. Improved tech-

niques for training gans. In Advances in Neural Informa-

tion Processing Systems, 2016.

Tolstikhin, Ilya, Gelly, Sylvain, Bousquet, Olivier, Simon-

Gabriel, Carl-Johann, and Schölkopf, Bernhard. Ada-

gan: Boosting generative models. arXiv preprint

arXiv:1701.02386, 2017.

v. Neumann, J. Zur theorie der gesellschaftsspiele. Mathe-

matische annalen, 100(1):295–320, 1928.

Wang, Dilin and Liu, Qiang. Learning to draw samples:

With application to amortized mle for generative adver-

sarial learning. Technical report, 2016.

