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Abstract

We propose randomized least-squares value iter-

ation (RLSVI) – a new reinforcement learning al-

gorithm designed to explore and generalize ef-

ficiently via linearly parameterized value func-

tions. We explain why versions of least-squares

value iteration that use Boltzmann or ✏-greedy

exploration can be highly inefficient, and we

present computational results that demonstrate

dramatic efficiency gains enjoyed by RLSVI.

Further, we establish an upper bound on the ex-

pected regret of RLSVI that demonstrates near-

optimality in a tabula rasa learning context.

More broadly, our results suggest that random-

ized value functions offer a promising approach

to tackling a critical challenge in reinforcement

learning: synthesizing efficient exploration and

effective generalization.

1. Introduction

The design of reinforcement learning (RL) algorithms that

explore intractably large state-action spaces efficiently re-

mains an important challenge. In this paper, we propose

randomized least-squares value iteration (RLSVI), which

generalizes using a linearly parameterized value function.

Prior RL algorithms that generalize in this way require, in

the worst case, learning times exponential in the number

of model parameters and/or the planning horizon. RLSVI

aims to overcome these inefficiencies.

RLSVI operates in a manner similar to least-squares value

iteration (LSVI) and also shares much of the spirit of other

closely related approaches such as TD, LSTD, and SARSA

(see, e.g., (Sutton & Barto, 1998; Szepesvári, 2010)). What

fundamentally distinguishes RLSVI is that the algorithm

explores through randomly sampling statistically plausible

value functions, whereas the aforementioned alternatives

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

are typically applied in conjunction with action-dithering

schemes such as Boltzmann or ✏-greedy exploration, which

lead to highly inefficient learning. The concept of explor-

ing by sampling statistically plausible value functions is

broader than any specific algorithm, and beyond our pro-

posal and study of RLSVI. We view an important role of

this paper is to establish this broad concept as a promising

approach to tackling a critical challenge in RL: synthesiz-

ing efficient exploration and effective generalization.

We will present computational results comparing RLSVI

to LSVI with action-dithering schemes. In our case stud-

ies, these algorithms generalize using identical linearly pa-

rameterized value functions but are distinguished by how

they explore. The results demonstrate that RLSVI enjoys

dramatic efficiency gains. Further, we establish a bound

on the expected regret for an episodic tabula rasa learning

context, where the agent has virtually no prior information

about the MDP. Our bound is Õ(
p
H3SAT ), where S and

A denote the cardinalities of the state and action spaces, T
denotes time elapsed, and H denotes the episode duration.

This matches the worst case lower bound for this problem

up to logarithmic factors (Jaksch et al., 2010). It is interest-

ing to contrast this against known Õ(
p
H3S2AT ) bounds

for other provably efficient tabula rasa RL algorithms (e.g.,

UCRL2 (Jaksch et al., 2010)) adapted to this context. To

our knowledge, our results establish RLSVI as the first RL

algorithm that is provably efficient in a tabula rasa context

and also demonstrates efficiency when generalizing via lin-

early parameterized value functions.

There is a sizable literature on RL algorithms that are prov-

ably efficient in tabula rasa contexts (Brafman & Tennen-

holtz, 2002; Kakade, 2003; Ortner & Ryabko, 2012; Os-

band et al., 2013; Strehl et al., 2006). The literature on RL

algorithms that generalize and explore in a provably effi-

cient manner is sparser. There is work on model-based RL

algorithms (Abbasi-Yadkori & Szepesvári, 2011; Osband

& Van Roy, 2014a;b; Gopalan & Mannor, 2014), which ap-

ply to specific model classes and become computationally

intractable for problems of practical scale. Value function

generalization approaches have the potential to overcome

those computational challenges and offer practical means
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for synthesizing efficient exploration and effective gener-

alization. A relevant line of work establishes that efficient

RL with value function generalization reduces to efficient

KWIK online regression (Li & Littman, 2010; Li et al.,

2008). However, it is not known whether the KWIK on-

line regression problem can be solved efficiently. In terms

of concrete algorithms, there is optimistic constraint prop-

agation (OCP) (Wen & Van Roy, 2013), a provably effi-

cient RL algorithm for exploration and value function gen-

eralization in deterministic systems, and C-PACE (Pazis &

Parr, 2013), a provably efficient RL algorithm that gen-

eralizes using interpolative representations. These con-

tributions represent important developments, but OCP is

not suitable for stochastic systems and is highly sensitive

to model mis-specification, and generalizing effectively in

high-dimensional state spaces calls for methods that extrap-

olate. RLSVI advances this research agenda, leveraging

randomized value functions to explore efficiently with lin-

early parameterized value functions. The only other work

we know of involving exploration through random sam-

pling of value functions is (Dearden et al., 1998). That

work proposed an algorithm for tabula rasa learning; the

algorithm does not generalize over the state-action space.

2. Episodic reinforcement learning

A finite-horizon MDP M=(S,A,H,P,R,⇡), where S is a

finite state space, A is a finite action space, H is the number

of periods, P encodes transition probabilities, R encodes

reward distributions, and ⇡ is a state distribution. In each

episode, the initial state s0 is sampled from ⇡, and, in pe-

riod h=0,1,··· ,H�1, if the state is sh and an action ah is

selected then a next state sh+1 is sampled from Ph(·|sh,ah)
and a reward rh is sampled from Rh(·|sh,ah,sh+1). The

episode terminates when state sH is reached and a terminal

reward is sampled from RH (·|sH).

To represent the history of actions and observations over
multiple episodes, we will often index variables by both
episode and period. For example, slh, alh and rlh respec-
tively denote the state, action, and reward observed during
period h in episode l. A policy µ = (µ0, µ1, · · · , µH�1)
is a sequence of functions, each mapping S to A. For each
policy µ, we define a value function for h = 0, .., H:

V
µ
h (s):=EM

h
PH

τ=hrτ

�
�
�sh=s,aτ=µτ (sτ ) for ⌧=h,..,H−1

i

The optimal value function is defined by V ⇤
h (s) =

supµ V
µ
h (s). A policy µ⇤ is said to be optimal if V µ∗

=
V ⇤. It is also useful to define a state-action optimal value

function for h = 0, .., H � 1:

Q⇤
h(s, a) := EM

⇥

rh + V ⇤
h+1(sh+1)

�

�sh = s, ah = a
⇤

A policy µ⇤ is optimal ⇐⇒ µ⇤
h(s)∈argmax

α2AQ⇤
h(s,↵), ∀s,h.

An RL algorithm generates each action alh based on observations

made up to period h of episode l. Over each episode, the algo-

rithm realizes reward
PH

h=0
rlh. One way to quantify the perfor-

mance of an RL algorithm is in terms of the expected cumulative

regret over L episodes, or time T=LH , defined by

Regret(T,M) =
PT/H�1

l=0 EM

h

V ⇤
0 (sl0)�

PH
h=0 rlh

i

.

Consider a scenario in which the agent models that, for

each h, Q⇤
h 2 span [Φh] for some Φh 2 R

SA⇥K . With

some abuse of notation, we use S and A to denote the car-

dinalities of the state and action spaces. We refer this ma-

trix Φh as a generalization matrix and use Φh(s, a) to de-

note the row of matrix Φh associated with state-action pair

(s, a). For k = 1, 2, · · · ,K, we write the kth column of

Φh as �hk and refer to �hk as a basis function. We refer

to contexts where the agent’s belief is correct as coherent

learning, and refer the alternative as agnostic learning.

3. The problem with dithering for exploration

LSVI can be applied at each episode to estimate the op-

timal value function Q⇤ from data gathered over previous

episodes. To form an RL algorithm based on LSVI, we

must specify how the agent selects actions. The most com-

mon scheme is to selectively take actions at random, we

call this approach dithering. Appendix A presents RL algo-

rithms resulting from combining LSVI with the most com-

mon schemes of ✏-greedy or Boltzmann exploration.

The literature on efficient RL shows that these dithering

schemes can lead to regret that grows exponentially in

H and/or S (Kearns & Singh, 2002; Brafman & Ten-

nenholtz, 2002; Kakade, 2003). Provably efficient explo-

ration schemes in RL require that exploration is directed to-

wards potentially informative state-action pairs and consis-

tent over multiple timesteps. This literature provides sev-

eral more intelligent exploration schemes that are provably

efficient, but most only apply to tabula rasa RL, where lit-

tle prior information is available and learning is considered

efficient even if the time required scales with the cardinal-

ity of the state-action space. In a sense, RLSVI represents a

synthesis of ideas from efficient tabula rasa reinforcement

learning and value function generalization methods.

To motivate some of the benefits of RLSVI, in Figure 1

we provide a simple example that highlights the failings of

dithering methods. In this setting LSVI with Boltzmann or

✏-greedy exploration requires exponentially many episodes

to learn an optimal policy, even in a coherent learning con-

text and even with a small number of basis functions.

Figure 1. An MDP where dithering schemes are highly inefficient.
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This environment is made up of a long chain of states

S = {1, .., N}. Each step the agent can transition left or

right. Actions left are deterministic, but actions right only

succeed with probability 1 � 1/N , otherwise they go left.

All states have zero reward except for the far right N which

gives a reward of 1. Each episode is of length H = N � 1
and the agent will begin each episode at state 1. The opti-

mal policy is to go right at every step to receive an expected

reward of p⇤ = (1� 1
N )N�1 each episode, all other policies

give no reward. Example 1 establishes that, for any choice

of basis function, LSVI with any ✏-greedy or Boltzmann

exploration will lead to regret that grows exponentially in

S . A similar result holds for policy gradient algorithms. x

Example 1. Let l⇤ be the first episode during which state

N is visited. It is easy to see that ✓lh = 0 for all h
and all l < l⇤. Furthermore, with either ✏-greedy or

Boltzmann exploration, actions are sampled uniformly at

random over episodes l < l⇤. Thus, in any episode

l < l⇤, the red node will be reached with probability

p⇤2�(S�1) = p⇤2�H . It follows that E[l⇤] � 2S�1 � 1
and lim infT!1 Regret(T,M) � 2S�1 � 1.

4. Randomized value functions

We now consider an alternative approach to exploration

that involves randomly sampling value functions rather

than actions. As a specific scheme of this kind, we propose

randomized least-squares value iteration (RLSVI), which

we present as Algorithm 1.1 To obtain an RL algorithm,

we simply select greedy actions in each episode, as speci-

fied in Algorithm 2.

The manner in which RLSVI explores is inspired by

Thompson sampling (Thompson, 1933), which has been

shown to explore efficiently across a very general class of

online optimization problems (Russo & Van Roy, 2013;

2014). In Thompson sampling, the agent samples from a

posterior distribution over models, and selects the action

that optimizes the sampled model. RLSVI similarly sam-

ples from a distribution over plausible value functions and

selects actions that optimize resulting samples. This distri-

bution can be thought of as an approximation to a poste-

rior distribution over value functions. RLSVI bears a close

connection to PSRL (Osband et al., 2013), which maintains

and samples from a posterior distribution over MDPs and

is a direct application of Thompson sampling to RL. PSRL

satisfies regret bounds that scale with the dimensionality,

rather than the cardinality, of the underlying MDP (Osband

& Van Roy, 2014b;a). However, PSRL does not accommo-

date value function generalization without MDP planning,

a feature that we expect to be of great practical importance.

1Note that when l = 0, both A and b are empty, hence, we set

✓̃l0 = ✓̃l1 = · · · = ✓̃l,H�1 = 0.

Algorithm 1 Randomized Least-Squares Value Iteration

Input: Data Φ0(si0,ai0),ri0,..,ΦH�1(siH�1,aiH�1),riH :
i<L, Parameters �>0, �>0
Output: ✓̃l0,..,✓̃l,H�1

1: for h=H�1,..,1,0 do

2: Generate regression problem A2R
l⇥K , b2R

l:

A←

2

6
4

Φh(s0h,a0h)
...

Φh(sl�1,h,al�1,h)

3

7
5

bi←

(

rih+maxα

⇣

Φh+1✓̃l,h+1

⌘

(si,h+1,↵) if h<H−1

rih+ri,h+1 if h=H−1

3: Bayesian linear regression for the value function

✓lh←
1

�2

✓
1

�2
A

>
A+�I

◆�1

A
>
b

Σlh←

✓
1

�2
A

>
A+�I

◆�1

4: Sample ✓̃lh⇠N(✓lh,Σlh) from Gaussian posterior

5: end for

Algorithm 2 RLSVI with greedy action

Input: Features Φ0,..,ΦH�1; �>0, �>0

1: for l=0,1,.. do

2: Compute ✓̃l0,..,✓̃l,H�1 using Algorithm 1

3: Observe sl0
4: for h=0,..,H�1 do

5: Sample alh2argmax
α2A

⇣

Φh✓̃lh

⌘

(slh,↵)

6: Observe rlh and sl,h+1

7: end for

8: Observe rlH
9: end for

5. Provably efficient tabular learning

RLSVI is an algorithm designed for efficient exploration in

large MDPs with linear value function generalization. So

far, there are no algorithms with analytical regret bounds in

this setting. In fact, most common methods are provably

inefficient, as demonstrated in Example 1, regardless of the

choice of basis function. In this section we will establish

an expected regret bound for RLSVI in a tabular setting

without generalization where the basis functions Φh = I .

The bound is on an expectation with respect to a prob-

ability space (Ω,F ,P). We define the MDP M =
(S,A, H, P,R,⇡) and all other random variables we will

consider with respect to this probability space. We assume

that S , A, H , and ⇡, are deterministic and that R and P
are drawn from a prior distribution. We will assume that
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rewards R(s, a, h) are drawn from independent Dirichlet

↵R(s, a, h) 2 R
2
+ with values on {�1, 0} and transitions

Dirichlet ↵P (s, a, h) 2 R
S
+. Analytical techniques exist to

extend similar results to general bounded distributions; see,

for example (Agrawal & Goyal, 2012).

Theorem 1. If Algorithm 1 is executed with Φh=I for h=
0,..,H�1, ��max(s,a,h)

�

1
T↵R(s,a,h)+1

T↵P (s,a,h)
�

and ��
p
H2+1, then:

E [Regret(T,M)]  Õ
⇣p

H3SAT
⌘

(1)

Surprisingly, these scalings better state of the art opti-

mistic algorithms specifically designed for efficient analy-

sis which would admit Õ(
p
H3S2AT ) regret (Jaksch et al.,

2010). This is an important result since it demonstrates

that RLSVI can be provably-efficient, in contrast to popular

dithering approaches such as ✏-greedy which are provably

inefficient.

5.1. Preliminaries

Central to our analysis is the notion of stochastic optimism,

which induces a partial ordering among random variables.

Definition 1. For any real-valued random variables X and

Y we say that X is stochastically optimistic with respect to

Y if for any u:R!R convex and increasing

E[u(X)] � E[u(Y )].

We will use the notation X <so Y to express this relation.

It is worth noting that stochastic optimism is closely con-

nected with second-order stochastic dominance: X <so Y
if and only if �Y second-order stochastically dominates

�X (Hadar & Russell, 1969). We reproduce the following

result which establishes such a relation involving Gaussian

and Dirichlet random variables in Appendix G.

Lemma 1. For all V 2 [0, 1]N and ↵ 2 [0,1)N with

↵T
1 � 2, if X ⇠ N(↵>V/↵>

1, 1/↵>
1) and Y = PTV

for P ⇠ Dirichlet(↵) then X <so Y .

5.2. Proof sketch

Let Q̃l
h = Φh✓̃lh and µ̃l denote the value function and

policy generated by RLSVI for episode l and let Ṽ l
h(s) =

maxa Q̃
l
h(s, a). We can decompose the per-episode regret

V ⇤
0 (sl0)� V µ̃l

0 (sl0) = Ṽ
l
0 (sl0)−V

µ̃l

0 (sl0)
| {z }

∆conc
l

+ V
⇤

0 (sl0)−Ṽ
l
0 (sl0)

| {z }

∆
opt

l

.

We will bound this regret by first showing that RLSVI gen-

erates optimistic estimates of V ⇤, so that ∆
opt
l has non-

positive expectation for any history Hl available prior to

episode l. The remaining term ∆
conc
l vanishes as estimates

generated by RLSVI concentrate around V ⇤.

Lemma 2. Conditional on any data H, the Q-values gen-

erated by RLSVI are stochastically optimistic with respect

to the true Q-values Q̃l
h(s, a) <so Q⇤

h(s, a) for all s, a, h.

Proof. Fix any data Hl available and use backwards in-

duction on h = H � 1, .., 1. For any (s, a, h) we write

n(s, a, h) for the amount of visits to that datapoint in Hl.

We will write R̂(s, a, h), P̂ (s, a, h) for the empirical mean

reward and mean transitions based upon the data Hl. We

can now write the posterior mean rewards and transitions:

R(s, a, h)|Hl =
�1⇥ ↵R

1 (s, a, h) + n(s, a, h)R̂(s, a, h)

1T↵R(s, a, h) + n(s, a, h)

P (s, a, h)|Hl =
↵P (s, a, h) + n(s, a, h)P̂ (s, a, h)

1T↵P (s, a, h) + n(s, a, h)

Now, using Φh = I for all (s, a, h) we can write the RLSVI

updates in similar form. Note that, Σlh is diagonal with

each diagonal entry equal to �2/(n(s, a, h) + ��2). In the

case of h = H � 1

✓
l

H�1(s, a) =
n(s, a,H � 1)R̂(s, a,H � 1)

n(s, a,H � 1) + ��2

Using the relation that R̂ � R Lemma 1 means that

N(✓
l

H�1(s, a),
1

n(s, a, h) + 1T↵R(s, a, h)
) <so RH�1|Hl.

Therefore, choosing � > maxs,a,h 1
T↵R(s, a, h) and � >

1, we must satisfy the lemma for all s, a and h = H � 1.

For the inductive step we assume that the result holds for

all s, a and j > h, we now want to prove the result for all

(s, a) at timestep h. Once again, we can express ✓
l

h(s, a)
in closed form.

✓
l

h(s, a) =
n(s, a, h)

⇣

R̂(s, a, h) + P̂ (s, a, h)T Ṽ l
h+1

⌘

n(s, a, h) + ��2

To simplify notation we omit the arguments (s, a, h) where

they should be obvious from context. The posterior mean

estimate for the next step value V ⇤
h , conditional on Hl:

E[Q⇤
h(s, a)|Hl] = R+ P

T
V ⇤
h+1  n(R̂+ P̂TV ⇤

h+1)

n+ ��2
.

As long as � > 1
T↵R + 1

T (↵P ) and �2 > H2. By our

induction process Ṽ l
h+1 <so V ⇤

h+1 so that

E[Q⇤
h(s, a)|Hl]  E

"

n(R̂+ P̂T Ṽ l
h+1)

n+ ��2
| Hl

#

.

We can conclude by Lemma 1 and noting that the noise

from rewards is dominated by N(0, 1) and the noise from

transitions is dominated by N(0, H2). This requires that

�2 � H2 + 1.
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Lemma 2 means RLSVI generates stochastically optimistic

Q-values for any history Hl. All that remains is to prove

the remaining estimates E[∆conc
l |Hl] concentrate around

the true values with data. Intuitively this should be clear,

since the size of the Gaussian perturbations decreases as

more data is gathered. In the remainder of this section we

will sketch this result.

The concentration error ∆conc
l = Ṽ l

0 (sl0) � V µ̃l

0 (sl0). We

decompose the value estimate Ṽ l
0 explicitly:

Ṽ l
0 (sl0) =

n(R̂+ P̂T Ṽ l
h+1)

n+ ��2
+ wσ

= R+ P
T
Ṽ l
h+1 + bR + bP + wσ

0

where wσ is the Gaussian noise from RLSVI and bR =
bR(sl0, al00), b

P = bP (sl0, al00) are optimistic bias terms

for RLSVI. These terms emerge since RLSVI shrinks es-

timates towards zero rather than the Dirichlet prior for re-

wards and transitions.

Next we note that, conditional on Hl we can rewrite

P
T
Ṽ l
h+1 = Ṽ l

h+1(s
0) + dh where s0 ⇠ P ⇤(s, a, h) and

dh is some martingale difference. This allows us to decom-

pose the error in our policy to the estimation error of the

states and actions we actually visit. We also note that, con-

ditional on the data Hl the true MDP is independent of the

sampling process of RLSVI. This means that:

E[V µ̃l

0 (sl0)|Hl] = R+ P
T
V µ̃l

h+1.

Once again, we can replace this transition term with a sin-

gle sample s0 ⇠ P ⇤(s, a, h) and a martingale difference.

Combining these observations allows us to reduce the con-

centration error

E[Ṽ l
0 (sl0)� V µ̃l

0 (sl0)|Hl] =

H�1
X

h=0

�

bR(slh, alh, h) + bP (slh, alh, h) + wσ

h

 

.

We can even write explicit expressions for bR, bP and wσ .

b
R(s, a, h) =

nR̂

n+ ��2
−

nR̂− ↵R
1

n+ 1T↵R

b
P (s, a, h) =

nP̂T Ṽ l
h+1

n+ ��2
−

(nP̂ + ↵P )T Ṽ l
h+1

n+ 1T↵P

w
σ

h ∼ N

✓

0,
�2

n+ ��2

◆

The final details for this proof are technical but

the argument is simple. We let �=1
T↵R+1

T↵P and

�=
p
H2+1. Up to Õ notation bR' α

R

1

n+1T
α

P , bP'
H1

T
α

P

n+1T
α

P and wσ

h' Hp
n+H21T

α
R+1T

α
P

. Summing using

a pigeonhole principle for
P

s,a,hn(s,a,h)=T gives us

an upper bound on the regret. We write K(s,a,h):=
�

↵R
1 (s,a,h)+H1

T↵P (s,a,h)
�

to bound the effects of the
prior mistmatch in RLSVI arising from the bias terms

bR, bP . The constraint ↵T
1 � 2 can only be violated twice

for each s, a, h. Therefore up to O(·) notation:

E

h
PT/H�1

l=0
E[∆conc

l |Hl]
i

≤ 2SAH+

P

s,a,hK(s,a,h)log(T+K(s,a,h))+H
p

SAHT log(T )

6. Experiments

Our analysis in Section 5 shows that RLSVI with tabular

basis functions acts as an effective Gaussian approximation

to PSRL. This demonstrates a clear distinction between

exploration via randomized value functions and dithering

strategies such as Example 1. However, the motivation for

RLSVI is not for tabular environments, where several prov-

ably efficient RL algorithms already exist, but instead for

large systems that require generalization.

We believe that, under some conditions, it may be possi-

ble to establish polynomial regret bounds for RLSVI with

value function generalization. To stimulate thinking on this

topic we present a conjecture of a result that may be pos-

sible in Appendix B. For now, we will present a series of

experiments designed to test the applicability and scalabil-

ity of RLSVI for exploration with generalization.

Our experiments are divided into three sections. First, we

present a series of didactic chain environments similar to

Figure 1. We show that RLSVI can effectively synthesize

exploration with generalization with both coherent and ag-

nostic value functions that are intractable under any dither-

ing scheme. Next, we apply our Algorithm to learning to

play Tetris. We demonstrate that RLSVI leads to faster

learning, improved stability and a superior learned policy

in a large-scale video game. Finally, we consider a busi-

ness application with a simple model for a recommendation

system. We show that an RL algorithm can improve upon

even the optimal myopic bandit strategy. RLSVI learns this

optimal strategy when dithering strategies do not.

6.1. Testing for efficient exploration

We now consider a series of environments modelled on

Example 1, where dithering strategies for exploration are

provably inefficient. Importantly, and unlike the tabular

setting of Section 5, our algorithm will only interact with

the MDP but through a set of basis function Φ which gener-

alize across states. We examine the empirical performance

of RLSVI and find that it does efficiently balance explo-

ration and generalization in this didactic example.

6.1.1. COHERENT LEARNING

In our first experiments, we generate a random set of K ba-

sis functions. This basis is coherent but the individual basis
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functions are not otherwise informative. We form a ran-

dom linear subspace VhK spanned by (1,Q⇤
h,w̃1,..,w̃k�2).

Here wi and w̃i are IID Gaussian ⇠N(0,I)2RSA. We

then form Φh by projecting (1,w1,..,wk�1) onto VhK and

renormalize each component to have equal 2-norm2. Figure

2 presents the empirical regret for RLSVI with K=10,N=
50,�=0.1,�=1 and an ✏-greedy agent over 5 seeds3.

(a) First 2000 episodes (b) First 106 episodes

Figure 2. Efficient exploration on a 50-chain

Figure 1 shows that RLSVI consistently learns the opti-

mal policy in roughly 500 episodes. Any dithering strategy

would take at least 1015 episodes for this result. The state

of the art upper bounds for the efficient optimistic algo-

rithm UCRL given by appendix C.5 in (Dann & Brunskill,

2015) for H =15,S=6,A=2,✏=1,�=1 only kick in af-

ter more than 1010 suboptimal episodes. RLSVI is able

to effectively exploit the generalization and prior structure

from the basis functions to learn much faster.

We now examine how learning scales as we change the

chain length N and number of basis functions K. We ob-

serve that RLSVI essentially maintains the optimal policy

once it discovers the rewarding state. We use the number

of episodes until 10 rewards as a proxy for learning time.

We report the average of five random seeds.

Figure 3 examines the time to learn as we vary the chain

length N with fixed K=10 basis functions. We include the

dithering lower bound 2N�1 as a dashed line and a lower

bound scaling 1
10H

2SA for tabular learning algorithms as

a solid line (Dann & Brunskill, 2015). For N=100, 2N�1>
1028 and H2SA>106. RLSVI demonstrates scalable gen-

eralization and exploration to outperform these bounds.

Figure 3. RLSVI learning time against chain length.

Figure 4 examines the time to learn as we vary the basis

2For more details on this experiment see Appendix C.
3In this setting any choice of ✏ or Boltzmann ⌘ is equivalent.

functions K in a fixed N=50 length chain. Learning time

scales gracefully with K. Further, the marginal effect of K
decrease as dim(VhK)=K approaches dim(RSA)=100.

We include a local polynomial regression in blue to high-

light this trend. Importantly, even for large K the perfor-

mance is far superior to the dithering and tabular bounds4.

Figure 4. RLSVI learning time against number of basis features.

Figure 5 examines these same scalings on a logarithmic

scale. We find the data for these experiments is consis-

tent with polynomial learning as hypothesized in Appendix

B. These results are remarkably robust over several orders

of magnitude in both � and �. We present more detailed

analysis of these sensitivities in Appendix C.

Figure 5. Empirical support for polynomial learning in RLSVI.

6.1.2. AGNOSTIC LEARNING

Unlike the example above, practical RL problems will typ-

ically be agnostic. The true value function Q⇤
h will not lie

within VhK . To examine RLSVI in this setting we generate

basis functions by adding Gaussian noise to the true value

function �hk ⇠ N(Q⇤
h, ⇢I). The parameter ⇢ determines

the scale of this noise. For ⇢ = 0 this problem is coherent

but for ⇢ > 0 this will typically not be the case. We fix

N = 20,K = 20,� = 0.1 and � = 1.

For i=0,..,1000 we run RLSVI for 10,000 episodes with

⇢=i/1000 and a random seed. Figure 6 presents the num-

ber of episodes until 10 rewards for each value of ⇢. For

large values of ⇢, and an extremely misspecified basis,

RLSVI is not effective. However, there is some region

0 < ⇢ < ⇢⇤ where learning remains remarkably stable5.

4For chain N=50, the bounds 2N�1>1014 and H2SA>105.
5Note Q⇤

h(s,a)∈{0,1} so ⇢=0.5 represents significant noise.
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This simple example gives us some hope that RLSVI can be

useful in the agnostic setting. In our remaining experiments

we will demonstrate that RLSVI can achieve state of the art

results in more practical problems with agnostic features.

Figure 6. RLSVI is somewhat robust to model mispecification.

6.2. Tetris

We now turn our attention to learning to play the iconic

video game Tetris. In this game, random blocks fall se-

quentially on a 2D grid with 20 rows and 10 columns. At

each step the agent can move and rotate the object sub-

ject to the constraints of the grid. The game starts with

an empty grid and ends when a square in the top row be-

comes full. However, when a row becomes full it is re-

moved and all bricks above it move downward. The objec-

tive is to maximize the score attained (total number of rows

removed) before the end of the game.

Tetris has been something of a benchmark problem for RL

and approximate dynamic programming, with several pa-

pers on this topic (Gabillon et al., 2013). Our focus is not

so much to learn a high-scoring Tetris player, but instead

to demonstrate the RLSVI offers benefits over other forms

of exploration with LSVI. Tetris is challenging for RL with

a huge state space with more than 2200 states. In order to

tackle this problem efficiently we use 22 benchmark fea-

tures. These features give the height of each column, the

absolute difference in height of each column, the maximum

height of a column, the number of “holes” and a constant.

It is well known that you can find far superior linear basis

functions, but we use these to mirror their approach.

In order to apply RLSVI to Tetris, which does not have

fixed episode length, we made a few natural modifica-

tions to the algorithm. First, we approximate a time-

homogeneous value function. We also only the keep most

recent N=105 transitions to cap the linear growth in mem-

ory and computational requirements, similar to (Mnih,

2015). Details are provided in Appendix D. In Figure 7

we present learning curves for RLSVI �=1,�=1 and LSVI

with a tuned ✏-greedy exploration schedule6 averaged over

5 seeds. The results are significant in several ways.

First, both RLSVI and LSVI make significant improve-

6We found that we could not acheive good performance for
any fixed ✏. We used an annealing exploration schedule that was
tuned to give good performance. See Appendix D

ments over the previous approach of LSPI with the same

basis functions (Bertsekas & Ioffe, 1996). Both algorithms

reach higher final performance (' 3500 and 4500 respec-

tively) than the best level for LSPI (3183). They also

reach this performance after many fewer games and, un-

like LSPI do not “collapse” after finding their peak perfor-

mance. We believe that these improvements are mostly due

to the memory replay buffer, which stores a bank of recent

past transitions, rather than LSPI which is purely online.

Second, both RLSVI and LSVI learn from scratch where

LSPI required a scoring initial policy to begin learning.

We believe this is due to improved exploration schemes,

LSPI is completely greedy so struggles to learn without an

initial policy. LSVI with a tuned ✏ schedule is much bet-

ter. However, we do see a significant improvement through

exploration via RLSVI even when compared to the tuned

✏ scheme. This outperformance becomes much more ex-

treme on a variant of Tetris with only 5 rows that highlights

the need for efficient exploration. More details are avail-

able in Appendix D.

Figure 7. Learning Tetris with Bertsekas-Ioffe features.

6.3. A recommendation engine

We will now show that efficient exploration and general-

ization can be helpful in a simple model of customer in-

teraction. Consider an agent which recommends J  N
products from Z = {1, 2, . . . , N} sequentially to a cus-

tomer. The conditional probability that the customer likes

a product depends on the product, some items are better

than others. However it also depends on what the user has

observed, what she liked and what she disliked. We repre-

sent the products the customer has seen by Z̃ ✓ Z . For

each product n 2 Z̃ we will indicate xn 2 {�1,+1} for

her preferences {dislike, like} respectively. If the customer

has not observed the product n /2 Z̃ we will write xn = 0.

We model the probability that the customer will like a new

product a /2 Z̃ by a logistic transformation linear in x:

P(a|x) = 1/ (1 + exp (� [�a +
P

n �anxn])) . (2)

Importantly, this model reflects that the customers’ pref-

erences may evolve as their experiences change. For ex-

ample, a customer may be much more likely to watch the

second season of the TV show “Breaking Bad” if they have

watched the first season and liked it.
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The agent in this setting is the recommendation system,

whose goal is to maximize the cumulative amount of items

liked through time for each customer. The agent does

not know p(a|x) initially, but can learn to estimate the

parameters �, � through interactions across different cus-

tomers. Each customer is modeled as an episode with hori-

zon length H = J with a “cold start” and no previous ob-

served products Z̃ = ;. For our simulations we set �a = 0
8a and sample a random problem instance by sampling

�an ⇠ N(0, c2) independently for each a and n.

Figure 8. RLSVI performs better than Boltzmann exploration.

Figure 9. RLSVI can outperform the optimal myopic policy.

Although this setting is simple, the number of possible

states |S| = |{�1, 0,+1}|H = 3J is exponential in J .

To learn in time less than |S| it is crucial that we can ex-

ploit generalization between states as per equation (2). For

this problem we constuct the following simple basis func-

tions: 81  n,m, a  N , let �m(x, a) = 1{a = m}
and �mn(x, a) = xn1{a = m}. In each period h form

Φh = ((�n)n, (�m)m). The dimension of our function

class K = N2 +N is exponentially smaller than the num-

ber of states. However, barring a freak event, this simple

basis will lead to an agnostic learning problem.

Figure 8 and 9 show the performance of RLSVI compared

to several benchmark methods. In Figure 8 we plot the

cumulative regret of RLSVI when compared against LSVI

with Boltzmann exploration and identical basis features.

We see that RLSVI explores much more efficiently than

Boltzmann exploration over a wide range of temperatures.

In Figure 9 we show that, using this efficient exploration

method, the reinforcement learning policy is able to out-

perform not only benchmark bandit algorithms but even

the optimal myopic policy7. Bernoulli Thompson sampling

does not learn much even after 1200 episodes, since the

algorithm does not take context into account. The linear

contextual bandit outperforms RLSVI at first. This is not

surprising, since learning a myopic policy is simpler than

a multi-period policy. However as more data is gathered

RLSVI eventually learns a richer policy which outperforms

the myopic policy.

Appendix E provides pseudocode for this computational

study. We set N = 10, H = J = 5, c = 2 and L = 1200.

Note that such problems have |S| = 4521 states; this al-

lows us to solve each MDP exactly so that we can compute

regret. Each result is averaged over 100 problem instances

and for each problem instance, we repeat simulations 10
times. The cumulative regret for both RLSVI (with � = 0.2
and �2 = 10�3) and LSVI with Boltzmann exploration

(with � = 0.2 and a variety of “temperature” settings ⌘)

are plotted in Figure 8. RLSVI clearly outperforms LSVI

with Boltzmann exploration.

Our simulations use an extremely simplified model. Never-

theless, they highlight the potential value of RL over multi-

armed bandit approaches in recommendation systems and

other customer interactions. An RL algorithm may outper-

form even an optimal myopic system, particularly where

large amounts of data are available. In some settings, effi-

cient generalization and exploration can be crucial.

7. Closing remarks

We have established a regret bound that affirms efficiency

of RLSVI in a tabula rasa learning context. However the

real promise of RLSVI lies in its potential as an efficient

method for exploration in large-scale environments with

generalization. RLSVI is simple, practical and explores

efficiently in several environments where state of the art

approaches are ineffective.

We believe that this approach to exploration via random-

ized value functions represents an important concept be-

yond our specific implementation of RLSVI. RLSVI is de-

signed for generalization with linear value functions, but

many of the great successes in RL - from Backgammon

(Tesauro, 1995) to Atari8 (Mnih, 2015) - have made use

of highly nonlinear “deep” neural networks. The insights

of this paper and of generalization and exploration via ran-

domized value functions should extend to nonlinear con-

texts. For example, one could approximate posterior sam-

ples of nonlinearly parameterized value functions via the

bootstrap (Osband & Van Roy, 2015).

7The optimal myopic policy knows the true model defined in
Equation 2, but does not plan over multiple timesteps.

8Interestingly, recent work has been able to reproduce similar
performance using linear value functions (Liang et al., 2015).
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bounds for the adaptive control of linear quadratic sys-

tems. Journal of Machine Learning Research - Proceed-

ings Track, 19:1–26, 2011.

Agrawal, Shipra and Goyal, Navin. Further optimal re-

gret bounds for Thompson sampling. arXiv preprint

arXiv:1209.3353, 2012.

Bertsekas, Dimitri P and Ioffe, Sergey. Temporal

differences-based policy iteration and applications in

neuro-dynamic programming. Lab. for Info. and De-

cision Systems Report LIDS-P-2349, MIT, Cambridge,

MA, 1996.

Brafman, Ronen I. and Tennenholtz, Moshe. R-max - a

general polynomial time algorithm for near-optimal re-

inforcement learning. Journal of Machine Learning Re-

search, 3:213–231, 2002.

Dann, Christoph and Brunskill, Emma. Sample complex-

ity of episodic fixed-horizon reinforcement learning. In

Advances in Neural Information Processing Systems, pp.

2800–2808, 2015.

Dearden, Richard, Friedman, Nir, and Russell, Stuart J.

Bayesian Q-learning. In AAAI/IAAI, pp. 761–768, 1998.

Gabillon, Victor, Ghavamzadeh, Mohammad, and Scher-

rer, Bruno. Approximate dynamic programming finally

performs well in the game of tetris. In Advances in

Neural Information Processing Systems, pp. 1754–1762,

2013.

Gopalan, Aditya and Mannor, Shie. Thompson sampling

for learning parameterized markov decision processes.

arXiv preprint arXiv:1406.7498, 2014.

Hadar, Josef and Russell, William R. Rules for ordering

uncertain prospects. The American Economic Review,

pp. 25–34, 1969.

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-

optimal regret bounds for reinforcement learning. Jour-

nal of Machine Learning Research, 11:1563–1600,

2010.

Kakade, Sham. On the Sample Complexity of Reinforce-

ment Learning. PhD thesis, University College London,

2003.

Kearns, Michael J. and Singh, Satinder P. Near-optimal

reinforcement learning in polynomial time. Machine

Learning, 49(2-3):209–232, 2002.

Lagoudakis, Michail, Parr, Ronald, and Littman,

Michael L. Least-squares methods in reinforcement

learning for control. In Second Hellenic Conference on

Artificial Intelligence (SETN-02), 2002.

Levy, Haim. Stochastic dominance and expected utility:

survey and analysis. Management Science, 38(4):555–

593, 1992.

Li, Lihong and Littman, Michael. Reducing reinforcement

learning to KWIK online regression. Annals of Mathe-

matics and Artificial Intelligence, 2010.

Li, Lihong, Littman, Michael L., and Walsh, Thomas J.

Knows what it knows: a framework for self-aware learn-

ing. In ICML, pp. 568–575, 2008.

Liang, Yitao, Machado, Marlos C., Talvitie, Erik, and

Bowling, Michael H. State of the art control of atari

games using shallow reinforcement learning. CoRR,

abs/1512.01563, 2015. URL http://arxiv.org/

abs/1512.01563.

Mnih, Volodymyr et al. Human-level control through deep

reinforcement learning. Nature, 518(7540):529–533,

2015.

Ortner, Ronald and Ryabko, Daniil. Online regret bounds

for undiscounted continuous reinforcement learning. In

NIPS, 2012.

Osband, Ian and Van Roy, Benjamin. Model-based rein-

forcement learning and the eluder dimension. In Ad-

vances in Neural Information Processing Systems, pp.

1466–1474, 2014a.

Osband, Ian and Van Roy, Benjamin. Near-optimal rein-

forcement learning in factored MDPs. In Advances in

Neural Information Processing Systems, pp. 604–612,

2014b.

Osband, Ian and Van Roy, Benjamin. Bootstrapped thomp-

son sampling and deep exploration. arXiv preprint

arXiv:1507.00300, 2015.

Osband, Ian, Russo, Daniel, and Van Roy, Benjamin.

(More) efficient reinforcement learning via posterior

sampling. In NIPS, pp. 3003–3011. Curran Associates,

Inc., 2013.

Pazis, Jason and Parr, Ronald. PAC optimal exploration in

continuous space Markov decision processes. In AAAI.

Citeseer, 2013.

Russo, Dan and Van Roy, Benjamin. Eluder dimension

and the sample complexity of optimistic exploration. In

NIPS, pp. 2256–2264. Curran Associates, Inc., 2013.

http://arxiv.org/abs/1512.01563
http://arxiv.org/abs/1512.01563


Generalization and Exploration via Randomized Value Functions

Russo, Daniel and Van Roy, Benjamin. Learning to opti-

mize via posterior sampling. Mathematics of Operations

Research, 39(4):1221–1243, 2014.

Strehl, Alexander L., Li, Lihong, Wiewiora, Eric, Lang-

ford, John, and Littman, Michael L. PAC model-free

reinforcement learning. In ICML, pp. 881–888, 2006.

Sutton, Richard and Barto, Andrew. Reinforcement Learn-

ing: An Introduction. MIT Press, March 1998.
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