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ABSTRACT 

We have done an empirical study of the relation of the number of 
parameters (weights) in a feedforward net to generalization perfor­
mance. Two experiments are reported. In one, we use simulated data 
sets with well-controlled parameters, such as the signal-to-noise ratio 
of continuous-valued data. In the second, we train the network on 
vector-quantized mel cepstra from real speech samples. In each case, 
we use back-propagation to train the feedforward net to discriminate in 
a multiple class pattern classification problem. We report the results of 
these studies, and show the application of cross-validation techniques 
to prevent overfitting. 

1 INTRODUCTION 

It is well known that system models which have too many parameters (with respect 

to the number of measurements) do not generalize well to new measurements. For 
instance, an autoregressive (AR) model can be derived which will represent the training 

data with no error by using as many parameters as there are data points. This would 
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generally be of no value, as it would only represent the training data. Criteria such as the 

Akaike Information Criterion (AIC) [Akaike, 1974, 1986] can be used to penalize both 

the complexity of AR models and their training error variance. In feedforward nets, we 

do not currently have such a measure. In fact, given the aim of building systems which 

are biologically plausible, there is a temptation to assume the usefulness of indefinitely 

large adaptive networks. In contrast to our best guess at Nature's tricks, man-made sys­

tems for pattern recognition seem to require nasty amounts of data for training. In short, 

the design of massively parallel systems is limited by the number of parameters that can 

be learned with available training data. It is likely that the only way truly massive sys­

tems can be built is with the help of prior information, e.g., connection topology and 

weights that need not be learned [Feldman et al, 1988]. 

Learning theory [Valiant, V.N., 1984; Pearl, J., 1978] has begun to establish what 

is possible for trained systems. Order-of-magnitude lower bounds have been established 

for the number of required measurements to train a desired size feedforward net 

[Baum&Haussler, 1988]. Rules of thumb suggesting the number of samples required for 

specific distributions could be useful for practical problems. Widrow has suggested hav­

ing a training sample size that is 10 times the number of weights in a network ("Uncle 

Bernie's Rule")[Widrow, 1987]. We have begun an empirical study of the relation of the 

number of parameters in a feedforward net (e.g. hidden units, connections, feature 

dimension) to generalization performance for data sets with known discrimination com­

plexity and signal-to-noise ratio. In the experiment reported here, we are using simulated 

data sets with controlled parameters, such as the number of clusters of continuous-valued 

data. In a related practical example, we have trained a feedforward network on vector­

quantized mel cepstra from real speech samples. In each case, we are using the back­

propagation algorithm [Rumelhart et al, 1986] to train the feedforward net to discriminate 

in a multiple class pattern classification problem. Our results confirm that estimating 

more parameters than there are training samples can degrade generalization. However, 

the peak in generalization performance (for the difficult pattern recognition problems 

tested here) can be quite broad if the networks are not trained too long, suggesting that 
previous guidelines for network size may have been conservative. Furthermore, cross­

validation techniques, which have also proved quite useful for autoregressive model 

order determination, appear to improve generalization when used as a stopping criterion 

for iteration, and thus preventing overtraining. 

2 RANDOM VECTOR PROBLEM 

2.1 METHODS 

Studies based on synthesized data sets will generally show behavior that is dif­

ferent from that seen with a real data set. Nonetheless, such studies are useful because of 

the ease with which variables of interest may be altered. In this case, the object was to 

manufacture a difficult pauern recognition problem with statistically regular variability 

between the training and test sets. This is actually no easy trick; if the problem is too 

easy, then even very small nets will be sufficient, and we would not be modeling the 
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problem of doing hard pattern classification with small amounts of training data. If the 
problem is too hard. then variations in perfonnance will be lost in the statistical varia­
tions inherent to methods like back-propagation. which use random initial weight values. 

Random points in a 4-dimensional hyperrectangle (drawn from a uniform probabil­
ity distribution) are classified arbitrarily into one of 16 classes. This group of points will 
be referred to as a cluster. This process is repeated for 1-4 nonoverlapping hyperrectan­
gles. A total of 64 points are chosen. 4 for each class. All points are then randomly per­
turbed with noise of uniform density and range specified by a desired signal-to-noise 
ratio (SNR). The noise is added twice to create 2 data sets. one to be used for training. 
and the other for test. Intuitively, one might expect that 16-64 hidden units would be 
required to transform the training space for classification by the output layer. However. 

the variation between training and test and the relatively small amount of data (256 
numbers) suggest that for large numbers of parameters (over 256) there should be a 
significant degrading of generalization. Another issue was how performance in such a 
situation would vary over large numbers of iterations. 

Simulations were run on this data using multi-layer perceptrons(MLP) (Le .• layered 
feedforward networks) with 4 continuous-valued inputs. 16 outputs. and a hidden layer of 
sizes ranging from 4 to 128. Nets were run for signal-to-noise ratios of 1.0 and 2.0. where 
the SNR is defined as the ratio of the range of the original cluster points to the range of 

the added random values. Error back-propagation without momentum was used. with an 
adaptation constant of .25 . For each case. the 64 training patterns were used 10,000 

times. and the resulting network was tested on the second data set every 100 iterations so 
that generalization could be observed during the learning. Blocks of ten scores were 
averaged to stabilize the generalization estimate. After this smoothing, the standard devi­
ation of error (using the normal approximation to the binomial distribution) was roughly 
1 %. Therefore. differences of 3% in generalization performance are significant at a level 
of .001 . All computation was performed on Sun4-110's using code written in Cat ICS!. 
Roughly a trillion floating point operations were required for the study. 

2.2 RESULTS 

Table I shows the test performance for a single cluster and a signal-to-noise ratio 
of 1.0 . The chart shows the variation over a range of iterations and network size 
(specified both as #hidden units. and as ratio of #weights to #measurements. or "weight 
ratio"). Note that the percentages can have finer gradation than 1/64, due to the averag­
ing. and that the performance on the training set is given in parentheses. Test perfor­
mance is best for this case for 8 hidden units (24.7%). or a weight ratio of .62 (after 2000 
iterations). and for 16 units (21.9%). or a weight ratio of 1.25 (after 10000 iterations). For 

larger networks. the performance degrades, presumably because of the added noise. At 
2000 iterations. the degradation is statistically significant. even in going from 8 to 16 hid­
den units. There is further degradation out to the 128-unit case. The surprising thing is 

that. while this degradation is quite noticeable, it is quite graceful considering the order­
of magnitude range in net sizes. An even stronger effect is the loss of generalization 
power when the larger nets are more fully trained. All of the nets generalized better when 
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they were trained to a relatively poor degree, especially the larger ones. 

Table I - Test (and training) scores: 1 cluster, SNR = 1.0 

Hhidden #Weis.hts %Test (Train) Correct after N Iterations 

units Hinputs 1000 2000 5000 10000 

4 .31 9.2(4.4) 21.7(15.6) 12.0(25.9) 15.6(34.4) 
8 .62 11.4(5.2) 24.7(17.0) 20.6(29.8) 21.4(63.9) 

16 1.25 13.6(6.9) 21.1(18.4) 18.3(37.2) 21.9(73.4) 
32 2.50 12.8(6.4) 18.4(18.3) 17.8(41.7) 13.0(80.8) 
64 5.0 13.6(7.7) 18.3(20.8) 19.7(34.4) 18.0(79.2) 

128 10.0 11.6(6.7) 17.7(19.1) 12.2(34.7) 15.6(75.6) 

Table II shows the results for the same I-cluster problem, but with higher SNR 
data (2.0 ). In this case, a higher level of test performance was reached, and it was 

reached for a larger net with more iterations (40.8% for 64 hidden units after 5000 itera­
tions). At this point in the iterations, no real degradation was seen for up to 10 times the 
number of weights as data samples. However, some signs of performance loss for the 
largest nets was evident after 10000 iterations. Note that after 5000 iterations, the net­

works were only half-trained (roughly 50% error on the training set). When they were 
80-90% trained, the larger nets lost considerable ground. For instance, the 10 x net (128 
hidden units) lost performance from 40.5% to 28.1 % during these iterations. It appears 
that the higher signal-to-noise of this example permitted performance gains for even 
higher overparametrization factors, but that the result was even more sensitive to training 
for too many iterations. 

Table II - Test (and training) scores: 1 cluster, SNR = 2.0 

Hhidden #Weights %Test (Train) Correct after N Iterations 

units Hinputs 1000 2000 5000 10000 

4 .31 18.1(8.4) 25.6(29.1) 32.2(29.8) 26.9(29.2) 
8 .62 22.5(12.8) 31.1(34.7) 34.5(44.5) 33.3(62.2) 

16 1.25 22.0(11.6) 33.4(32.8) 33.6(57.2) 29.4(78.3) 
32 2.50 25.6(13.3) 33.4(35.2) 39.4(51.1) 34.2(87.0) 
64 5.0 26.4(13.9) 36.1(35.0) 40.8(45.2) 33.6(86.9) 

128 10.0 26.9(12.0) 34.5134.5) 40.5(47.2) 28.1(91.1) 
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Table III shows the perfonnance for a 4-cluster case. with SNR = 1.0. Small nets are 
omitted here, because earlier experiments showed this problem to be too hard. The best 
performance (21.1 %) is for one of the larger nets at 2000 iterations. so that the degrada­
tion effect is not clearly visible for the undertrained case. At 10000 iterations, however, 
the larger nets do poorly. 

Table III - Test (and training) scores: 4 cluster, SNR = 1.0 

#hidden #Weights %Test (Train) Correct after N Iterations 

units #inputs 1000 2000 5000 10000 

32 2.50 13.8(12.7) 18.3(23.6) 15.8(38.8) 9.4(71.4) 
64 5.0 13.6(12.7) 18.4(23.6) 14.7(42.7) 18.8(71.6) 

96 7.5 15.3(13.0) 21.1(24.7) 15.9(45.5) 16.3(78.1) 
128 10. 15.2(13.1) 19.1(23.8) 17.5(40.5) 10.5(70.9) 

Figure 1 illustrates this graphically. The "undertrained" case is relatively insensi­
tive to the network size, as well as having the highest raw score. 

3 SPEECH RECOGNITION 

3.1 METHODS 

In an ongoing project at ICSI and Philips, a Gennan language data base consisting 
of 100 training and 100 test sentences (both from the same speaker) were used for train­
ing of a multi-layer-perceptron (MLP) for recognition of phones at the frame level, as 
well as to estimate probabilities for use in the dynamic programming algorithm for a 
discrete Hidden Markov Model (HMM) [Bourlard & Wellekens. 1988; Bourlard et aI, 
1989]. Vector-quantized mel cepstra were used as binary input to a hidden layer. Multi­
ple frames were used as input to provide context to the network. While the size of the 

output layer was kept fixed at 50 units, corresponding to the 50 phonemes to be recog­

nized, the hidden layer was varied from 20 to 200 units, and the input context was kept 

fixed at 9 frames of speech. As the acoustic vectors were coded on the basis of 132 pro­

totype vectors by a simple binary vector with only one bit 'on', the input field contained 
9x132=1188 units, and the total number of possible inputs was thus equal to 1329• There 
were 26767 training patterns and 26702 independent test patterns. Of course, this 
represented only a very small fraction of the possible inputs, and generalization was thus 
potentially difficult Training was done by the classical "error-back propagation" algo­
rithm, starting by minimizing an entropy criterion [Solla et aI, 1988] and then the stan­
dard least-mean-square error (LMSE) criterion. In each iteration, the complete training 
set was presented, and the parameters were updated after each training pattern. 
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To avoid overtraining of the MLP. (as was later demonstrated by the random vector 

experiment described above), improvement on the test set was checked after each itera­

tion. If the classification rate on the test set was decreasing. the adaptation parameter of 
the gradient procedure was decreased. otherwise it was kept constanl In another experi­
ment this approach was systematized by splitting the data in three parts: one for the train­
ing, one for the test and a third one absolutely independent of the training procedure for 

validation. No significant difference was observed between classification rates for the 
test and validation data. 

Other than the obvious difference with the previous study (this used real data), it is 
important to note another significant point: in this case. we stopped iterating (by anyone 
particular criterion) when that criterion was leading to no new test set performance 
improvemenl While we had not yet done the simulations described above. we had 
observed the necessity for such an approach over the course of our speech research. We 
expected this to ameliorate the effects of overparameterization. 

3.2 RESULTS 

Table IV shows the variation in performance for 5. 20. 50. and 200 hidden units. 
The peak at 20 hidden units for test set performance. in contrast to the continued 
improvement in training set performance. can be clearly seen. However. the effect is cer­
tainly a mild one given the wide range in network size; using 10 times the number of 

weights as in the "peak" case only causes a degradation of 3.1 %. Note. however, that for 
this experiment. the more sophisticated training procedure was used which halted train­
ing when generalization started to degrade. 

For comparison with classical approaches, results obtained with Maximum Likeli­
hood (ML) and Bayes estimates are also given. In those cases, it is not possible to use 
contextual information. because the number of parameters to be learned would be 
50 * 1329 for the 9 frames of contexl Therefore. the input field was restricted to a single 

frame. The number of parameters for these two last classifiers was then 50 * 132 = 6600. 
or a parameter/measurement ratio of .25 . This restriction explains why the Bayes 

classifier. which is inherently optimal for a given pattern classification problem. is shown 
here as yielding a lower performance than the potentially suboptimal MLP. 

Table IV - Test Run: Phoneme Recognition on German data base 

hidden units #parameters/#training numbers training test 

5 .23 62.8 54.2 

20 .93 75.7 62.7 

50 2.31 73.7 60.6 

200 9.3 86.7 59.6 

ML .25 45.9 44.8 

Bayes .25 53.8 53.0 



636 Morgan and Bourlard 

4 CONCLUSIONS 

While both studies show the expected effects of overparameterization, (poor gen­

eralization, sensitivity to overtraining in the presence of noise), perhaps the most 
significant result is that it was possible to greatly reduce the sensitivity to the choice of 
network size by directly observing the network perfonnance on an independent test set 
during the course of learning (cross-validation). If iterations are not continued past this 

point, fewer measurements are required. This only makes sense because of the inter­

dependence of the learned parameters, particularly for the undertrained case. In any 
event, though, it is clear that adding parameters over the number required for discrimina­

tion is wasteful of resources. Networks which require many more parameters than there 

are measurements will certainly reach lower levels of peak perfonnance than simpler 

systems. For at least the examples described here. it is clear that both the size of the 
MLP and the degree to which it should be trained are parameters which must be learned 

from experimentation with the data set. Further study might. perhaps, yield enough 

results to pennit some rule of thumb dependent on properties of the data, but our current 
thinking is that these parameters should be detennined dynamically by testing on an 

independent test set. 
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Figure 1: Sensitivity to net size 


