
550 Ackley and Littman

Generalization and scaling in reinforcement

learning

David H. Ackley

Michael L. Littman

Cognitive Science Research Group

Bellcore

Morristown, NJ 07960

ABSTRACT

In associative reinforcement learning, an environment generates input

vectors, a learning system generates possible output vectors, and a re­

inforcement function computes feedback signals from the input-output

pairs. The task is to discover and remember input-output pairs that

generate rewards. Especially difficult cases occur when rewards are

rare, since the expected time for any algorithm can grow exponentially

with the size of the problem. Nonetheless, if a reinforcement function

possesses regularities, and a learning algorithm exploits them, learning

time can be reduced below that of non-generalizing algorithms. This

paper describes a neural network algorithm called complementary re­

inforcement back-propagation (CRBP), and reports simulation results

on problems designed to offer differing opportunities for generalization.

1 REINFORCEMENT LEARNING REQUIRES SEARCH

Reinforcement learning (Sutton, 1984; Barto & Anandan, 1985; Ackley, 1988; Allen,

1989) requires more from a learner than does the more familiar supervised learning

paradigm. Supervised learning supplies the correct answers to the learner, whereas

reinforcement learning requires the learner to discover the correct outputs before

they can be stored. The reinforcement paradigm divides neatly into search and

learning aspects: When rewarded the system makes internal adjustments to learn

the discovered input-output pair; when punished the system makes internal adjust­

ments to search elsewhere.

Generalization and Scaling in Reinforcement Learning 551

1.1 MAKING REINFORCEMENT INTO ERROR

Following work by Anderson (1986) and Williams (1988), we extend the backprop­

agation algorithm to associative reinforcement learning. Start with a "garden va­

riety" backpropagation network: A vector i of n binary input units propagates

through zero or more layers of hidden units, ultimately reaching a vector 8 of m

sigmoid units, each taking continuous values in the range (0,1). Interpret each 8j

as the probability that an associated random bit OJ takes on value 1. Let us call

the continuous, deterministic vector 8 the search vector to distinguish it from the

stochastic binary output vector o.

Given an input vector, we forward propagate to produce a search vector 8, and

then perform m independent Bernoulli trials to produce an output vector o. The

i - 0 pair is evaluated by the reinforcement function and reward or punishment

ensues. Suppose reward occurs. We therefore want to make 0 more likely given i.

Backpropagation will do just that if we take 0 as the desired target to produce an

error vector (0 - 8) and adjust weights normally.

Now suppose punishment occurs, indicating 0 does not correspond with i. By choice

of error vector, backpropagation allows us to push the search vector in any direction;

which way should we go? In absence of problem-specific information, we cannot pick

an appropriate direction with certainty. Any decision will involve assumptions. A

very minimal "don't be like 0" assumption-employed in Anderson (1986), Williams

(1988), and Ackley (1989)-pushes s directly away from 0 by taking (8 - 0) as the

error vector. A slightly stronger "be like not-o" assumption-employed in Barto &

Anandan (1985) and Ackley (1987)-pushes s directly toward the complement of 0

by taking ((1 - 0) - 8) as the error vector. Although the two approaches always

agree on the signs of the error terms, they differ in magnitudes. In this work,

we explore the second possibility, embodied in an algorithm called complementary

reinforcement back-propagation (CRBP).

Figure 1 summarizes the CRBP algorithm. The algorithm in the figure reflects three

modifications to the basic approach just sketched. First, in step 2, instead of using

the 8j'S directly as probabilities, we found it advantageous to "stretch" the values

using a parameter v. When v < 1, it is not necessary for the 8i'S to reach zero or

one to produce a deterministic output. Second, in step 6, we found it important

to use a smaller learning rate for punishment compared to reward. Third, consider

step 7: Another forward propagation is performed, another stochastic binary out­

put vector 0* is generated (using the procedure from step 2), and 0* is compared

to o. If they are identical and punishment occurred, or if they are different and

reward occurred, then another error vector is generated and another weight update

is performed. This loop continues until a different output is generated (in the case

of failure) or until the original output is regenerated (in the case of success). This

modification improved performance significantly, and added only a small percentage

to the total number of weight updates performed.

552 Ackley and Littman

O. Build a back propagation network with input dimensionality n and output
dimensionality m. Let t = 0 and te = O.

1. Pick random i E 2n and forward propagate to produce a/s.
2. Generate a binary output vector o. Given a uniform random variable ~ E [0,1]

and parameter 0 < v < 1,

OJ = {1, if(sj - !)/v+! ~ ~j
0, otherwise.

3. Compute reinforcement r = f(i,o). Increment t. If r < 0, let te = t.
4. Generate output errors ej. If r > 0, let tj = OJ, otherwise let tj = 1- OJ. Let

ej = (tj - sj)sj(l- Sj).

5. Backpropagate errors.
6. Update weights. 1:::..Wjk = 1]ekSj, using 1] = 1]+ if r ~ 0, and 1] = 1]- otherwise,

with parameters 1]+,1]- > o.
7. Forward propagate again to produce new Sj's. Generate temporary output

vector 0*. If (r > 0 and 0* #- 0) or (r < 0 and 0* = 0), go to 4.
8. If te ~ t, exit returning te, else go to 1.

Figure 1: Complementary Reinforcement Back Propagation-CRBP

2 ON-LINE GENERALIZATION

When there are many possible outputs and correct pairings are rare, the compu­

tational cost associated with the search for the correct answers can be profound.

The search for correct pairings will be accelerated if the search strategy can effec­

tively generalize the reinforcement received on one input to others. The speed of

an algorithm on a given problem relative to non-generalizing algorithms provides a

measure of generalization that we call on-line generalization.

O. Let z be an array of length 2n. Set the z[i] to random numbers from 0 to
2m - 1. Let t = te = O.

1. Pick a random input i E 2n.

2. Compute reinforcement r = f(i, z[i]). Increment t.
3. If r < 0 let z[i] = (z[i] + 1) mod 2m , and let te = t.
4. If te <t:: t exit returning te, else go to 1.

Figure 2: The Table Lookup Reference Algorithm Tref(f, n, m)

Consider the table-lookup algorithm Tref(f, n, m) summarized in Figure 2. In this

algorithm, a separate storage location is used for each possible input. This prevents

the memorization of one i - 0 pair from interfering with any other. Similarly,

the selection of a candidate output vector depends only on the slot of the table

corresponding to the given input. The learning speed of Tref depends only on the

input and output dimensionalities and the number of correct outputs associated

Generalization and Scaling in Reinforcement Learning 553

with each input. When a problem possesses n input bits and n output bits, and

there is only one correct output vector for each input vector, Tre{ runs in about 4n

time (counting each input-output judgment as one.) In such cases one expects to

take at least 2n - 1 just to find one correct i - 0 pair, so exponential time cannot be

avoided without a priori information. How does a generalizing algorithm such as

CRBP compare to Trer?

3 SIMULATIONS ON SCALABLE PROBLEMS

We have tested CRBP on several simple problems designed to offer varying degrees

and types of generalization. In all of the simulations in this section, the following

details apply: Input and output bit counts are equal (n). Parameters are dependent

on n but independent of the reinforcement function f. '7+ is hand-picked for each

n,l 11- = 11+/10 and II = 0.5. All data points are medians of five runs. The stopping

criterion te ~ t is interpreted as te +max(2000, 2n+l) < t. The fit lines in the figures

are least squares solutions to a x bn , to two significant digits.

n

As a notational convenience, let c = ~ E ij - the fraction of ones in the input.
;=1

3.1 n-MAJORlTY

Consider this "majority rules" problem: [if c > ~ then 0 = In else 0 = on]. The i-o

mapping is many-to-l. This problem provides an opportunity for what Anderson

(1986) called "output generalization": since there are only two correct output states,

every pair of output bits are completely correlated in the cases when reward occurs.

107

106

- 105 G)

'iii
u

104 rn
C)

103 0
::::.
G)

102 E
;

10 1

10 0

0 1 2 3 456 78 91011121314

n

Figure 3: The n-majority problem

x Table

D CRBP n-n-n

+ CRBP n-n

Figure 3 displays the simulation results. Note that although Trer is faster than

CRBP at small values of n, CRBP's slower growth rate (1.6n vs 4.2n) allows it to

cross over and begin outperforming Trer at about 6 bits. Note also--in violation of

1 For n = 1 to 12. we used '1+ = {2.000. 1.550. 1.130.0.979.0.783.0.709.0.623.0.525.0.280.

0.219. 0.170. 0.121}.

554 Ackley and Littman

-G)

'ii
tA
Q
0
::::.
G)

.5 -

some conventional wisdom-that although n-majority is a linearly separable prob­

lem, the performance of CRBP with hidden units is better than without. Hidden

units can be helpful--even on linearly separable problems-when there are oppor­

tunities for output generalization.

3.2 n-COPY AND THE 2k -ATTRACTORS FAMILY

As a second example, consider the n-copy problem: [0 = i]. The i-o mapping is now

1-1, and the values of output bits in rewarding states are completely uncorrelated,

but the value of each output bit is completely correlated with the value of the

corresponding input bit. Figure 4 displays the simulation results. Once again, at

107

106

105

104

103

102

10 1

100

0

150*2.0I\n

12*2.2I\n

1 2 3 4 5 6 7 8 9 10 1112

n
Figure 4: The n-copy problem

x Table

D CRBP n-n-n

+ CRBP n-n

low values of n, Trer is faster, but CRBP rapidly overtakes Trer as n increases. In

n-copy, unlike n-majority, CRBP performs better without hidden units.

The n-majority and n-copy problems are extreme cases of a spectrum. n-majority

can be viewed as a "2-attractors" problem in that there are only two correct

outputs-all zeros and all ones-and the correct output is the one that i is closer

to in hamming distance. By dividing the input and output bits into two groups

and performing the majority function independently on each group, one generates

a "4-aUractors" problem. In general, by dividing the input and output bits into

1 ~ Ie ~ n groups, one generates a "2i:-attractors" problem. When Ie = 1, n­

majority results, and when Ie = n, n-copy results.

Figure 5 displays simulation results on the n = 8-bit problems generated when Ie is

varied from 1 to n. The advantage of hidden units for low values of Ie is evident,

as is the advantage of "shortcut connections" (direct input-to-output weights) for

larger values of Ie. Note also that combination of both hidden units and shortcut

connections performs better than either alone.

-I)
'ii
u
f)

D)

.2 -I)
E
:::

Generalization and Scaling in Reinforcement Learning 555

105~--------------------------------~

1 2 3 4 5 6

k

7 8

-0- CASP 8-10-8

-+- CASP 8-8
.... CASP 8-10-Sls

... Table

Figure 5: The 21:-attractors family at n = 8

3.3 n-EXCLUDED MIDDLE

All of the functions considered so far have been linearly separable. Consider this

"folded majority" function: [if i < c < i then 0 = on else 0 = In]. Now, like

n-majority, there are only two rewarding output states, but the determination of

which output state is correct is not linearly separable in the input space. When

n = 2, the n-excluded middle problem yields the EQV (i.e., the complement of

XOR) function, but whereas functions such as n-parity [if nc is even then 0 = on
else 0 = In] get more non-linear with increasing n, n-excluded middle does not.

107~------------------------------~~

106

10 5

104

17oo*1.6"n
x Table

c CRSP n-n-n/s

10 3

102

10 1

100

0 1 2 3 4 5 6 7 8 9 10 1112

n

Figure 6: The n-excluded middle problem

Figure 6 displays the simulation results. CRBP is slowed somewhat compared to

the linearly separable problems, yielding a higher "cross over point" of about 8 bits.

556 Ackley and Littman

4 STRUCTURING DEGENERATE OUTPUT SPACES

All of the scaling problems in the previous section are designed so that there is

a single correct output for each possible input. This allows for difficult problems

even at small sizes, but it rules out an important aspect of generalizing algorithms

for associative reinforcement learning: If there are multiple satisfactory outputs

for given inputs, a generalizing algorithm may impose structure on the mapping it

produces.

We have two demonstrations of this effect, "Bit Count" and "Inverse Arithmetic."

The Bit Count problem simply states that the number of I-bits in the output should

equal the number of I-bits in the input. When n = 9, Tref rapidly finds solutions

involving hundreds of different output patterns. CRBP is slower--especially with

relatively few hidden units-but it regularly finds solutions involving just 10 output

patterns that form a sequence from 09 to 19 with one bit changing per step.

0+Ox4=0 0+2x4=8 0+4 x 4 = 16 0+6 x 4 = 24

1+0x4=1 1+2x4=9 1+4x4=17 1 + 6 x 4 = 25

2+0x4=2 2 + 2 x 4 = 10 2 + 4 x 4 = 18 2 + 6 x 4 = 26

3+0x4=3 3+2x4=11 3 +4 x 4 = 19 3 + 6 x 4 = 27

4+0x4=4 4+ 2 x 4 = 12 4+4 x 4 = 20 4 + 6 x 4 = 28

5+0x4=5 5 + 2 x 4 = 13 5 + 4 x 4 = 21 5 + 6 x 4 = 29

6+0x4=6 6 + 2 x 4 = 14 6 + 4 x 4 = 22 6 + 6 x 4 = 30

7+0x4=7 7 + 2 x 4 = 15 7 + 4 x 4 = 23 7 + 6 x 4 = 31

2+2-4=0 2+2+4=8 6+ 6 + 4 = 16 0+6 x 4 = 24

3+2-4=1 3+2+4=9 7+6+4= 17 1 + 6 x 4 = 25

2+2+4=2 2 + 2 x 4 = 10 2 + 4 x 4 = 18 2 + 6 x 4 = 26

3+2+4=3 3+2x4=1l 3 + 4 x 4 = 19 3 + 6 x 4 = 27

6+2-4=4 6 + 2+ 4 = 12 4 x 4 + 4 = 20 4 + 6 x 4 = 28

7+2-4=5 7 + 2 + 4 = 13 5 + 4 x 4 = 21 5 + 6 x 4 = 29

6+2+4=6 6 + 2 x 4 = 14 6 + 4 x 4 = 22 6 + 6 x 4 = 30
7+2-.;-4=7 7 + 2 x 4 = 15 7 +4 x 4 = 23 7 + 6 x 4 = 31

Figure 7: Sample CRBP solutions to Inverse Arithmetic

The Inverse Arithmetic problem can be summarized as follows: Given i E 25 , find

:1:, y, z E 23 and 0, <> E {+(OO)' -(01)' X (10)' +(11)} such that :I: oy<>z = i. In all there are
13 bits of output, interpreted as three 3-bit binary numbers and two 2-bit operators,

and the task is to pick an output that evaluates to the given 5-bit binary input

under the usual rules: operator precedence, left-right evaluation, integer division,

and division by zero fails.

As shown in Figure 7, CRBP sometimes solves this problem essentially by discover­

ing positional notation, and sometimes produces less-globally structured solutions,

particularly as outputs for lower-valued i's, which have a wider range of solutions.

Generalization and Scaling in Reinforcement Learning 557

5 CONCLUSIONS

Some basic concepts of supervised learning appear in different guises when the

paradigm of reinforcement learning is applied to large output spaces. Rather than

a "learning phase" followed by a "generalization test," in reinforcement learning

the search problem is a generalization test, performed simultaneously with learning.

Information is put to work as soon as it is acquired.

The problem of of "overfitting" or "learning the noise" seems to be less of an issue,

since learning stops automatically when consistent success is reached. In exper­

iments not reported here we gradually increased the number of hidden units on

the 8-bit copy problem from 8 to 25 without observing the performance decline

associated with "too many free parameters."

The 2k-attractors (and 2k-folds-generalizing Excluded Middle) families provide

a starter set of sample problems with easily understood and distinctly different

extreme cases.

In degenerate output spaces, generalization decisions can be seen directly in the

discovered mapping. Network analysis is not required to "see how the net does it."

The possibility of ultimately generating useful new knowledge via reinforcement

learning algorithms cannot be ruled out.

References

Ackley, D.H. (1987) A connectionist machine for genetic hillclimbing. Boston, MA: Kluwer

Academic Press.

Ackley, D.H. (1989) Associative learning via inhibitory search. In D.S. Touretzky (ed.),

Advances in Neural Information Processing Systems 1, 20-28. San Mateo, CA: Morgan

Kaufmann.

Allen, R.B. (1989) Developing agent models with a neural reinforcement technique. IEEE

Systems, Man, and Cybernetics Conference. Cambridge, MA.

Anderson, C.W. (1986) Learning and problem solving with multilayer connectionist sys­

tems. University of Mass. Ph.D. dissertation. COINS TR 86-50. Amherst, MA.

Barto, A.G. (1985) Learning by statistical cooperation of self-interested neuron-like com­

puting elements. Human Neurobiology, 4:229-256.

Barto, A.G., & Anandan, P. (1985) Pattern recognizing stochastic learning automata.

IEEE Transactions on Systems, Man, and Cybernetics, 15, 360-374.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986) Learning representations by back­

propagating errors. Nature, 323, 533-536.

Sutton, R.S. (1984) Temporal credit assignment in reinforcement learning. University of

Mass. Ph.D. dissertation. COINS TR 84-2. Amherst, MA.

Williams, R.J. (1988) Toward a theory of reinforcement-learning connectionist systems.

College of Computer Science of Northeastern University Technical Report NU-CCS-88-3.

Boston, MA.

