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Abstract Recently, metric learning and similarity learning have attracted a large amount of
interest. Many models and optimization algorithms have been proposed. However, there is
relatively little work on the generalization analysis of such methods. In this paper, we derive
novel generalization bounds of metric and similarity learning. In particular, we first show that
the generalization analysis reduces to the estimation of the Rademacher average over “sums-
of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization
bounds for metric/similarity learning with different matrix-norm regularizers by estimating
their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity
learning with L1-norm regularization could lead to significantly better bounds than those
with Frobenius-norm regularization. Our novel generalization analysis develops and refines
the techniques of U-statistics and Rademacher complexity analysis.
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1 Introduction

The success ofmanymachine learning algorithms (e.g. the nearest neighbor classification and
k-means clustering) depends on the concepts of distance metric and similarity. For instance,
k-nearest-neighbor (kNN) classifier depends on a distance function to identify the nearest
neighbors for classification; k-means algorithms depend on the pairwise distance measure-
ments between examples for clustering. Kernel methods and information retrieval methods
rely on a similarity measure between samples. Many existing studies have been devoted to
learning a metric or similarity automatically from data, which is usually referred to asmetric
learning and similarity learning, respectively.

Most work in metric learning focuses on learning a (squared) Mahalanobis distance
defined, for any x, t ∈ R

d , by dM (x, t) = (x − t)�M(x − t) where M is a positive semi-
definite matrix, see e.g. (Bar-Hillel et al. 2005; Davis et al. 2007; Globerson and Roweis
2005; Goldberger et al. 2004; Shen et al. 2009; Weinberger and Saul 2008; Xing et al.
2002; Yang and Jin 2007; Ying et al. 2009). Concurrently, the pairwise similarity defined
by sM (x, t) = x�Mt was studied in Chechik et al. (2010), Kar and Jain (2011), Maurer
(2008), Shalit et al. (2010). These methods have been successfully applied to various real-
world problems including information retrieval and face verification (Chechik et al. 2010;
Guillaumin et al. 2009; Hoi et al. 2006; Ying and Li 2012). Although there are a large num-
ber of studies devoted to supervised metric/similarity learning based on different objective
functions, few studies address the generalization analysis of such methods. The recent work
(Jin et al. 2009) pioneered the generalization analysis for metric learning using the concept
of uniform stability (Bousquet and Elisseeff 2002). However, this approach only works for
the strongly convex norm, e.g. the Frobenius norm, and the bias term is fixed which makes
the generalization analysis essentially different.

In this paper, we develop a novel approach for generalization analysis of metric learning
and similarity learning which can deal with general matrix regularization terms including
Frobenius norm (Jin et al. 2009), sparse L1-norm (Rosales andFung2006),mixed (2, 1)-norm
(Ying et al. 2009) and trace-norm (Ying et al. 2009; Shen et al. 2009). In particular, we first
show that the generalization analysis for metric/similarity learning reduces to the estimation
of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix
norm, which we refer to as theRademacher complexity for metric (similarity) learning. Then,
we showhow to estimate theRademacher complexitieswith differentmatrix regularizers.Our
analysis indicates that sparse metric/similarity learning with L1-norm regularization could
lead to significantly better generalization bounds than that with Frobenius norm regulariza-
tion, especially when the dimensionality of the input data is high. This is nicely consistent
with the rationale that sparse methods are more effective for high-dimensional data analysis.
Our novel generalization analysis develops and extends Rademacher complexity analysis
(Bartlett and Mendelson 2002; Koltchinskii and Panchenko 2002) to the setting of met-
ric/similarity learning by using techniques of U-statistics (Clémencon et al. 2008; Peña and
Giné 1999).

The paper is organized as follows. The next section reviews themodels ofmetric/similarity
learning. Section 3 establishes the main theorems. In Sect. 4, we derive and discuss general-
ization bounds for metric/similarity learning with various matrix-norm regularization terms.
Section 5 concludes the paper.

Notation Let Nn = {1, 2, . . . , n} for any n ∈ N. For any X, Y ∈ R
d×n , 〈X, Y 〉 =

Tr(X�Y ) where Tr(·) denotes the trace of a matrix. The space of symmetric d times d
matrices will be denoted by S

d . We equip S
d with a general matrix norm ‖ · ‖; it can be a
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Frobenius norm, trace-norm and mixed norm. Its associated dual norm is denoted, for any
M ∈ S

d , by ‖M‖∗ = sup{〈X, M〉 : X ∈ S
d , ‖X‖ ≤ 1}. The Frobenius norm on matrices or

vector is always denoted by ‖ · ‖F . The cone of positive semi-definite matrices is denoted
by S

d+. Later on we use the conventional notation that Xi j = (xi − x j )(xi − x j )� and
˜Xi j = xi x�

j .

2 Metric/similarity learning formulation

In our learning setting, we have an input space X ⊆ R
d and output (labels) space Y . Denote

Z = X ×Y and suppose z := {zi = (xi , yi ) ∈ Z : i ∈ Nn} an i.i.d. training set according to
an unknown distribution ρ on Z. Denote the d × n input data matrix by X = (xi : i ∈ Nn)

and the d × d distance matrix by M = (M�k)�,k∈Nd . Then, the (pseudo-) distance between
xi and x j is measured by

dM (xi , x j ) = (xi − x j )
�M(xi − x j ).

The goal of metric learning is to identify a distance function dM (xi , x j ) such that it yields a
small value for a similar pair and a large value for a dissimilar pair. The bilinear similarity
function is defined by

sM (xi , x j ) = x�
i Mx j .

Similarly, the target of similarity learning is to learn M ∈ S
d such that it reports a large

similarity value for a similar pair and a small similarity value for a dissimilar pair. It is
worth of pointing out that we do not require the positive semi-definiteness of the matrix M
throughout this paper. However, we do assume M to be symmetric, since this will guarantee
the distance (similarity) between xi and x j (dM (xi , x j )) is equivalent to that between x j and
xi (dM (x j , xi )).

There are two main terms in the metric/similarity learning model: empirical error and
matrix regularization term. The empirical error function is to employ the similarity and
dissimilarity information provided by the label information and the appropriate matrix reg-
ularization term is to avoid overfitting and improve generalization performance.

For any pair of samples (xi , x j ), let r(yi , y j ) = 1 if yi = y j otherwise r(yi , y j ) = −1.
It is expected that there exists a bias term b ∈ R such that dM (xi , x j ) ≤ b for r(yi , y j ) = 1
and dM (xi , x j ) > b otherwise. This naturally leads to the empirical error (Jin et al. 2009)
defined by

Ez(M, b) := 1

n(n − 1)

∑

i, j∈Nn ,i 
= j

I [r(yi , y j )(dM (xi , x j ) − b) > 0]

where the indicator function I [x] equals to 1 if x is true and zero otherwise.
Due to the indicator function, the above empirical error is non-differentiable and non-

convex which is difficult to do optimization. A usual way to overcome this shortcoming is
to upper-bound it with a differentiable and convex loss function. For instance, we can use
the hinge loss to upper-bound the indicator function which leads to the following empirical
error:

Ez(M, b) := 1

n(n − 1)

∑

i, j∈Nn ,i 
= j

[1 + r(yi , y j )(dM (xi , x j ) − b)]+ (1)

In order to avoid overfitting, we need to enforce a regularization term denoted by ‖M‖,
which will restrict the complexity of the distance matrix. We emphasize here ‖ · ‖ denotes a
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general matrix norm in the linear space Sd . Putting the regularization term and the empirical
error term together yields the following metric learning model:

(Mz, bz) = arg min
M∈Sd ,b∈R

{

Ez(M, b) + λ‖M‖2}, (2)

where λ > 0 is a trade-off parameter.
Different regularization terms lead to different metric learning formulations. For instance,

the Frobenius norm ‖M‖F is used in Jin et al. (2009). To favor the element-sparsity,
Rosales and Fung (2006) introduced the L1-norm regularization ‖M‖ = ∑

�,k∈Nd
|M�k |.

Ying et al. (2009) proposed the mixed (2, 1)-norm ‖M‖ = ∑

�∈Nd

(∑

k∈Nd
|M�k |2

) 1
2 to

encourage the column-wise sparsity of the distance matrix. The trace-norm regularization
‖M‖ = ∑

� σ�(M) was also considered by Ying et al. (2009), Shen et al. (2009). Here,
{σ� : � ∈ Nd} denotes the singular values of a matrix M ∈ S

d . Since M is symmetric, the
singular values of M are identical to the absolute values of its eigenvalues.

In analogy to the formulation of metric learning, we consider the following empirical error
for similarity learning (Maurer 2008; Chechik et al. 2010):

˜Ez(M, b) := 1

n(n − 1)

∑

i, j∈Nn ,i 
= j

[1 − r(yi , y j )(sM (xi , x j ) − b)]+. (3)

This leads to the regularised formulation for similarity learning defined as follows:

(˜Mz,˜bz) = arg min
M∈Sd ,b∈R

{

˜Ez(M, b) + λ‖M‖2}. (4)

The work Maurer (2008) used the Frobenius-norm regularization for similarity learning.
The trace-norm regularization has been used by Shalit et al. (2010) to encourage a low-rank
similarity matrix M .

3 Statistical generalization analysis

In this section, we mainly give a detailed proof of generalization bounds for metric and
similarity learning. In particular, we develop a novel line of generalization analysis for metric
and similarity learning with general matrix regularization terms. The key observation is that
the empirical data term Ez(M, b) for metric learning is a modification of U -statistics and it
is expected to converge to its expected form defined by

E(M, b) =
∫∫

(1 + r(y, y′)(dM (x, x ′) − b))+dρ(x, y)dρ(x ′, y′). (5)

The empirical term ˜Ez(M, b) for similarity learning is expected to converge to

˜E(M, b) =
∫∫

(1 − r(y, y′)(sM (x, x ′) − b))+dρ(x, y)dρ(x ′, y′). (6)

The target of generalization analysis is to bound the true error E(Mz, bz) by the empirical
error Ez(Mz, bz) for metric learning and ˜E(˜Mz,˜bz) by the empirical error ˜Ez(˜Mz,˜bz) for
similarity learning.

In the sequel, we provide a detailed proof for generalization bounds of metric learning.
Since the proof for similarity learning is exactly the same as that for metric learning, we only
mention the results followed with some brief comments.
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3.1 Bounding the solutions

By the definition of (Mz, bz), we know that

Ez(Mz, bz) + λ‖Mz‖2 ≤ Ez(0, 0) + λ‖0‖ = 1

which implies that

‖Mz‖ ≤ 1√
λ

. (7)

Now we turn our attention to deriving the bound of the bias term bz by modifying the
techniques in Chen et al. (2004) which was originally developed to estimate the offset term
of the soft-margin SVM.

Lemma 1 For any samples z and λ > 0, there exists a minimizer (Mz, bz) of formulation
(2) such that

min
i 
= j

[dMz(xi , x j ) − bz] ≤ 1, max
i 
= j

[dMz(xi , x j ) − bz] ≥ −1. (8)

Proof We first prove the inequality mini 
= j [dMz(xi , x j ) − bz] ≤ 1. To this end, we first
consider the special case where the training set z only contains two examples with distinct
labels, i.e. z = {(zi = (xi , yi ) : i = 1, 2, x1 
= x2, y1 
= y2}. For any λ > 0, let (Mz, bz) =
(0,−1), and observe that Ez(0,−1) + λ‖0‖2 = 0. This observation implies that (Mz, bz) is
a minimizer of problem (2). Consequently, we have the desired result in this extreme case,
since mini 
= j [dMz(xi , x j ) − bz] = dMz(x1, x2) − bz = 1.

Now let us consider the general case where the training set z has at least two examples
with the same label, i.e.

{(zi = (xi , yi ) : i = 1, 2, x1 
= x2, y1 = y2} ⊆ z.

In this general case, we prove the inequality mini 
= j [dMz(xi , x j ) − bz] ≤ 1 by contradic-
tion. Suppose that s := mini 
= j [dMz(xi , x j ) − bz] > 1 which equivalently implies that
dMz(xi , x j ) − (bz + s − 1) ≥ 1 for any i 
= j. Hence, for any pair of examples (xi , x j ) with
distinct labels, i.e. yi 
= y j (equivalently r(yi , y j ) = −1), there holds
(

1 + r(yi , y j )(dMz(xi , x j ) − (bz + s − 1)
)

+ = (

1 − (dMz(xi , x j ) − (bz + s − 1)
)

+ = 0.

Consequently,

Ez(Mz, bz + s − 1) = 1
n(n−1)

∑

i 
= j

(

1 + r(i, j)(dMz(xi , x j ) − bz − s − 1)
)

+

= 1
n(n−1)

∑

i 
= j,yi=y j

(1 + dMz(xi , x j ) − bz − (s − 1))+

< 1
n(n−1)

∑

i 
= j,yi=y j

(1 + dMz(xi , x j ) − bz)+ ≤ Ez(Mz, bz).

The above estimation implies that Ez(Mz, bz + s − 1) + λ‖Mz‖2 < Ez(Mz, bz) + λ‖Mz‖2
which contradicts the definition of theminimizer (Mz, bz). Hence, s = mini 
= j [dMz(xi , x j )−
bz] ≤ 1.

Secondly, we prove the inequalitymaxi 
= j [dMz(xi , x j )−bz] ≥ −1 in analogy to the above
argument. Consider the special case where the training set z contains only two examples with

123



120 Mach Learn (2016) 102:115–132

the same label, i.e. {(zi = (xi , yi ) : i = 1, 2, x1 
= x2, y1 = y2}. For any given λ > 0, let
(Mz, bz) = (0, 1). Since Ez(0, 1) + λ‖0‖2 = 0, (0, 1) is a minimizer of problem (2). The
desired estimation follows from the fact that maxi 
= j dMz(xi , x j ) − bz = 0 − 1 = −1.

Now let us consider the general case where the training set z has at least two examples
with distinct labels, i.e.

{(zi = (xi , yi ) : i = 1, 2, x1 
= x2, y1 
= y2} ⊆ z.

We prove the estimation maxi 
= j [dMz(xi , x j ) − bz] ≥ −1 by contradiction. Assume s :=
maxi 
= j [dMz(xi , x j )−bz] < −1, then dMz(xi , x j )− (bz + s+1) < −1 holds for any i 
= j.
This implies, for any pair of examples (xi , x j ) with the same label, i.e. r(i, j) = 1, that
(

1 + r(i, j)(dMz(xi , x j ) − bz − s − 1)
)

+ = 0. Hence,

Ez(Mz, bz + s + 1) = 1
n(n−1)

∑

i 
= j

(

1 + r(i, j)(dMz(xi , x j ) − bz − s − 1)
)

+

= 1
n(n−1)

∑

i 
= j,yi 
=y j

(

1 − dMz(xi , x j ) + bz + (s + 1)
)

+

< 1
n(n−1)

∑

i 
= j,yi 
=y j

(1 − dMz(xi , x j ) + bz)+ ≤ Ez(Mz, bz).

The above estimation yields that Ez(Mz, bz+s+1)+λ‖Mz‖2 < Ez(Mz, bz)+λ‖Mz‖2 which
contradicts the definition of the minimizer (Mz, bz). Hence, we have the desired inequality
maxi 
= j [dMz(xi , x j ) − bz] ≥ −1 which completes the proof of the lemma. ��
Corollary 2 For any samples z and λ > 0, there exists a minimizer (Mz, bz) of formulation
(2) such that

|bz| ≤ 1 + (

max
i 
= j

‖Xi j‖∗
)‖Mz‖. (9)

Proof From inequality (8) in Lemma 1, we see that −bz + mini 
= j [dMz(xi , x j )] ≤ 1 and
maxi 
= j [dMz(xi , x j )] ≥ bz−1.Equivalently, this implies that−bz ≤ 1−mini 
= j [dMz(xi , x j )]
and bz ≤ 1 + maxi 
= j [dMz(xi , x j )]. Recall that Xi j = (xi − x j )(xi − x j )� and observe, by
the definition of the dual norm ‖ · ‖∗, that

dM (xi , x j ) = 〈Xi j , M〉 ≤ ‖Xi j‖∗‖M‖.
Combining this observation with the above estimates, we have that −bz ≤ 1 +
(

maxi 
= j ‖Xi j‖∗
)‖Mz‖ and bz ≤ 1+(maxi 
= j ‖Xi j‖∗

)‖Mz‖,which yields the desired result.
��

Denote
F =

{

(M, b) : ‖M‖ ≤ 1/
√

λ, |b| ≤ 1 + X∗‖M‖
}

, (10)

where

X∗ = max
x,x ′∈X

‖(x − x ′)(x − x ′)�‖∗.

From the above corollary, for any samples zwe can easily see that at least one optimal solution
(Mz, bz) of formulation (2) belongs to the bounded set F ⊆ S

d × R.

We end this subsection with two remarks. Firstly, from the proof of Lemma 1 and Corol-
lary 2, we can easily see that, if the set of training samples contains at least two examples
with distinct labels and two examples with the same label, all minimizers of formulation
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(2) satisfy inequality (8) and inequality (9). Hence, in this case all minimizers (Mz, bz) of
formulation (2) belong to the bounded set F . Consequently, we assume, without loss of gen-
erality, that any minimizer (Mz, bz) of formulation (2) satisfies inequality (9) and belongs
to the set F . Secondly, our formulation (2) for metric learning focused on the hinge loss
which is widely used in the community of metric learning, see e.g Jin et al. (2009), Wein-
berger and Saul (2008), Ying and Li (2012). Similar results as those in the above corollary
can easily be obtained for q-norm loss given, for any x ∈ R, by (1 − x)q+ with q > 1.
However, it still remains a question to us on how to estimate the term b for general loss
functions.

3.2 Generalization bounds

Before stating the generalization bounds, we introduce some notations. For any z =
(x, y), z′ = (x ′, y′) ∈ Z, let �M,b(z, z′) = (1 + r(y, y′)(dM (x, x ′) − b))+. Hence, for
any (M, b) ∈ F ,

sup
z,z′

sup
(M,b)∈F

�M,b(z, z
′) ≤ Bλ := 2

(

1 + X∗/
√

λ
)

. (11)

Let � n
2 � denote the largest integer less than n

2 and recall the definition that Xi j = (xi−x j )(xi−
x j )�. We now define Rademacher average over sums-of-i.i.d. sample-blocks related to the
dual matrix norm ‖ · ‖∗ by

̂Rn = 1

� n
2 �Eσ

∥

∥

∥

� n
2 �
∑

i=1

σi Xi(� n
2 �+i)

∥

∥

∥∗, (12)

and its expectation is denoted by Rn = Ez
[

̂Rn
]

. Our main theorem below shows that the
generalization bounds for metric learning critically depend on the quantity of Rn . For this
reason, we refer to Rn as the Radmemcher complexity for metric learning. It is worth men-
tioning that metric learning formulation (2) depends on the norm ‖ · ‖ of the linear space Sd

and the Rademacher complexity Rn is related to its dual norm ‖ · ‖∗.

Theorem 3 Let (Mz, bz) be the solution of formulation (2). Then, for any 0 < δ < 1, with
probability 1 − δ we have that

E(Mz, bz) − Ez(Mz, bz) ≤ sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

≤ 4Rn√
λ

+ 4(3 + 2X∗/
√

λ)√
n

+ 2
(

1 + X∗/
√

λ
)

(

2 ln
( 1

δ

)

n

) 1
2

. (13)

Proof The proof of the theorem can be divided into three steps as follows.
Step 1: Let Ez denote the expectation with respect to samples z. Observe that E(Mz, bz)−

Ez(Mz, bz) ≤ sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

. For any z = (z1, . . . , zk−1, zk, zk+1, . . . , zn)

and z′ = (z1, . . . , zk−1, z′k, zk+1, . . . , zn) we know from inequality (11) that
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∣

∣

∣ sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

− sup
(M,b)∈F

[

E(M, b) − Ez′(M, b)
]∣

∣

∣

≤ sup
(M,b)∈F

|Ez(M, b) − Ez′(M, b)|
= 1

n(n−1) sup
(M,b)∈F

∑

j∈Nn , j 
=k

|�M,b(zk, z j ) − �M,b(z
′
k, z j )|

≤ 1
n(n−1) sup

(M,b)∈F

∑

j∈Nn , j 
=k

|�M,b(zk, z j )| + |�M,b(z
′
k, z j )|

≤ 4
(

1 + X∗/
√

λ
)

/n.

Applying McDiarmid’s inequality (McDiarmid 1989) (see Lemma 6 in the “Appendix”) to

the term sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

, with probability 1 − δ there holds

sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

≤ Ez sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

+2
(

1 + X∗/
√

λ
)

(

2 ln
( 1

δ

)

n

) 1
2

. (14)

Now we only need to estimate the first term in the expectation form on the right-hand side
of the above equation by symmetrization techniques.

Step 2: To estimate Ez sup
(M,b)∈F

[

E(M, b)−Ez(M, b)
]

, applying Lemma 7 with q(M,b)(zi ,

z j ) = E(M, b) − (1 + r(yi , y j )(dM (xi , x j ) − b))+ implies that

Ez sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

≤ Ez sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

, (15)

where Ez(M, b) = 1
� n
2 �
∑� n

2 �
i=1 �M,b(zi , z� n

2 �+i ). Now let z̄ = {z̄1, z̄2, . . . , z̄n} be i.i.d. sam-

ples which are independent of z, then

Ez sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

= Ez sup
(M,b)∈F

[

Ez̄
[

E z̄(M, b)
]− Ez(M, b)

]

≤ Ez,z̄ sup
(M,b)∈F

[

E z̄(M, b) − Ez(M, b)
]

. (16)

By standard symmetrization techniques (see e.g. Bartlett and Mendelson 2002), for i.i.d.
Rademacher variables {σi ∈ {±1} : i ∈ N� n

2 �}, we have that

Ez,z̄ sup
(M,b)∈F

[

E z̄(M, b) − Ez(M, b)
]

= Ez,z̄
1

� n
2 � sup

(M,b)∈F

� n
2 �
∑

i=1

σi

[

�M,b(z̄i , z̄� n
2 �+i ) − �M,b(zi , z� n

2 �+i )
]

= 2Ez,σ
1

� n
2 � sup

(M,b)∈F

� n
2 �
∑

i=1

σi�M,b(z̄i , z̄� n
2 �+i )

≤ 2Ez,σ
1

� n
2 � sup

(M,b)∈F

∣

∣

∣

� n
2 �
∑

i=1

σi�M,b(z̄i , z̄� n
2 �+i )

∣

∣

∣. (17)
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Applying the contraction property of Rademacher averages (see Lemma 8 in the “Appendix”)
with �i (t) = (

1 + r(yi , y� n
2 �+i )t

)

+ − 1, we have the following estimation for the last term
on the righthand side of the above inequality:

Eσ

1

� n
2 � sup

(M,b)∈F

∣

∣

∣

� n
2 �
∑

i=1

σi�M,b(z̄i , z̄� n
2 �+i )

∣

∣

∣

≤ Eσ

1

� n
2 � sup

(M,b)∈F

∣

∣

∣

� n
2 �
∑

i=1

σi (�M,b(z̄i , z̄� n
2 �+i ) − 1)

∣

∣

∣+ 1

� n
2 �Eσ

∣

∣

∣

� n
2 �
∑

i=1

σi

∣

∣

∣

≤ 2

� n
2 �Eσ sup

(M,b)∈F

∣

∣

∣

� n
2 �
∑

i=1

σi
(

dM (xi , x� n
2 �+i ) − b

)

∣

∣

∣+ 1

� n
2 �Eσ

∣

∣

∣

� n
2 �
∑

i=1

σi

∣

∣

∣

≤ 2

� n
2 �Eσ sup

‖M‖≤ 1√
λ

∣

∣

∣

� n
2 �
∑

i=1

σi dM (xi , x� n
2 �+i )

∣

∣

∣+ (3 + 2X∗/
√

λ)

� n
2 � Eσ

∣

∣

∣

� n
2 �
∑

i=1

σi

∣

∣

∣. (18)

Step 3: It remains to estimate the terms on the righthand side of inequality (18). To this
end, observe that

Eσ

∣

∣

∣

� n
2 �
∑

i=1

σi

∣

∣

∣ ≤
⎛

⎝Eσ

∣

∣

∣

� n
2 �
∑

i=1

σi

∣

∣

∣

2

⎞

⎠

1
2

≤
√

�n
2
�.

Moreover,

Eσ sup
‖M‖≤ 1√

λ

∣

∣

∣

� n
2 �
∑

i=1

σi dM (xi , x� n
2 �+i )

∣

∣

∣ = Eσ sup
‖M‖≤ 1√

λ

∣

∣

∣

〈

� n
2 �
∑

i=1

σi (xi − x� n
2 �+i )(xi − x� n

2 �+i )
�, M

〉

∣

∣

∣

≤ 1√
λ
Eσ

∥

∥

∥

∑� n
2 �

i=1 σi Xi(� n
2 �+i)

∥

∥

∥∗.

Putting the above estimations and inequalities (17), (18) together yields that

Ez,z̄ sup
(M,b)∈F

[

E z̄(M, b) − Ez(M, b)
]

≤ 2(3 + 2X∗/
√

λ)
√

� n
2 �

+ 4Rn√
λ

≤ 4(3 + X∗/
√

λ)√
n

+ 2Rn√
λ

.

Consequently, combining this with inequalities (15), (16) implies that

Ez sup
(M,b)∈F

[

E(M, b) − Ez(M, b)
]

≤ 4(3 + 2X∗/
√

λ)√
n

+ 4Rn√
λ

.

Putting this estimation with (14) completes the proof the theorem. ��
In the setting of similarity learning, X∗ and Rn are replaced by

˜X∗ = sup
x,t∈X

‖xt�‖∗ and ˜Rn = 1

� n
2 �EzEσ

∥

∥

∥

� n
2 �
∑

i=1

σi˜Xi(� n
2 �+i)

∥

∥

∥∗, (19)

where ˜Xi(� n
2 �+i) = xi x�

� n
2 �+i . Let

˜F =
{

(M, b) : ‖M‖ ≤ 1/
√

λ, |b| ≤ 1 + ˜X∗‖M‖
}

. Using

the exactly same argument as above, we can prove the following bound for similarity learning
formulation (4).
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Theorem 4 Let (˜Mz,˜bz) be the solution of formulation (4). Then, for any 0 < δ < 1, with
probability 1 − δ we have that

˜E(˜Mz,˜bz) − ˜Ez(˜Mz,˜bz) ≤ sup
(M,b)∈˜F

[

˜E(M, b) − ˜Ez(M, b)
]

≤ 4˜Rn√
λ

+ 4(3 + 2˜X∗/
√

λ)√
n

+ 2
(

1 + ˜X∗/
√

λ
)

(

2 ln
( 1

δ

)

n

) 1
2

. (20)

4 Estimation of Rn and discussion

From Theorem 3, we need to estimate the Rademacher average for metric learning, i.e. Rn ,
and the quantity X∗ for different matrix regularization terms. Without loss of generality,
we only focus on popular matrix norms such as the Frobenius norm (Jin et al. 2009), L1-
norm (Rosales and Fung 2006), trace-norm (Ying et al. 2009; Shen et al. 2009) and mixed
(2, 1)-norm (Ying et al. 2009).

Example 1 (Frobenius norm) Let the matrix norm be the Frobenius norm i.e. ‖M‖ = ‖M‖F ,
then the quantity X∗ = supx,x∈X ‖x − x ′‖2F and the Rademacher complexity are estimated
as follows:

Rn ≤ 2X∗√
n

= 2 supx,x ′∈X ‖x − x ′‖2F√
n

.

Let (Mz, bz) be a solution of formulation (2) with Frobenius norm regularization. For any
0 < δ < 1, with probability 1 − δ there holds

E(Mz, bz) − Ez(Mz, bz) ≤ 2
(

1 + supx,x∈X ‖x − x ′‖2F√
λ

)

√

2 ln
( 1

δ

)

n

+16 supx,x ′∈X ‖x − x ′‖2F√
nλ

+ 12√
n

. (21)

Proof Note that the dual norm of the Frobenius norm is itself. The estimation of X∗ is
straightforward. The Rademacher complexity Rn is estimated as follows:

Rn = 1

� n
2 �E

⎛

⎝

� n
2 �
∑

i, j=1

σiσ j 〈xi − x� n
2 �+i , x j − x� n

2 �+ j 〉2
⎞

⎠

1
2

≤ 1

� n
2 �Ez

⎛

⎝Eσ

� n
2 �
∑

i, j=1

σiσ j 〈xi − x� n
2 �+i , x j − x� n

2 �+ j 〉2
⎞

⎠

1
2

= 1

� n
2 �Ez

⎛

⎝

� n
2 �
∑

i=1

‖xi − x� n
2 �+i‖4F

⎞

⎠

1
2

≤ X∗
/

√

�n
2
� ≤ 2X∗√

n
.

Putting the above estimation back into Eq. (13) completes the proof of Example 1. ��
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Other popular matrix norms for metric learning are the L1-norm, trace-norm and mixed
(2, 1)-norm. The dual norms are respectively L∞-norm, spectral norm (i.e. the maximum
of singular values) and mixed (2,∞)-norm. All these dual norms mentioned above are less
than the Frobenius norm. Hence, the following estimation always holds true for all the norms
mentioned above:

X∗ ≤ sup
x,x∈X

‖x − x ′‖2F , and Rn ≤ 2 supx,x ′∈X ‖x − x ′‖2F√
n

.

Consequently, the generalization bound (21) holds true for metric learning formulation (2)
with L1-norm, or trace-norm or mixed (2, 1)-norm regularization. However, in some cases,
the above upper-bounds are too conservative. For instance, in the following examples we
can show that more refined estimation of Rn can be obtained by applying the Khinchin
inequalities for Rademacher averages (Peña and Giné 1999).

Example 2 (Sparse L1-norm)Let thematrix normbe the L1-norm i.e.‖M‖=∑

�,k∈Nd
|M�k |.

Then, X∗ = supx,x ′∈X ‖x − x ′‖2∞ and

Rn ≤ 4 sup
x,x ′∈X

‖x − x ′‖2∞
√

e log d

n
.

Let (Mz, bz) be a solution of formulation (2)with L1-norm regularization. For any 0 < δ < 1,
with probability 1 − δ there holds

E(Mz, bz) − Ez(Mz, bz) ≤ 2
(

1 + supx,x∈X ‖x − x ′‖2∞√
λ

)

√

2 ln
( 1

δ

)

n

+8 supx,x ′∈X ‖x − x ′‖2∞(1 + 2
√
e log d)√

nλ
+ 12√

n
. (22)

Proof The dual norm of L1-norm is L∞-norm. Hence, X∗ = supx,x ′∈X ‖x − x ′‖2∞. To
estimate Rn , we observe, for any 1 < q < ∞, that

Rn = 1

� n
2 �EzEσ

∥

∥

∥

� n
2 �
∑

i=1

σi Xi(� n
2 �+i)

∥

∥

∥∞ ≤ 1

� n
2 �EzEσ

∥

∥

∥

� n
2 �
∑

i=1

σi Xi(� n
2 �+i)

∥

∥

∥

q

:= 1

� n
2 �EzEσ

(

∑

�,k∈Nd

∣

∣

� n
2 �
∑

i=1

σi (x
k
i − xk� n

2 �+i )(x
�
i − x�

� n
2 �+i )

∣

∣

q
) 1

q

≤ 1

� n
2 �Ez

(

∑

�,k∈Nd
Eσ

∣

∣

� n
2 �
∑

i=1

σi (x
k
i − xk� n

2 �+i )(x
�
i − x�

� n
2 �+i )

∣

∣

q
) 1

q

, (23)

where xki represents the k-th coordinate element of vector xi ∈ R
d . To estimate the term

on the right-hand side of inequality (23), we apply the Khinchin-Kahane inequality (see
Lemma 9 in the “Appendix”) with p = 2 < q < ∞ yields that
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Eσ

∣

∣

� n
2 �
∑

i=1

σi (x
k
i − xk� n

2 �+i )(x
�
i − x�

� n
2 �+i )

∣

∣

q

≤ q
q
2

⎛

⎝Eσ

∣

∣

� n
2 �
∑

i=1

σi (x
k
i − xk� n

2 �+i )(x
�
i − x�

� n
2 �+i )

∣

∣

2

⎞

⎠

q
2

= q
q
2

⎛

⎝

� n
2 �
∑

i=1

(xki − xk� n
2 �+i )

2(x�
i − x�

� n
2 �+i )

2

⎞

⎠

q
2

≤ max
x,x ′∈X

‖x − x ′‖2q∞
(

�n
2
�
)

q
2
q

q
2 . (24)

Putting the above estimation back into (23) and letting q = 4 log d implies that

Rn ≤ maxx,x ′∈X ‖x − x ′‖2∞d
2
q
√
q
/

√

� n
2 � = 2 sup

x,x ′∈X
‖x − x ′‖2∞

√

e log d
/�n

2
�

≤ 4 sup
x,x ′∈X

‖x − x ′‖2∞
√

e log d
/

n.

Putting the estimation for X∗ and Rn into Theorem 13 yields inequality (22). This completes
the proof of Example 2. ��
Example 3 (Mixed (2, 1)-norm) Consider ‖M‖ = ∑

�∈Nd

√

∑

k∈Nd
|M�k |2. Then, we have

X∗ = [

supx,x ′∈X ‖x − x ′‖F
][

supx,x ′∈X ‖x − x ′‖∞
]

, and

Rn ≤ 4
[

sup
x,x ′∈X

‖x − x ′‖∞
][

sup
x,x ′∈X

‖x − x ′‖F
]

√

e log d

n
.

Let (Mz, bz) be a solution of formulation (2) with mixed (2, 1)-norm. For any 0 < δ < 1,
with probability 1 − δ there holds

E(Mz, bz) − Ez(Mz, bz)

≤ 2

(

1 +
[

supx,x ′∈X ‖x − x ′‖∞
][

supx,x ′∈X ‖x − x ′‖F
]

√
λ

)

√

2 ln
( 1

δ

)

n

+8
[

supx,x ′∈X ‖x − x ′‖∞
][

supx,x ′∈X ‖x − x ′‖F
]

(1 + 2
√
e log d)√

nλ
+ 12√

n
. (25)

Proof The estimation of X∗ is straightforward and we estimate Rn as follows. For any q > 1,
there holds

Rn = 1

� n
2 �EzEσ

∥

∥

∥

� n
2 �
∑

i=1

σi Xi(� n
2 �+i)

∥

∥

∥

(2,∞)

= 1

� n
2 �EzEσ sup�∈Nd

⎛

⎝

∑

k∈Nd

∣

∣
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2 �
∑

i=1

σi (x
k
i − xk� n

2 �+i )(x
�
i − x�

� n
2 �+i )

∣

∣

2

⎞

⎠

1
2

≤ 1

� n
2 �Ez

⎛

⎝

∑

k∈Nd
Eσ sup�∈Nd

∣

∣

� n
2 �
∑

i=1

σi (x
k
i − xk� n

2 �+i )(x
�
i − x�

� n
2 �+i )

∣

∣

2

⎞

⎠

1
2

. (26)
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It remains to estimate the terms inside the parenthesis on the right-hand side of the above
inequality. To this end, we observe, for any q ′ > 1, that

Eσ sup�∈Nd

∣

∣

∑� n
2 �

i=1 σi (xki − xk� n
2 �+i )(x

�
i − x�

� n
2 �+i )

∣

∣

2

≤ Eσ

(

∑

�∈Nd

∣

∣

∑� n
2 �

i=1 σi (xki − xk� n
2 �+i )(x

�
i − x�

� n
2 �+i )

∣

∣

2q ′) 1
q′

≤
(

∑

�∈Nd
Eσ

∣

∣

∑� n
2 �

i=1 σi (xki − xk� n
2 �+i )(x

�
i − x�

� n
2 �+i )

∣

∣

2q ′) 1
q′

.

Applying the Khinchin–Kahane inequality (Lemma 9 in the “Appendix”) with q = 2q ′ =
4 log d and p = 2 to the above inequality yields that

Eσ sup�∈Nd

∣

∣

∑� n
2 �

i=1 σi (xki − xk� n
2 �+i )(x

�
i − x�

� n
2 �+i )

∣

∣

2

≤
(

∑

�∈Nd
(2q ′)q ′[

Eσ

∣

∣

∑� n
2 �

i=1 σi (xki − xk� n
2 �+i )(x

�
i − x�

� n
2 �+i )

∣

∣

2]q ′) 1
q′

=
(

∑

�∈Nd
(2q ′)q ′[∑� n

2 �
i=1(x

k
i − xk� n

2 �+i )
2(x�

i − x�
� n
2 �+i )

2
]q ′) 1

q′

≤ 2q ′ supx,x ′∈X ‖x − x ′‖2∞d
1
q′ [∑� n

2 �
i=1(x

k
i − xk� n

2 �+i )
2
]

≤ 4e(log d) supx,x ′∈X ‖x − x ′‖2∞
[∑� n

2 �
i=1(x

k
i − xk� n

2 �+i )
2
]

.

Putting the above estimation back into (26) implies that

Rn ≤ √
4e log d

[

supx,x ′∈X ‖x − x ′‖∞
]

Ez

(

∑� n
2 �

i=1 ‖xi − x� n
2 �+i‖2F

)
1
2 /� n

2 �
≤ √

4e log d
[

supx,x ′∈X ‖x − x ′‖∞
][

supx,x ′∈X ‖x − x ′‖F
]/

√

� n
2 �

≤ 4
√
e log d

[

supx,x ′∈X ‖x − x ′‖∞
][

supx,x ′∈X ‖x − x ′‖F
]/√

n.

Combining this with Theorem 3 implies the inequality (25). This completes the proof of the
example. ��

In the Frobenius-norm case, the main term of the bound (21) isO
( supx,x ′∈X ‖x−x ′‖2F√

nλ

)

. This
bound is consistent with that given by Jin et al. (2009) where supx∈X ‖x‖F is assumed to
bounded by some constant B. Comparing the generalization bounds in the above examples,
we see that the key terms X∗ and Rn mainly differ in two quantities, i.e. supx,x ′∈X ‖x −
x ′‖F and supx,x ′∈X ‖x − x ′‖∞. We argue that supx,x ′∈X ‖x − x ′‖∞ can be much less than
supx,x ′∈X ‖x − x ′‖F . For instance, consider the input space X = [0, 1]d . It is easy to see
that supx,x ′∈X ‖x − x ′‖F = √

d while supx,x ′∈X ‖x − x ′‖∞ ≡ 1. Consequently, we can
summarise the estimations as follows:

• Frobenius-norm: X∗ = d , and Rn ≤ 2d√
n
.

• Sparse L1-norm: X∗ = 1, and Rn ≤ 4
√
e log d√
n

.

• Mixed (2, 1)-norm: X∗ = √
d, and Rn ≤ 4

√
ed log d√

n
.

Therefore, when d is large, the generalization bound with sparse L1-norm regularization
is much better than that with Frobenius-norm regularization while the bound with mixed
(2, 1)-norm are between the above two. These theoretical results are nicely consistent with
the rationale that sparse methods are more effective in dealing with high-dimensional data.

We end this section with two remarks. Firstly, in the setting of trace-norm regularization,
it remains a question to us on how to establish more accurate estimation of Rn by using the
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Khinchin–Kahane inequality. Secondly, the bounds in the above examples are true for sim-
ilarity learning with different matrix-norm regularization. Indeed, the generalization bound
for similarity learning in Theorem 4 tells us that it suffices to estimate ˜X∗ and ˜Rn . In analogy
to the arguments in the above examples, we can get the following results. For similarity
learning formulation (4) with Frobenius-norm regularization, there holds

˜X∗ = sup
x∈X

‖x‖2F , ˜Rn ≤ 2 supx ‖x‖2F√
n

.

For L1-norm regularization, we have

˜X∗ = sup
x∈X

‖x‖2∞, ˜Rn ≤ 4 sup
xX

‖x‖2∞
√

e log d
/√

n.

In the setting of (2, 1)-norm, we obtain

˜X∗ = sup
x∈X

‖x‖∞ sup
x∈X

‖x‖F , ˜Rn ≤ 4
[

sup
x∈X

‖x‖F sup
x∈X

‖x‖∞
]
√

e log d
/√

n.

Putting these estimations back into Theorem 4 yields generalization bounds for similarity
learning with different matrix norms. For simplicity, we omit the details here.

5 Conclusion and discussion

In this paper we are mainly concerned with theoretical generalization analysis of the regu-
larized metric and similarity learning. In particular, we first showed that the generalization
analysis for metric/similarity learning reduces to the estimation of the Rademacher average
over “sums-of-i.i.d.” sample-blocks.Then,wederived their generalizationboundswith differ-
ent matrix regularization terms. Our analysis indicates that sparse metric/similarity learning
with L1-norm regularization could lead significantly better bounds than that with the Frobe-
nius norm regularization, especially when the dimensionality of the input data is high. Our
novel generalization analysis develops the techniques of U -statistics (Peña and Giné 1999;
Clémencon et al. 2008) and Rademacher complexity analysis (Bartlett and Mendelson 2002;
Koltchinskii and Panchenko 2002). Below we mention several questions remaining to be
further studied.

Firstly, in Sect. 3, the derived bounds for metric and similarity learning with trace-norm
regularization were the same as those with Frobenius-norm regularization. It would be very
interesting to derive the bounds similar to those with sparse L1-norm regularization. The
key issue is to estimate the Rademacher complexity term (12) related to the spectral norm
using the Khinchin–Kahne inequality. However, we are not aware of such Khinchin–Kahne
inequalities for general matrix spectral norms.

Secondly, this study only investigated the generalization bounds for metric and similarity
learning.We can get the consistency estimation for ‖M−M∗‖2F under very strong assumption
on the loss function and the underlying distribution. In particular, assume that the loss function
is the least square loss, the bias termb is fixed (e.g.b ≡ 0) and letM∗ = argminM∈Sd E(M, 0),
then we have

E(Mz, 0) − E(M∗, 0) =
∫∫

〈M − M∗, x(x ′)T 〉2dρ(x)ρ(x ′)

= 〈C(M − M∗), M − M∗〉. (27)
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Here, C is d2 × d2 matrix representing a linear mapping from S
d to S

d :

C =
∫∫

(x(x ′)T ) ⊗ (x(x ′)T )dρ(x)ρ(x ′).

Here, the notation ⊗ represents the tensor product of matrices. Equation (27) implies that
E(Mz, 0) − E(M∗, 0) = ∫∫ 〈M − M∗, x(x ′)T 〉2dρ(x)ρ(x ′) ≥ λmin(C)‖M − M∗‖2F , where
λmin(C) is the minimum eigenvalue of the d2×d2 matrix C. Consequently, under the assump-
tion that C is non-singular, we can get the consistency estimation for ‖M − M∗‖2F for the
least square loss. For the hinge loss, the equality (27) does not hold true any more. Hence, it
remains a question on how to get the consistency estimation for metric and similarity learning
under general loss functions.

Thirdly, in many applications involving multi-media data, different aspects of the data
may lead to several different, and apparently equally valid notions of similarity. This leads
to a natural question on how to combine multiple similarities and metrics for a unified data
representation. An extension of multiple kernel learning approach was proposed in McFee
and Lanckriet (2011) to address this issue. It would be very interesting to investigate the
theoretical generalization analysis for this multi-modal similarity learning framework. A
possible starting point would be the techniques established for learning the kernel problem
(Ying and Campbell 2009, 2010).

Finally, the target of supervised metric learning is to improve the generalization per-
formance of kNN classifiers. It remains a challenging question to investigate how the
generalization performance of kNN classifiers relates to the generalization bounds of metric
learning given here.
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Appendix

In this “Appendix” we assemble some facts, which were used to establish generalization
bounds for metric/similarity learning.

Definition 5 We say the function f : ∏n
k=1 	k → R with bounded differences {ck}nk=1 if,

for all 1 ≤ k ≤ n,

max
z1,...,zk ,z′k ...,zn

| f (z1, . . . , zk−1, zk, zk+1, . . . , zn)

− f (z1, . . . , zk−1, z′k, zk+1, . . . , zn)| ≤ ck

Lemma 6 (McDiarmid’s inequality McDiarmid 1989) Suppose f : ∏n
k=1 	k → R with

bounded differences {ck}nk=1 then, for all ε > 0, there holds

Prz

{

f (z) − Ez f (z) ≥ ε

}

≤ e
− 2ε2
∑n

k=1 c2k .

Finally we list a useful property for U-statistics. Given the i.i.d. random variables
z1, z2, . . . , zn ∈ Z, let q : Z × Z → R be a symmetric real-valued function. Denote a
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U-statistic of order two by Un = 1
n(n−1)

∑

i 
= j q(xi , x j ). Then, the U-statistic Un can be
expressed as

Un = 1

n!
∑

π

1

� n
2 �

� n
2 �
∑

i=1

q(zπ(i), zπ(� n
2 �+i)) (28)

where the sum is taken over all permutations π of {1, 2, . . . , n}. The main idea underlying
this representation is to reduce the analysis to the ordinary case of i.i.d. random variable
blocks. Based on the above representation, we can prove the following lemma which plays
a critical role in deriving generalization bounds for metric learning. For completeness, we
include a proof here. For more details on U-statistics, one is referred to Clémencon et al.
(2008), Peña and Giné (1999).

Lemma 7 Let qτ : Z ×Z → R be real-valued functions indexed by τ ∈ T where T is some
index set. If z1, . . . , zn are i.i.d. then we have that

E

[

sup
τ∈T

1

n(n − 1)

∑

i 
= j

qτ (zi , z j )
]

≤ E

[

sup
τ∈T

1

� n
2 �

� n
2 �
∑

i=1

qτ (zi , z� n
2 �+i )

]

.

Proof From the representation of U -statistics (28), we observe that

E

⎡

⎣sup
τ∈T

1

n(n − 1)

∑

i 
= j

qτ (zi , z j )

⎤

⎦ = E sup
τ

1

n!
∑

π

1

� n
2 �

� n
2 �
∑

i=1

qτ (zπ(i), zπ(� n
2 �+i))

≤ 1
n!E

∑

π

sup
τ

1

� n
2 �

� n
2 �
∑

i=1

qτ (zπ(i), zπ(� n
2 �+i))

= 1
n!
∑

π

E sup
τ

1

� n
2 �

� n
2 �
∑

i=1

qτ (zπ(i), zπ(� n
2 �+i))

= E

⎡

⎣sup
τ∈T

1

� n
2 �

� n
2 �
∑

i=1

qτ (zi , z� n
2 �+i )

⎤

⎦ .

This completes the proof of the lemma. ��
We need the following contraction property of the Rademacher averages which is essen-

tially implied by Theorem 4.12 in Ledoux and Talagrand (1991), see also Bartlett and
Mendelson (2002), Koltchinskii and Panchenko (2002).

Lemma 8 Let F be a class of uniformly bounded real-valued functions on (	,μ) andm ∈ N.
If for each i ∈ {1, . . . ,m}, �i : R → R is a function with �i (0) = 0 having a Lipschitz
constant ci , then for any {xi }mi=1,

Eε

(

sup
f ∈F

∣

∣

m
∑

i=1

εi�i ( f (xi ))
∣

∣

)

≤ 2Eε

(

sup
f ∈F

∣

∣

∣

m
∑

i=1

ciεi f (xi )
∣

∣

)

. (29)

The last property of Rademacher averages is the Khinchin–Kahne inequality [see e.g.
Peña and Giné (1999, Theorem 1.3.1)].
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Lemma 9 For n ∈ N, let { fi ∈ R : i ∈ Nn}, and {σi : i ∈ Nn} be a family of i.i.d.
Rademacher variables. Then, for any 1 < p < q < ∞ we have

⎛

⎝Eσ

∣

∣

∑

i∈Nn

σi fi
∣

∣

q

⎞

⎠

1
q

≤
(

q − 1

p − 1

) 1
2

⎛

⎝Eσ

∣

∣

∑

i∈Nn

σi fi
∣

∣

p

⎞

⎠

1
p
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