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Abstract. The problem of ordinal regression, in which the goal is to learn a rule
to predict labels from a discrete but ordered set, has gained considerable atten-
tion in machine learning in recent years. We study generalization properties of
algorithms for this problem. We start with the most basic algorithms that work by
learning a real-valued function in a regression framework and then rounding off
a predicted real value to the closest discrete label; our most basic bounds for such
algorithms are derived by relating the ordinal regression error of the resulting
prediction rule to the regression error of the learned real-valued function. We end
with a margin-based bound for the state-of-the-art ordinal regression algorithm
of Chu & Keerthi (2007).

1 Introduction

In addition to the classical problems of classification and regression, several new types
of learning problems have emerged in recent years. Among these is the problem of or-
dinal regression, in which the goal is to learn a rule to predict labels of an ordinal scale,
i.e., labels from a discrete but ordered set. Ordinal regression is common in the social
sciences where surveys frequently ask users to rate items on an ordinal scale, and has
been studied previously in the statistical literature [1]. Recent years have seen a surge of
interest in ordinal regression from a machine learning perspective [2–12], partly due to
the fact that it is a unique problem which shares characteristics of many other learning
problems such as classification, regression, and ranking – and yet is distinct from each –
but also due to the fact that ordinal regression increasingly finds applications in diverse
areas such as finance, medicine, information retrieval, and user-preference modeling.

Although there has been considerable progress in developing learning algorithms
for ordinal regression in the last few years, in most cases, not much is known about the
theoretical properties of these algorithms: how well they generalize, and at what rate (if
at all) they converge to an optimal solution. In this paper, we begin an attempt to fill this
gap. Our focus is on the question of generalization properties of these algorithms.

1.1 Previous Results

In the ordinal regression problem, described in greater detail in Section 2, the learner
is given a sequence of labeled training examples S = ((x1, y1), . . . , (xm, ym)), the xi

being instances in some instance space X and the yi being labels in a discrete, ordered



set, which we take to be [r] = {1, . . . , r} for some r ∈ N, and the goal is to learn a rule
g : X→[r] that predicts accurately labels of future instances. The penalty incurred for
a wrong prediction is larger for predictions farther from the true label: in the setting we
consider, the penalty incurred by g on an example (x, y) is proportional to |g(x)− y|.

Barring some work on neural network models in the 1990s [13] (which was inspired
largely by the statistical models of [1]), among the earliest studies of ordinal regression
in machine learning was that of Herbrich et al. [2], in which a large-margin algorithm
similar to support vector machines (SVMs) was proposed. This work included a margin-
based generalization bound for the zero-training-error case1. However, the setting of [2]
differs from the setting described above, in that the error of a prediction rule is measured
in terms of pairs of examples for which the relative order between the predicted labels
differs from the relative order between the true labels; indeed, in their setting, it is
possible for a rule that predicts the wrong labels on two instances to incur no loss at
all, as long as the relative order of those labels is correct. In this sense, the problem
studied in [2] is more similar to some ranking problems than what has now come to be
commonly accepted as the problem of ordinal regression.

The years following [2] saw several developments in ordinal regression. Crammer &
Singer [14] proposed an algorithm for ordinal regression in the online learning model,
motivated by the perceptron algorithm for classification, and provided a mistake bound
for their algorithm. This was followed by an extension of their algorithm by Harrington
[7], in which an online approximation to the Bayes point was sought, as well as exten-
sions in [5] which included a multiplicative update algorithm. All of these came with
mistake bounds; indeed, it can safely be said that these online algorithms for ordinal
regression are among the better understood theoretically.

In the traditional offline (or ‘batch’) learning model, there have been four broad
approaches to developing ordinal regression algorithms. The first approach treats the
labels yi as real values, uses a standard regression algorithm to learn a real-valued func-
tion f : X→R, and then predicts the label of a new instance x by rounding the predicted
real value f(x) to the closest discrete label. This approach can be used with any regres-
sion learning algorithm, and was discussed specifically in the context of regression trees
by Kramer et al. [3]; Kramer et al. also discussed some simple methods to modify the
regression tree learning algorithm to directly predict labels for ordinal regression.

The second approach consists of reducing an ordinal regression problem to one or
more binary classification problems, which can then be solved using a standard binary
classification algorithm. For example, Frank & Hall [4] proposed a method for reducing
an r-label ordinal regression problem to a series of r−1 binary classification problems,
each of which could be solved using any classifier capable of producing probability
estimates; the method was somewhat ad-hoc as it required certain independence as-
sumptions in order to compute probabilities needed for making label predictions. More
recently, Cardoso & da Costa [11] have proposed an algorithm for transforming an ordi-
nal regression problem in a Euclidean space into a single binary classification problem
in a higher-dimensional space.

1 We note that the bound in [2] contains a mistake, although the mistake is easily corrected: the
article incorrectly claims that a sample of m independent instances gives m − 1 independent
pairs of instances; this can be corrected by replacing m − 1 in the bound with m/2.



In the third approach, algorithms are designed to directly learn prediction rules for
ordinal regression; as in the case of [2] or [14], this usually consists of learning a real-
valued function f : X→R together with a set of thresholds b1 ≤ . . . ≤ br−1 ≤ br = ∞,
the resulting prediction rule being given by g(x) = minj∈{1,...,r}{j : f(x) < bj}.
Going back full circle to the large-margin framework used in [2], Shashua & Levin
[6] proposed two large-margin algorithms, also motivated by SVMs, to directly learn
prediction rules for ordinal regression; unlike [2], the problem setting in this case corre-
sponds to the setting described above, in which the error of a prediction rule is measured
in terms of the difference between the true and predicted labels. However, as pointed
out by Chu & Keerthi [10], one of the algorithms in [6] contains a fundamental flaw in
that it fails to guarantee the necessary inequalities among the thresholds; Chu & Keerthi
offer a modification that corrects this, as well as a second large-margin algorithm that
is among the current state of the art.

Finally, there has also been some work on Bayesian learning algorithms for ordinal
regression, such as that by Chu & Ghahramani [8].

Among all the (offline) algorithms discussed above, only two – the classification-
based algorithm of Cardoso & da Costa [11] and the large-margin algorithm of Shashua
& Levin [6] – have been accompanied by some form of generalization analysis; unfortu-
nately, in both cases, the analysis is either incorrect or incomplete. Cardoso & da Costa
(in an appendix of [11]) attempt to derive a margin-based bound for their algorithm by
applying a bound for binary classifiers; however it is not clear to what function class the
bound is applied, and on closer inspection it becomes clear that the analysis is, in fact,
incorrect. Shashua & Levin (in [15]) also attempt to derive a margin-based bound for
their algorithm; again, the quantities involved are not clearly defined, and furthermore
the analysis claims to bound the ‘probability that a test example will not be separated
correctly’ which, as we argue in Section 2, is not the natural quantity of interest in ordi-
nal regression, and so this analysis too appears, at best, to be incomplete. These failed
attempts – as well as the lack of any theoretical analysis for the other algorithms – all
point to the need for a more careful analysis of the generalization properties of ordinal
regression algorithms. This is what we aim to achieve in this paper.

1.2 Our Results

We formalize the mathematical setting involved in studying generalization properties
of ordinal regression algorithms, including clear definitions of the quantities involved
(Section 2), and then proceed to derive generalization bounds for some of these algo-
rithms. We start with the most basic algorithms that work by learning a real-valued
function in a regression framework and then rounding off a predicted real value to the
closest discrete label; we relate the ordinal regression error of the resulting prediction
rule to the regression error of the learned real-valued function, and use this to derive
some basic ‘black-box’ generalization bounds for such algorithms (Section 3). Next
we employ a direct stability analysis for such algorithms (Section 4); this gives better
bounds in some cases. We also investigate the use of stability analysis for more general
algorithms for ordinal regression, and outline some difficulties involved in achieving
this goal (Section 5). Finally, we derive a margin-based bound for the state-of-the-art
ordinal regression algorithm of Chu & Keerthi [10] (Section 6).



2 The Ordinal Regression Problem

The setting of the ordinal regression problem can be described as follows. There is an
instance space X from which instances are drawn, and a finite set of discrete labels
that have a total order relation among them; we take this set to be [r] = {1, . . . , r} for
some r ∈ N, with the usual ‘greater than’ order relation among the labels. The learner
is given a sequence of labeled training examples S = ((x1, y1), . . . , (xm, ym)) ∈ (X×
[r])m, and the goal is to learn a rule g : X→[r] that predicts accurately labels of future
instances. For example, consider a user-preference modeling task in which a user gives
ratings to the books she reads – ranging from 1 to 5 stars – and the goal is to predict her
ratings on new books. In this case the ratings can be viewed as a discrete set of labels,
but these labels clearly have an ordering among them, and so this is an instance of an
ordinal regression problem (with r = 5).

Ordinal regression shares properties of both classification and regression: as in
(multiclass) classification, the goal is to assign one of r different labels to a new in-
stance; but as in regression, the labels are ordered, suggesting that predictions farther
from the true label should incur a greater penalty than predictions closer to the true
label. Indeed, if a book is rated by a user as having 5 stars, then a prediction of 4 stars
would clearly be preferable to a prediction of 1 star (and should therefore incur a smaller
penalty). As in classification and regression, it is generally assumed that all examples
(x, y) (both training examples and future, unseen examples) are drawn randomly and
independently according to some (unknown) distribution D on X × [r].

There are many ways to evaluate the quality of a prediction rule g : X→[r]; indeed,
some recent work has focused on comparing different evaluation criteria for ordinal re-
gression [12]. In applications where the relative ranking of instances is important, it may
be appropriate to consider the performance of g on pairs of examples (x, y), (x′, y′), and
count a mistake if the relative order of the predicted labels g(x), g(x′) differs from the
relative order of the true labels y, y′, i.e., if (y − y′)(g(x) − g(x′)) < 0. This leads to
the following ‘pair-wise’ error for evaluating g:

Lpairs
D (g) = E((x,y),(x′,y′))∼D×D

[
I{(y−y′)(g(x)−g(x′))<0}

]
, (1)

where Iφ denotes the indicator variable whose value is 1 if φ is true and 0 otherwise;
this is simply the probability that g incurs a mistake on a random pair of examples, each
drawn independently according to D. As discussed in Section 1, this is the evaluation
criterion used by Herbrich et al. [2]. This criterion focuses on the relative order of
instances in the ranking induced by g, and is similar to the criterion used in a form of
ranking problem termed r-partite ranking (see, for example, [16]).

In the setting we consider, however, the goal is not to produce a ranking of in-
stances, but rather to predict a label for each instance that is as close as possible to
the true label; in other words, we are interested in the performance of g on individual
examples. Again, there are several ways of measuring the loss of a prediction rule g on
an example (x, y) depending on the particular application and the semantics associated
with the labels. A common approach, which has been used explicitly or implicitly by
a majority of the more recent papers on ordinal regression, is to use the absolute loss
`ord(g, (x, y)) = |g(x) − y| – henceforth referred to as the ordinal regression loss –



which simply measures the absolute difference between the predicted and true labels.2

This is the loss we use.
Thus, in the setting considered in this paper, the quality of a prediction rule g :

X→[r] is measured by its expected ordinal regression error with respect to D:

Lord
D (g) = E(x,y)∼D [|g(x)− y|] . (2)

In practice, since the distribution D is not known, the expected ordinal regression error
of a prediction rule g cannot be computed exactly; instead, it must be estimated using
an empirically observable quantity, such as the empirical ordinal regression error of g
with respect to a finite sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × [r])m:

L̂ord
S (g) =

1
m

m∑
i=1

|g(xi)− yi| . (3)

Our goal in this paper is to derive generalization bounds for ordinal regression algo-
rithms; in particular, we wish to derive probabilistic bounds on the expected ordinal
regression error of a learned prediction rule in terms of an empirical quantity, such as
the empirical error of the rule, measured with respect to the training sample from which
it is learned.

3 Black-Box Bounds for Regression-Based Algorithms

We start with the most basic algorithms that learn a real-valued function f : X→R in a
standard regression setting, treating the labels yi simply as real values, and then round
off a predicted real value f(x) to the closest label in [r]; the prediction rule for such an
algorithm is given by

gf (x) =

1, if f(x) < 1 + 1
2

j, if j − 1
2 ≤ f(x) < j + 1

2 , j ∈ {2, . . . , r − 1}
r, if f(x) ≥ r − 1

2 ,
(4)

which can also be written as

gf (x) = min
j∈{1,...,r}

{j : f(x) < bj} , (5)

with bj = j + 1
2 for j ∈ {1, . . . , r − 1} and br = ∞. In this section, we relate the

ordinal regression error of such a prediction rule gf to the regression error of the under-
lying real-valued function f ; this allows us to use established generalization bounds for
regression algorithms to obtain some basic black-box bounds for the resulting ordinal
regression algorithms.

2 While many of the ordinal regression papers discussed in Section 1 (including [14, 6, 5] which,
despite the the term ‘ranking’ in their titles, are on ordinal regression) explicitly employ the
absolute loss, several others (such as [7, 11]) use this loss implicitly – in the form of the mean
absolute error (MAE) or mean absolute distance (MAD) criterion – when measuring perfor-
mance empirically on benchmark data sets.



The loss of a real-valued function f : X→R on an example (x, y) ∈ X × R in
the regression setting is usually measured either by the absolute loss `abs(f, (x, y)) =
|f(x) − y|, or more frequently, by the squared loss `sq(f, (x, y)) = (f(x) − y)2. The
quality of f with respect to a distribution D on X × R is then measured by either its
expected absolute error or its expected squared error:

Labs
D (f) = E(x,y)∼D [|f(x)− y|] ; Lsq

D(f) = E(x,y)∼D
[
(f(x)− y)2

]
. (6)

The corresponding empirical quantities with respect to S = ((x1, y1), . . . , (xm, ym)) ∈
(X × R)m are defined analogously:

L̂abs
S (f) =

1
m

m∑
i=1

|f(xi)− yi| ; L̂sq
S (f) =

1
m

m∑
i=1

(f(xi)− yi)2 . (7)

The following simple lemma provides a connection between the respective errors
of a real-valued function f and the corresponding prediction rule gf .

Lemma 1. For all f : X→R and for all (x, y) ∈ X × [r], we have:

1. |gf (x)− y| ≤ min
(
|f(x)− y|+ 1

2 , 2|f(x)− y|
)
.

2. |gf (x)− y| ≤ min
(
2(f(x)− y)2 + 1

2 , 4(f(x)− y)2
)
.

Proof. If |gf (x)− y| = 0, both results clearly hold. Therefore assume |gf (x)− y| 6= 0.
Then |gf (x)− y| ∈ {1, . . . , r − 1}, and from the definition of gf , it follows that

|f(x)− y| ≥ 1
2
. (8)

Part 1. The definition of gf easily yields the first inequality:

|gf (x)− y| ≤ |f(x)− y|+ 1
2
. (9)

Combining this with Eq. (8) gives the second inequality:

|gf (x)− y| ≤ 2|f(x)− y| . (10)

Part 2. From Eq. (8), we have 2|f(x)− 1| ≥ 1 . Since a ≥ 1 ⇒ a ≤ a2, this gives

2|f(x)− 1| ≤ 4(f(x)− 1)2 .

Combining this with Eqs. (9) and (10) yields the desired inequalities. ut

Theorem 1. For all f : X→R and for all distributions D on X × [r], we have:

1. Lord
D (gf ) ≤ φ(Labs

D (f)), where φ(L) = min
(
L+ 1

2 , 2L
)
.

2. Lord
D (gf ) ≤ ψ(Lsq

D(f)), where ψ(L) = min
(
2L+ 1

2 , 4L
)
.

Proof. Immediate from Lemma 1. ut



As a consequence of Theorem 1, any generalization result that provides a bound
on the expected (absolute or squared) error of the real-valued function f learned by a
regression algorithm immediately provides a bound also on the expected ordinal regres-
sion error of the corresponding prediction rule gf . Below we provide two specific ex-
amples of such black-box bounds: the first uses a standard uniform convergence bound
for regression algorithms that is expressed in terms of covering numbers; the second
uses a stability bound for regression algorithms due to Bousquet & Elisseeff [17].

Theorem 2 (Covering number bound). Let F be a class of real-valued functions on
X , and letA be an ordinal regression algorithm which, given as input a training sample
S ∈ (X × [r])m, learns a real-valued function fS ∈ F and returns as output the
prediction rule gS ≡ gfS

. Then for any ε > 0 and for any distribution D on X × [r],

PS∼Dm

[
Lord
D (gS) ≤ ψ

(
L̂sq

S (fS) + ε
)]

≥ 1− 4N1(ε/16,F , 2m) · exp(−mε2/32) ,

where ψ(·) is as defined in Theorem 1, and N1 refers to d1 covering numbers.

Proof. The following bound on the expected squared error of the learned real-valued
function is well known (cf. the uniform convergence result in Theorem 17.1 of [18]):

PS∼Dm

[
Lsq
D(fS) ≤ L̂sq

S (fS) + ε
]
≥ 1− 4N1(ε/16,F , 2m) · exp(−mε2/32) .

The result then follows from Part 2 of Theorem 1. ut

Next we review some notions needed to present the stability bound.

Definition 1 (Loss stability). Let `(f, (x, y)) be a loss function defined for f : X→R
and (x, y) ∈ X × Y for some Y ⊆ R. A regression algorithm whose output on a
training sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m we denote by fS : X→R
is said to have loss stability β with respect to ` (where β : N→R) if for all m ∈ N,
S ∈ (X × Y )m, 1 ≤ i ≤ m and (x′i, y

′
i) ∈ X × Y , we have for all (x, y) ∈ X × Y ,

|`(fS , (x, y))− `(fSi , (x, y))| ≤ β(m) ,

where Si denotes the sequence obtained from S by replacing (xi, yi) with (x′i, y
′
i).

Theorem 3 ([17]3). Let `(f, (x, y)) be a loss function defined for f : X→R and
(x, y) ∈ X × Y for some Y ⊆ R. Let A be a regression algorithm which, given
as input a training sample S ∈ (X × Y )m, returns as output a real-valued function
fS : X→R, such that 0 ≤ `(fS , (x, y)) ≤ M for all S and all (x, y) ∈ X × Y . If A
has loss stability β with respect to `, then for any 0 < δ < 1 and for any distribution D
on X × Y , with probability at least 1− δ over the draw of S (according to Dm),

L`
D(fS) ≤ L̂`

S(fS) + β(m) +
(
2mβ(m) +M

)√ ln(1/δ)
2m

,

where L`
D, L̂`

S denote expected and empirical `-errors, defined analogously to (6–7).
3 The version presented here differs slightly (only in constants) from the result of [17]. This is

due to a slight difference in definitions of stability: our definitions are in terms of changes to
a training sample that consist of replacing one element in the sample with a new one, while
those in [17] are in terms of changes that consist of removing one element from the sample.



Theorem 4 (Stability bound). Let A be an ordinal regression algorithm which, given
as input a training sample S ∈ (X×[r])m, learns a real-valued function fS : X→[c, d]
using a regression algorithm that has loss stability β with respect to the squared loss
`sq (defined for (x, y) ∈ X × [r]), and returns as output the prediction rule gS ≡ gfS

.
Then for any 0 < δ < 1 and for any distribution D on X × [r], with probability at least
1− δ over the draw of S (according to Dm),

Lord
D (gS) ≤ ψ

(
L̂sq

S (fS) + β(m) +
(
2mβ(m) +M

)√ ln(1/δ)
2m

)
,

where M = (max(d, r)−min(c, 1))2, and ψ(·) is as defined in Theorem 1.

Proof. Follows from Theorem 3 applied to `sq (note that 0 ≤ `sq(f, (x, y)) ≤M for all
f : X→[c, d] and all (x, y) ∈ X × [r]), and Part 2 of Theorem 1. ut

Example 1 (Bound 1 for SVR-based algorithm). As a further example of how Theo-
rem 1 can be applied, consider an ordinal regression algorithm which, given a training
sample S ∈ (X × [r])m, uses the support vector regression (SVR) algorithm to learn a
real-valued function fS ∈ F in some reproducing kernel Hilbert space (RKHS) F , and
returns the prediction rule gS ≡ gfS

. The SVR algorithm minimizes a regularized ver-
sion of the empirical `ε-error L̂ε

S(f) = 1
m

∑m
i=1 `ε(f, (xi, yi)) for some ε > 0, where

`ε is the ε-insensitive loss defined by `ε(f, (x, y)) = (|f(x) − y| − ε)+ (here a+ =
max(a, 0)). If the kernel K associated with F satisfies K(x, x) ≤ κ2 ∀x ∈ X , and a
regularization parameter λ is used, then the SVR algorithm has loss stability 2κ2/λm
with respect to `ε [17], and furthermore, with M = max

(
r + κ

√
r/λ, 2κ

√
r/λ

)
,

satisfies 0 ≤ `ε(fS , (x, y)) ≤ M . Therefore, applying Theorem 3 to `ε, observing that
`abs ≤ `ε + ε, and finally, using Part 1 of Theorem 1, we get that for any 0 < δ < 1 and
for any distribution D on X × [r], with probability at least 1− δ over S ∼ Dm,

Lord
D (gS) ≤ φ

(
L̂ε

S(fS) + ε+
2κ2

λm
+

(
4κ2

λ
+M

)√
ln(1/δ)

2m

)
, (11)

where φ(·) is as defined in Theorem 1.

4 Direct Stability Analysis for Regression-Based Algorithms

The stability bounds for regression-based algorithms discussed above – in Theorem 4
and in Example 1 – make use of existing stability bounds for regression algorithms in a
black-box manner. In this section, we directly analyze the stability of these algorithms
in the context of the ordinal regression error of the final prediction rule; this allows us to
obtain alternative bounds which in some cases are tighter than those obtained through
the above black-box analysis. We start with an alternative definition of the stability
of a regression algorithm (note that the algorithms we consider here are the same as
before, i.e., algorithms that learn a real-valued function f in a regression setting and
then make label predictions according to gf ; the difference will lie in the manner in
which we analyze these algorithms). The approach we use is similar to that used by
Bousquet & Elisseeff [17] to analyze binary classification algorithms that learn a real-
valued function f and then make class predictions according to sgn(f).



Definition 2 (Score stability). A regression algorithm whose output on a training sam-
ple S = ((x1, y1), . . . , (xm, ym)) ∈ (X × R)m we denote by fS : X→R is said to
have score stability ν (where ν : N→R) if for all m ∈ N, S ∈ (X × Y )m, 1 ≤ i ≤ m
and (x′i, y

′
i) ∈ X × Y , we have for all x ∈ X ,

|fS(x)− fSi(x)| ≤ ν(m) ,

where Si denotes the sequence obtained from S by replacing (xi, yi) with (x′i, y
′
i).

The following loss, defined for f : X→R and, crucially, for (x, y) ∈ X × [r], will
play an important role in our analysis; we refer to it as the ‘clipped’ loss:

`clip(f, (x, 1)) =

 0, if f(x) < 1
2(f(x)− 1), if 1 ≤ f(x) < r+1

2
r − 1, if f(x) ≥ r+1

2 ;

`clip(f, (x, y)) =


y − 1, if f(x) < y+1

2

2(y − f(x)), if y+1
2 ≤ f(x) < y

2(f(x)− y), if y ≤ f(x) < r − y+r
2

r − y, if f(x) ≥ y+r
2

for y ∈ {2, . . . , r − 1};

`clip(f, (x, r)) =

 r − 1, if f(x) < r+1
2

2(r − f(x)), if r+1
2 ≤ f(x) < r

0, if f(x) ≥ r.

Figure 1 shows plots of this loss for r = 4. A crucial property of this loss, which is
immediate from the definitions (see Figure 1), is the following:

Lemma 2. For all f : X→R and for all (x, y) ∈ X × [r], we have:

|gf (x)− y| ≤ `clip(f, (x, y)) ≤ 2|f(x)− y| .

The following lemma shows that a regression algorithm that has good score stability
also has good loss stability with respect to `clip. The proof is similar to the proof of
Lemma 2 of [19], and is omitted for lack of space.

Lemma 3. If a real-valued function learning algorithm has score stability ν (where
ν : N→R), then it has loss stability β = 2ν with respect to the clipped loss `clip.

We are now ready for the main result of this section:

Theorem 5 (Direct stability bound). LetA be an ordinal regression algorithm which,
given as input a training sample S ∈ (X × [r])m, learns a real-valued function fS :
X→R using a regression algorithm that has score stability ν, and returns as output
the prediction rule gS ≡ gfS

. Then for any 0 < δ < 1 and for any distribution D on
X × [r], with probability at least 1− δ over the draw of S (according to Dm),

Lord
D (gS) ≤ L̂clip

S (fS) + 2ν(m) +
(
4mν(m) + r − 1

)√ ln(1/δ)
2m

,

where L̂clip
S denotes the empirical `clip-error with respect to S.



Fig. 1. Plots of the clipped loss `clip(f, (x, y)), together with `ord(gf , (x, y)) = |gf (x)− y|, and
2`abs(f, (x, y)) = 2|f(x) − y|, for y = 1, 2, 3 and 4 (each plotted as a function of f(x)), for an
ordinal regression problem with r = 4.

Proof. By Lemma 3, we have that A has loss stability 2ν with respect to `clip. Further-
more, we have 0 ≤ `clip(f, (x, y)) ≤ r − 1 for all f : X→R and all (x, y) ∈ X × [r].
The result then follows from Theorem 3 applied to `clip (with β = 2ν and M = r − 1),
and from Lemma 2. ut

Example 2 (Bound 2 for SVR-based algorithm). For a comparison of the above bound
with the black-box stability bounds of Section 3, consider again the SVR-based ordinal
regression algorithm of Example 1 which, given a training sample S ∈ (X×[r])m, uses
the SVR algorithm to learn a real-valued function fS ∈ F in an RKHS F , and returns
the prediction rule gS ≡ gfS

. Under the conditions of Example 1, the SVR algorithm is
known to have score stability 2κ2/λm [17]. Therefore, by Theorem 5, we get that for
any 0 < δ < 1 and for any distribution D on X × [r], with probability at least 1 − δ
over S ∼ Dm,

Lord
D (gS) ≤ L̂clip

S (fS) +
4κ2

λm
+

(
8κ2

λ
+ r − 1

) √
ln(1/δ)

2m
. (12)

Comparing this with the bound of Example 1, we find that if the term in the argument
of φ(·) in Eq. (11) is smaller than 1/2, then the direct bound above is guaranteed to give
a tighter generalization result.



5 Stability Analysis for More General Algorithms

So far we have considered regression-based algorithms for ordinal regression that learn
a real-valued function f : X→R and then make label predictions according to gf . We
now consider more general algorithms that learn both a real-valued function f : X→R
and a set of thresholds b1 ≤ . . . ≤ br−1 ≤ br = ∞; as discussed previously, the
prediction rule in this case is given by

gf,b(x) = min
j∈{1,...,r}

{j : f(x) < bj} , (13)

where b ≡ (b1, . . . , br−1) denotes the vector of r − 1 thresholds (note that br is fixed
to∞). Recall that regression-based algorithms can be viewed as using a fixed threshold
vector given by bj = j + 1

2 for j ∈ {1, . . . , r − 1}. In what follows, the term thresh-
old vector will always refer to a vector of thresholds (b1, . . . , br−1) that satisfies the
inequalities b1 ≤ . . . ≤ br−1.

The ordinal regression loss of a prediction rule gf,b on an example (x, y) ∈ X × [r]
effectively counts the number of thresholds bj such that f(x) falls to the wrong side of
bj : ∣∣gf,b(x)− y

∣∣ =
y−1∑
j=1

I{f(x)<bj} +
r−1∑
j=y

I{f(x)≥bj} . (14)

In general, the loss on an example (x, y) ∈ X × [r] in this more general setting is
determined by both f and b, and as before, given a loss function `(f, b, (x, y)) in this
setting, we can define the expected and empirical `-errors of a function/threshold-vector
pair (f, b) with respect to a distribution D on X × [r] and a sample S ∈ (X × [r])m,
respectively, as follows:

L`
D(f, b) = E(x,y)∼D

[
`(f, b, (x, y))

]
; L̂`

S(f, b) =
1
m

m∑
i=1

`(f, b, (xi, yi)) . (15)

In order to analyze ordinal regression algorithms in this more general setting, we
can extend the notion of loss stability in a straightforward manner to loss functions
`(f, b, (x, y)). It is then possible to show the following result, which states that an al-
gorithm with good loss stability with respect to such a loss ` has good generalization
properties with respect to the error induced by `. We omit the proof, which follows the
proofs of similar results for classification/regression and ranking in [17, 19].

Theorem 6 (Stability bound for (f, b)-learners). Let A be an ordinal regression al-
gorithm which, given as input a training sample S ∈ (X × [r])m, learns a real-valued
function fS : X→R and a threshold vector bS ≡ (b1S , . . . , b

r−1
S ), and returns as output

the prediction rule gS ≡ gfS ,bS
. Let ` be any loss function in this setting such that

0 ≤ `(fS , bS , (x, y)) ≤M for all training samples S and all (x, y) ∈ X × [r], and let
β : N→R be such that A has loss stability β with respect to `. Then for any 0 < δ < 1
and for any distribution D on X × [r], with probability at least 1− δ over the draw of
S (according to Dm),

L`
D(fS , bS) ≤ L̂`

S(fS , bS) + β(m) +
(
2mβ(m) +M

)√ ln(1/δ)
2m

.



In the case of classification and regression, and also of ranking, once a stability-
based generalization result of the above form was established, it was quickly shown
that there were practical learning algorithms for those problems that satisfied the desired
stability conditions, and hence the result could be applied to these algorithms to obtain
generalization bounds for them (indeed, we used such bounds for the support vector
regression (SVR) algorithm in our study of regression-based algorithms in the previous
two sections). Unfortunately, this has proved to be more difficult in our setting.

Given that many of the classification, regression and ranking algorithms for which
stability analysis has been successful are regularization-based algorithms – with par-
ticular success among algorithms that perform regularization in an RKHS (such as the
SVR algorithm for regression or SVMs for classification) – a natural candidate for sta-
bility analysis in our setting is the ordinal regression algorithm of Chu & Keerthi [10],
which is inspired by SVMs and also performs regularization in an RKHS. However, our
attempts to show stability of this algorithm have so far had limited success.

The algorithm of [10] learns a real-valued function f and a threshold vector b
by minimizing a regularized upper bound on the empirical ordinal regression error.
Specifically, if we associate with each label y ∈ [r] the sign vector (y1, . . . , yr−1) ∈
{−1,+1}r−1 defined by

yj =
{

+1, if j ∈ {1, . . . , y − 1}
−1, if j ∈ {y, . . . , r − 1}, (16)

then the loss `CK used by Chu & Keerthi is given by

`CK(f, b, (x, y)) =
r−1∑
j=1

(
1− yj(f(x)− bj)

)
+
. (17)

Comparing with Eq. (14), it is easily verified that∣∣gf,b(x)− y
∣∣ ≤ `CK(f, b, (x, y)) . (18)

Given a training sample S ∈ (X × [r])m, the Chu-Keerthi algorithm returns a real-
valued function fS ∈ F and a threshold vector bS ∈ Rr−1 that satisfy4

(fS , bS) = arg min
(f,b)∈F×Rr−1

L̂CK
S (f, b) + λ

(
‖f‖2K + ‖b‖2

)
, (19)

where F is an RKHS with kernel K, ‖f‖K denotes the RKHS norm of f , and λ > 0
is a regularization parameter; as discussed in [10], the vector bS returned by the above
algorithm always satisfies the necessary inequalities b1S ≤ . . . ≤ br−1

S . The difficulty in
showing stability of the above algorithm seems to stem from the lack of a satisfactory
notion of the loss `CK being ‘jointly convex’ in f(x) and the bj ; in the corresponding
analysis for classification/regression and ranking algorithms, convexity of the relevant
loss functions in f(x) allowed the desired stability conditions to be established. This
difficulty appears to apply also in considering other notions of stability, such as possible
extensions of score stability to the above setting.

4 The version here includes the regularization term for b suggested in a footnote of [10].



6 Margin Bound for Chu & Keerthi’s Algorithm

We consider now a different approach to analyzing ordinal regression algorithms that
learn both a real-valued function f : X→R and a set of thresholds b1 ≤ . . . ≤ br−1 ≤
br = ∞, and then make label predictions according to the prediction rule gf,b defined
in Eq. (13) (recall that b is the threshold vector (b1, . . . , br−1), and that the term thresh-
old vector always refers to a vector of thresholds satisfying the above inequalities). In
particular, we define a notion of margin for prediction rules of this form, and use this
notion to derive generalization bounds for such algorithms. Our approach generalizes
the margin-based analysis used in the study of classification algorithms, and results
in a margin-based bound for the ordinal regression algorithm of Chu & Keerthi [10]
discussed in Section 5.

Definition 3 (Margin). Let f : X→R and let b ≡ (b1, . . . , br−1) be a threshold vector.
Then for each j ∈ {1, . . . , r − 1}, we define the margin of f with respect to bj on an
example (x, y) ∈ X × [r] as follows:

ρj(f, bj , (x, y)) = yj(f(x)− bj) ,

where yj is as defined in Eq. (16).

Next, for γ > 0, we define the γ-margin loss of a real-valued function f and a
threshold vector b on an example (x, y) ∈ X × [r] as follows:

`γ(f, b, (x, y)) =
r−1∑
j=1

I{ρj(f,bj ,(x,y))≤γ} . (20)

The `γ loss counts the number of thresholds bj for which the corresponding margin
ρj(f, bj , (x, y)) is smaller than (or equal to) γ; thus, comparing with Eq. (14), we im-
mediately have that for all γ > 0,∣∣gf,b(x)− y

∣∣ ≤ `γ(f, b, (x, y)) . (21)

We then have the following margin-based generalization bound for (f, b)-learners.
The proof makes use of a margin-based bound for binary classifiers (cf. Theorem 10.1
of [18]), applied separately to each of the r − 1 classification tasks of predicting yj

through sgn(f(x) − bj); a union bound argument then leads to the result below. We
omit the details due to lack of space.

Theorem 7 (Margin bound). Let F be a class of real-valued functions on X , and let
A be an ordinal regression algorithm which, given as input a training sample S ∈ (X×
[r])m, learns a real-valued function fS ∈ F and a threshold vector bS ∈ [−B,B]r−1,
and returns as output the prediction rule gS ≡ gfS ,bS

. Let γ > 0. Then for any 0 < δ <
1 and for any distribution D on X × [r], with probability at least 1 − δ over the draw
of S (according to Dm),

Lord
D (gS) ≤ L̂γ

S(fS , bS) + (r − 1)

√
8
m

(
lnN∞(γ/2,F , 2m) + ln

(
4B(r − 1)

δγ

))
,

where L̂γ
S denotes the empirical `γ-error, and N∞ refers to d∞ covering numbers.



Example 3 (Bound for Chu-Keerthi algorithm). Recall that the ordinal regression al-
gorithm of Chu & Keerthi [10], described in Section 5, performs regularization in an
RKHS F with kernel K as follows: given a training sample S ∈ (X × [r])m, the algo-
rithm selects a function fS ∈ F and a threshold vector bS that minimize a regularized
upper bound on the ordinal regression error of the resulting prediction rule gS ≡ gfS ,bS

.
It is easy to show that the output of the Chu-Keerthi algorithm always satisfies

‖fS‖2K + ‖bS‖2 ≤
r − 1
λ

,

where λ is the regularization parameter. Thus we have that

bS ∈
[
−

√
r − 1
λ

,

√
r − 1
λ

]r−1

; fS ∈ Fr,λ ≡
{
f ∈ F

∣∣∣ ‖f‖2K ≤ r − 1
λ

}
.

By Theorem 7, it follows that if the covering numbersN∞(γ/2,Fr,λ, 2m) of the effec-
tive function class Fr,λ can be upper bounded appropriately, then we have a generaliza-
tion bound for the Chu-Keerthi algorithm. Such covering number bounds are known in
a variety of settings. For example, if the kernelK satisfiesK(x, x) ≤ κ2 ∀ x ∈ X , then
using a covering number bound of Zhang [20], we get that there is a constant C such
that for any γ > 0, any 0 < δ < 1 and any distribution D on X × [r], with probability
at least 1− δ over S ∼ Dm,

Lord
D (gS) ≤ L̂γ

S(fS , bS) + (r − 1)

√
C

m

(
κ2(r − 1)
λγ2

ln(m) + ln
(
r − 1
λδγ

))
.

7 Conclusion

Our goal in this paper has been to study generalization properties of ordinal regression
algorithms that learn to predict labels in a discrete but ordered set. We have focused on
the absolute loss |g(x)− y|, for which we have obtained bounds in a variety of settings;
other losses such as the squared loss (g(x) − y)2 can also be useful and should be
explored. Note that all such losses that measure the performance of a prediction rule
g on a single example (x, y) must necessarily assume a metric on the set of labels y;
in our case, we assume the labels are in {1, . . . , r}, with the absolute distance metric
(such labels are referred to as having an interval scale in [1]). In applications where the
labels are ordered but cannot be associated with a metric, it may be more appropriate to
consider losses that measure the ranking performance of g on pairs of examples [2, 16].

Another important question concerns the consistency properties of ordinal regres-
sion algorithms: whether they converge to an optimal solution, and if so, at what rate.
It would be particularly interesting to study the consistency properties of algorithms
that minimize a convex upper bound on the ordinal regression error, as has been done
recently for classification [21, 22].
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