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Abstract

We study the generalization errors of non-convex regularized ERM procedures using Stochastic

Gradient Langevin Dynamics (SGLD). Two theories are proposed with non-asymptotic discrete-

time analysis, using stability and PAC-Bayesian theory respectively. The stability-based theory

obtains a bound of O
(

1

n
L
√
βTN

)

, where L is Lipschitz parameter, β is inverse temperature, and

TN is the sum of step sizes. For PAC-Bayesian theory, though the bound has a slower O(1/
√
n)

rate, the contribution of each step decays exponentially through time, and the uniform Lipschitz

constant is also replaced by actual norms of gradients along the optimization trajectory. Our bounds

have reasonable dependence on aggregated step sizes, and do not explicitly depend on dimensions,

norms or other capacity measures of the parameter. The bounds characterize how the noises in the

algorithm itself controls the statistical learning behavior in non-convex problems, without uniform

convergence in the hypothesis space, which sheds light on the effect of training algorithms on the

generalization error for deep neural networks.

Keywords: algorithm-dependent generalization bound; stochastic gradient Langevin dynamics;

stability; PAC-Bayesian theory; non-convex learning

1. Introduction

One of the central topics of modern statistical learning theory is to derive algorithm-dependent

and data-dependent generalization bounds for learning algorithms and models. A learning algo-

rithm may use a large hypothesis space, but its randomized way of exploring the space controls

actual capacity in a data-dependent manner. As a result, algorithm-dependent bounds usually go

beyond classical notions of model capacities, such as VC dimensions and Rademacher complexi-

ties. For stochastic gradient methods (SGM) in particular, the number of iterations and step sizes

serve as implicit regularization and restrict the growth of model capacity. Algorithm-dependent

generalization bounds and statistical properties have been intensively studied for SGM under con-

vex settings (Hardt et al., 2015; Lin and Rosasco, 2016; Lin et al., 2016; Wei et al., 2017; Chen

et al., 2016), but very few are known for the non-convex case. Nevertheless, practitioners believe
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GENERALIZATION BOUNDS OF SGLD FOR NON-CONVEX LEARNING

the latter to hold true in a regime far beyond existing theories. The prevailing success of stochastic

gradient methods in non-convex learning problems is attributed not only to computational speed,

but also to their merits on generalization error. The most important arena for algorithm-dependent

generalization bound is perhaps deep learning, where model capacity is usually larger than number

of data points, but good test error is achieved in practice.

The goal of this paper is to understand the effect of stochastic gradient methods on generalization

performance with non-convex risk minimization. We would also like to emphasize that algorithm-

dependent bounds for multi-pass non-convex optimization algorithms play a much more non-trivial

role than their convex counterparts: single pass of SGD for convex objectives already achieves op-

timality in stochastic optimization; but in non-convex settings, the computational aspects naturally

requires going through training data for much more than one pass. We consider the (regularized)

empirical risk minimization procedure, where R(·) is a regularization term independent of data.

minimize
w

{

Fn(w) =
1

n

n
∑

i=1

f(w, zi) +R(w)

}

. (1)

The excess risk of a learning algorithm is the sum of its optimization error and generalization error.

While a lot of existing works have studied the first part, we focus on the second aspect. We consider

the generalization error, i.e., the gap between training loss and population loss, by taking expectation

with respect to the randomized algorithm A. (We slightly abuse the notation: errgen(w) is actually

a function of the distribution of w)

errgen(w) , EA

(

Ezℓ(w; z)− Ênℓ(w; z)
)

(2)

For flexibility and convenience, we do not assume any relationship between the loss function f(·; zi)
for optimization algorithm and ℓ(·, zi): they can be the same, or surrogate loss may be used. For

example, in classification problems, fi is usually hinge loss or logistic loss, while ℓi is 0− 1 loss.

We study the Stochastic Gradient Langevin Dynamics(SGLD) algorithm, which adds isotropic

Gaussian noise to each stochastic gradient step, i.e.,

wk+1 = wk − ηkg̃k(w) +

√

2ηk
β

N (0, Id), (3)

where g̃k = gk(w) + ∇R(w) is the stochastic gradient for regularized objective, and gk =
|Bk|−1

∑

j∈Bk
∇f(w, zj) is the gradient evaluated on current batch Bk. We assume the algorithm

is initialized with w0 ∼ π0 = N (0, σ20Id), which is commonly used in practice.

The SGLD algorithm exhibits several nice properties even for non-convex functions, and has

been used for sampling (Bubeck et al., 2015; Nagapetyan et al., 2017; Dalalyan, 2017; Cheng et al.,

2017; Cheng and Bartlett, 2017) and non-convex optimization (Raginsky et al., 2017; Zhang et al.,

2017b). The noise helps the algorithm to escape from saddle points and even shallow local minima,

and hit a good local minimum in polynomial time. In deep learning practice, SGLD and other noise

injection methods have also been shown to be helpful (Neelakantan et al., 2015; Chaudhari et al.,

2016; Ye et al., 2017; Zhang et al., 2017a).

The effect of stochastic gradient methods on statistical learning has attracted lots of interests in

existing literature: For least square regression in RKHS, (Lin and Rosasco, 2016; Lin et al., 2016)

analyze multi-pass stochastic gradient methods, leading to optimal population risks; more general
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cases are studied via uniform stability of parameters under ℓ2 norm (Hardt et al., 2015; London,

2016). Most of them require objective functions to be convex. While Hardt et al. (2015) considered

non-convex smooth objective functions, their results depend exponentially on aggregated step sizes

and smoothness parameter. Raginsky et al. (2017) proved strong excess risk bounds for SGLD

under different assumptions, and their results are based on convergence to stationary distributions,

which usually has exponential dependence on dimension. Recently, Pensia et al. (2018) proposed

another algorithm-dependent generalization bounds for non-convex learning, based on the method

of mutual information (Xu and Raginsky, 2017). Their bound works for more general iterative

algorithms with noise injection, but the rate for SGLD is not as sharp as ours.

1.1. Contributions

We adopt two theoretical tools: uniform stability (Elisseeff et al., 2005; Rakhlin et al., 2005)

and PAC-Bayesian theory (McAllester, 2003; Germain et al., 2016) to obtain data-dependent and

algorithm-dependent bounds. These two approaches not only make it convenient to analyze gener-

alization properties along optimization trajectory, but also provide different viewpoints towards the

effect of SGLD on generalization: stability only depends on relative location between parameters

trained with neighboring datasets, and O(1/n) fast rates are usually available; on the other hand,

PAC-Bayes bounds can benefit from norm-based regularization, and it also gives instance-dependent

results, instead of taking worst-case upper bounds.

The main contributions of this paper are thus two-fold. The two generalization bounds obtained

by the two methods reveal different aspects in which SGLD controls model complexity. It is im-

portant to note that the bounds have no explicit dependence on dimension of parameter space, nor

do they explicitly depend on norm of parameters. By assuming only the Lipschitz condition on the

objective function, the generalization bounds are controlled by aggregated step sizes.

Stability-based Bounds

We use the well-known connection between uniform stability and expected generalization error

of randomized learning algorithms (Elisseeff et al., 2005). To derive upper bound for the hypoth-

esis stability supz{ℓ(wN , z) − ℓ(w′
N , z)}, we choose to exploit the squared Hellinger distance

DH(pN ||p′N ) between the distributions of parameter trained on adjacent datasets, instead of Eu-

clidean distance in the parameter space, which is commonly use in previous works. This key dif-

ference makes it possible to prove non-trivial bounds with the presence of fence-sitting situation

(Illustrated in Appendix B), in which the iterations in wk are sensitive to perturbations.

By bounding the uniform stability of SGLD algorithm, we get the following result:

Theorem 1 (Informal version of Theorem 13) Consider N rounds of SGLD with parameters β,

{ηi}Ni=1 and batch size 1. Suppose that the loss function l(w; z) is uniformly bounded by C, and

each f(·, z) is L-Lipschitz. Assuming ηi ≤ ln 2
βL2 , ∀i, we have:

E[errgen(wN )] ≤ 2LC

n

(

β
N
∑

i=1

ηi

)1/2

(4)

The theorem works without assuming any decay of step sizes. Nor do we assume any properties

about convexity or second order smoothness. We can also deal with a few larger step sizes, as

discussed in the complete version (Theorem 13).
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The bound achieves an O(1/n) fast rate, and only has square root dependence on the aggre-

gated step sizes. Regarding Lipschitz and temperature parameters as constants, good generalization

performance is guaranteed as long as TN =
∑N

i=1 ηi is much smaller than o(n2).

PAC-Bayesian Bounds

By bounding the KL divergence between output distribution of the algorithm and Gaussian

priors, we obtain the following generalization guarantee via PAC-Bayesian theory.

Theorem 2 (Informal version of Theorem 16) Let the ℓ2 regularization term be R(w) = λ
2‖w‖2.

Under sub-Gaussian assumptions on ℓ(·, ·), with suitable choice of initialization variance, we have

the following with high probability:

errgen(wN ) ≤ O





√

√

√

√

β

n

N
∑

k=1

ηke
−λ

3
(TN−Tk)E [‖gk(wk)‖2]



 . (5)

Though the bound can only achieve a slower O(1/
√
n) rate, it can benefit largely from the expo-

nentially decaying factor. And the uniform Lipschitz constant is also replaced by a data-dependent

gradient norm. Therefore, even if the gradients may be large at the beginning, their contribution to

the generalization bound will be diminishing exponentially as time elapses. As long as the last few

gradient steps are not very large, the generalization error will be controlled nicely. This phenomenon

makes it possible for this bound to be even better. Besides, the assumption on loss function class is

also weaker than stability bound and satisfied by many natural problems. For example, if the loss

function grows linearly at infinity, Gaussian initialization ensures subGaussian properties of ℓ(·, ·).
Previous analyses of the Gaussian noise in stochastic gradient methods mainly focus on its ben-

efit for optimization aspect. The question naturally comes whether it also helps generalization a lot.

Our paper gives an affirmative answer. Intuitively, the Gaussian noise makes the distribution smooth

and stable, which restricts the average ability of over-fitting for the predictor. In the Appendix B,

we present a graphical illustration of this phenomenon.

Our Techniques

Let’s first consider Langevin diffusion dw(t) = −∇Fn(w(t))dt+
√

2β−1dB(t). The distribu-

tion πt of wt satisfies the Fokker-Planck equation ∂π
∂t = 1

β∆π+∇ · (π∇Fn). We can conveniently

take time derivatives for the quantities of our interests, and estimate their upper bounds. In Section

3, we illustrate this idea by analyzing generalization error bounds for the continuous time limits.

Intuitively, the exponential decaying factor in PAC-Bayes bound is because the amount of in-

fluence on final distribution by a single step is being weakened by the interplay between Gaussian

noise and ℓ2 penalty. Technically, it comes from the logarithmic Sobolev inequality, which relates

Fisher information to KL divergence in our derivative bounds. In contrast to the convergence anal-

ysis, we are computing these quantities with respect to an isotropic Gaussian. So we do not suffer

from the exponentially small constant for log-Sobolev in multi-modal stationary distributions.

Going from continuous to discrete is highly nontrivial. Note that almost all existing discretiza-

tion techniques for Langevin Dynamics induce errors polynomial in dimension (Raginsky et al.,

2017; Bubeck et al., 2015). If we directly estimate discretization gap, all the previous efforts will

go in vain. Fortunately, since our results do not rely on convergence to the stationary, we can avoid

discretization gap by creating a different equation for each step, so that the continuous process

coincides exactly with the discrete update. Brownian motions with constant drifts and Ornstein-

Uhlenbeck processes are exploited in the two continuous-time constructions, respectively.
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2. Preliminaries

Notation: We assume data points zi ∈ Z(∀i ∈ {1, 2, . . . , n}) are i.i.d. samples from an unknown

distribution. Model parameter is w ∈ R
d. A pair of neighboring datasets S, S′ ∈ Zn means that S

and S′ differ on exactly one data point. For a continuous time stochastic differential equation (SDE)

run on dataset S, the iteration point at time t is denoted as wt, and corresponding density function

is denoted as πt(w). For discrete time SGLD run on S, the iteration point and its density function at

round k are written as wk, pk(w) respectively. All above notations are also suitable for S′ with an

additional prime. We sometimes omit the subscript t for πt, π
′
t without confusion. ηk is the step size

of discrete SGLD at iteration k, and Tk ,
∑k

j=1 ηj . Let gk(·) be the stochastic gradient operator at

round k without regularization, and let g̃k(w) = gk(w)+∇R(w). DH(p||q) represents the squared

Hellinger distance between density function p and q, i.e., DH(p||q) , 1
2

∫

Rd

(√
p−√

q
)2
dw.

Now we define an important property of the update operators which will be frequently used:

Definition 3 (non-expansive) Suppose w and w′ are two random points in R
d, and their distribu-

tions are denoted as P,P ′. We say a bivariate functional D(·||·) defined on two density functions,

is non-expansive, if for any (possibly randomized) measurable mapping ψ : Rd → R
d, we have

D(ψ(P)||ψ(P ′)) 6 D(P||P ′), (6)

where ψ(Q) is defined as the probability distribution of ψ(X) where X ∼ Q.

It is well known that all f -divergences (including KL divergence, squared Hellinger distance, and

total variation distance) are non-expansive and jointly convex (Csiszár et al., 2004).

2.1. Stability and generalization

Stability of the algorithm has a close relation with its generalization performance, which dates

back to Bousquet and Elisseeff (2002). Intuitively, the more stable an algorithm is, the better its

generalization performance will be. Here, we adopt the notion of uniform stability of a randomized

algorithm (Elisseeff et al., 2005; Hardt et al., 2015), and use it to bound generalization performance.

Definition 4 (Uniform Stability) A randomized algorithm A is ǫn-uniformly stable w.r.t the loss ℓ,
if for all neighboring sets S, S′ ∈ Zn, it holds that sup

z
|EA[ℓ(wS ; z)] − EA[ℓ(wS′ ; z)]| 6 ǫn,

where wS ,wS′ are outputs of A on S and S′ respectively.

Theorem 5 (Generalization in expectation) (Elisseeff et al., 2005; Hardt et al., 2015) Suppose a

randomized algorithm A is ǫn-uniformly stable, then there is |E[errgen(wS)]| 6 ǫn.

Under suitable assumptions, it is straightforward to extend our results to high-probability guarantees

with respect to random draw of training data with an additionalO(

√

log 1/δ
n ) term, using McDiarmid

Inequality. For simplicity, we restrict our attention to expected generalization bounds.

2.2. PAC-Bayesian theory

Different with the uniform stability theory, which requires considering the worst case neighboring

datasets, the generalization bounds implied by PAC-Bayesian theory are completely algorithmic

and data dependent. However, most of the generalization bounds via PAC-Bayesian theory assume
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bounded loss function, or work under specific contexts (Dalalyan and Tsybakov, 2012). Germain

et al. (2016) extended previous results to s-subGaussian losses, but their result introduced an extra

additive error term 1
2s

2. To get rid of this additive term and facilitate our later analysis, we first

improve the PAC-Bayesian result in Germain et al. (2016) as follows:

Theorem 6 For loss function {ℓ(w;x)} and data distribution D. Given any prior distribution P
over Ω. If the loss class is s-subGaussian w.r.t D × P , i.e Eeλ(ℓ(w;x)−Eℓ(w;x)) ≤ e

1
2
λ2s2 (∀λ), and

let Ξ be a class of distributions over Ω, with supQ∈ΞDKL(Q||P) ≤M , then with probability 1−δ:

∀Q ∈ Ξ, EDEQℓ(w;x) ≤ ÊnEQℓ(w;x) +O



s

√

DKL(Q||P) ∨ 1 + log 1
δ + log logM

n





3. Continuous Time Limit: Generalization Bounds for Langevin Equation

Intuitively, SGLD can be seen as a discretization of Langevin Equation. Understanding general-

ization performance of the ideal continuous-time algorithm provides important insights into more

technically involved analysis for discrete-time algorithm. In this section, we will present two gen-

eralization error bounds for continuous time Langevin equation, using stability and PAC-Bayesian

theory respectively. We elaborate on the techniques used in our analysis, which give a high-level

view of how generalization bound for discrete-time SGLD can be possibly obtained.

Consider the following continuous-time Langevin Equation, where Fn is the (regularized) em-

pirical objective function.

dw(t) = −∇Fn(w(t))dt+
√

2β−1dB(t), t ≥ 0 (7)

where {B(t)}t≥0 is the standard Brownian motion in R
d.

Let πt be the density of wt, which satisfies the following Fokker-Planck equation (see Appendix

C for background):
∂π

∂t
=

1

β
∆π +∇ · (π∇Fn) (8)

3.1. Uniform Stability

We are going to bound uniform stability at arbitrary time T with respect to loss function, which

directly controls generalization in expectation. In this part, the function R(·) doesn’t affect our

analysis. It can be 0 or any regularization functions, hence we omit it.

For uniform stability, we assume that f(w; z) satisfies the following condition which is slightly

weaker than uniform Lipschitz w.r.tw for any z. Note that the generalization performance is defined

in terms of loss function ℓ, which may not be continuous, but the Lipschitz assumption is imposed

on objective f of our algorithm, which can be a surrogate function for ℓ.

∀z, z′, ‖∇f(w; z)−∇f(w; z′)‖ ≤ L (9)

As a result, we have ‖∇Fn(w)−∇F ′
n(w)‖ ≤ L

n for any neighboring datasets S, S′.

First, we can use squared Hellinger distance between outputs of the algorithm over neighboring

datasets to bound uniform stability ǫn.

6
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Lemma 7 Assuming ℓ is uniformly bounded byC, and denote π (π′) as the pdf of outputs of any al-

gorithm run over dataset S (S′). Then the uniform stability εn satisfies: ǫn 6 supS,S′ 2C
√

DH(πT ||π′T )
Compared with Hardt et al. (2015), the bound based on f -divergence can better characterize stability

with non-convex objective: through one step of iteration, the ℓ2 distance E‖wk − w′
k‖2 between

parameters can expand a lot due to shape of non-convex surface, f -divergences are non-expansive

under the same transformation, and will decrease by convolution with Gaussian noise.

Proposition 8 Under above assumptions, the expected generalization error for continuous-time

Langevin Equation is bounded by:

E[errgen(wT )] ≤
LC

√
βT

2n
(10)

Proof (Sketch)

d

dt
DH(πt||π′t) =−

∫

Rd

∂

∂t

√
ππ′dw = −1

4

∫

Rd

√
ππ′

(

1

β
‖∇ log

π′

π
‖2 +∇ log

π

π′
· (∇Fn −∇F ′

n)

)

dw

6
1

4

∫

Rd

β

4

√
ππ′‖∇Fn −∇F ′

n‖2dw (Cauchy-Schwartz inequality)

6
βL2

16n2
(as ‖∇Fn(w)−∇F ′

n(w)‖ 6
L

n
)

The first equality uses Fokker-Planck equation (8) and integral by parts. We integrate through time

to get upper bound on DH(π||π′). Lemma 7 and Theorem 5 then lead to the conclusion.

3.2. PAC-Bayesian Bounds

In this subsection, we consider the regularized ERM problem with regularization term R(w) =
λ
2‖w‖2. Assume the initial distribution γ of parameter w as N (0, σ20I), then we set λ = 1

βσ2
0

for

technical reasons. The choice of λmakes λw cancels out with 1
β∇ log γ term exactly. Using similar

techniques as the above subsection, we get:

Proposition 9 Assume that ℓ(w; z) is s-subGaussian with respect to γ × D. Suppose M > 0
satisfies DKL(πT ||γ) ≤ M uniformly for worst-case data, then the following holds for Langevin

equation with probability 1− δ:

errgen(wT ) ≤ s

(

β

2n

∫ T

0
e−

λ
2
(T−t)

E

∥

∥

∥∇Ênf(wt)
∥

∥

∥

2
dt+

log 1/δ + log logM

n

)

1
2

(11)

Proof (Sketch)

d

dt
DKL(πt||γ) =

∫

Rd

∂π

∂t
(log π + 1− log γ)dw

=− 1

β

∫

Rd

π‖∇ log π −∇ log γ‖2dw −
∫

Rd

π〈∇Ênf(w),∇ log π −∇ log γ〉dw

≤−
(

1

β
− 1

2β

)∫

Rd

π‖∇ log π −∇ log γ‖2dw +
β

2

∫

Rd

π‖∇Ênf(w)‖2dw (12)

≤− 1

2βσ20
DKL(πt||γ) +

β

2

∫

Rd

πt‖∇Ênf(w)‖2dw (13)

7
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Inequalities (12) and (13) are obtained through Cauchy-Schwartz inequality and logarithmic Sobolev

inequality (Gross, 1975) respectively. Then integrating w.r.t time T and combining with Theorem 6

lead to the conclusion.

4. Stability of Discrete-Time SGLD

Though the ideal continuous-time Langevin Equation attains small generalization error, that does

not directly imply bounds for discrete-time SGLD algorithms. To relate discrete-time analyses with

continuous-time ones, most previous works estimate the discretization gap, which usually results

in at least linear dependence on d (Raginsky et al., 2017). In our analyses, we directly construct

different SDEs that are similar to original Langevin Equation, for each discrete-time updates. This

technique makes it possible to circumvent the potentially large gaps between discrete and continuous

time algorithms, as we can see from this and the next section. The techniques are closely related

to the continuous-time interpolation and KL calculation based on Girsanov theorem in (Dalalyan,

2017; Raginsky et al., 2017). However, directly applying their methods in the path space will lead

to weaker O(1/
√
n) rate. Instead, we are comparing one-time marginal distributions. This offers

flexibility for handling randomness from the random draw of stochastic gradients.

In this section, we will consider the stability of SGLD algorithm for non-convex objectives.

For simplicity, we restrict our attention to the common choice of stochastic gradient, where one

data point is used for each iteration, i.e., gk(w) = ∇f(w; zik), where ik is the index of randomly

drawn training example. Our method also extends to other variants such as full gradients or mini-

batch, which will be elaborated in the Appendix F.1. Assuming step sizes are not too large, we can

achieve essentially the same rate as in the continuous-time case, without any additional dependence

on dimension or norms. We also propose a method for dealing with large step sizes and get the main

theorem for arbitrary choice of algorithmic parameters.

4.1. Estimating the Squared Hellinger Distance

Our proof strategy is induction on steps. For each step, we consider the conditional distributions

of wk+1,w
′
k+1 conditioned on chosen index. If ik 6= i∗, the gradient update is non-expansive, and

the Gaussian noise does not increase squared Hellinger distance, either; If ik = i∗, the amount

of increase can be simply controlled by a constant from Lipschitz assumption. We can put them

together to get an O(
√

TN/n) upper bound, as shown in Appendix F.2. However, this does not

achieve the O(1/n) rate as in the continuous-time case, and is actually loose for small step sizes.

This is because the Gaussian convolution step in the ik 6= i∗ case makes DH(pk||p′k) decrease by

a certain amount, which can align well with minus information-type term in ik = i∗ case, and

compensate the positive term to attain the fast rate. In Lemma 10, we give an upper bound for the

squared Hellinger distance that achieves the fast rate.

Lemma 10 Suppose for ∀k, ηk 6 ln 2
βL2 , then there is

√

DH(pN ||p′N ) ≤ L

n

(

β
∑

k

ηk

)1/2

(14)

8
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Proof (Sketch)

It is easy to see the k-th update of SGLD is equivalent to the following step:

wk+1 = wk − (1−X)ηk∇f(wk; zjk)−Xηk∇f(wk; zi∗) +N (0,
2ηk
β
Id),

wk ∼ pk, jk ∼ U({1, 2, · · · , n} \ {i∗})

where wk, jk, X are independent and P(X = 1) = 1
n ,P(X = 0) = n−1

n .

Now, we consider a family of random variables θt (0 ≤ t ≤ ηk) defined by

θt = wk − ηk∇f(wk; zjk)−Xt(∇f(wk; zi∗)−∇f(wk; zjk)) +N (0,
2t

β
Id) (15)

Denote the p.d.f of θt as π(x, t). Similarly, we also define θ′
t, π

′(x, t). We can check π(x, t)
satisfies the following PDE with ĝ(w) = EX,wk,jk [X(∇f(wk; zi∗)−∇f(wk; zjk))|θt = w]:

∂π

∂t
=

1

β
△π +∇ · (πĝ) (16)

Similarly, we also have ĝ′ for π′.
Although ĝ − ĝ′ is not necessarily pointwise bounded by O( 1n) as in the continuous-time case,

we can prove a bound of order O( 1n) for weighted average:

∫

Rd

√
ππ′‖ĝ − ĝ′‖2dw ≤ 4

√
2L2

(n− 1)2
(17)

Then as in previous analysis, we compute the time derivative of squared Hellinger distance:

d

dt
DH(πt||π′t) = −1

4

∫

Rd

√
ππ′

(

1

β
‖∇ log

π′

π
‖2 +∇ log

π

π′
· (ĝt − ĝ′

t)

)

dw

≤ β

8

∫

Rd

√
ππ′‖ĝ − ĝ′‖2dw <

βL2

n2

So we have

DH(pk+1||p′k+1) = DH(πηk ||π′ηk) ≤ DH(π0||π′0) +
βL2

n2
ηk ≤ DH(pk||p′k) +

βL2

n2
ηk (18)

Then one arrives at the statement by induction.

4.2. Dealing with Large Step Sizes

Lemma 10 requires an upper bound ln 2
βL2 on the step sizes. Though this is a mild requirement, it

is sometimes not satisfied for the first few steps, when we are using decreasing step sizes. In this

situation, however, a large step will make βL2ηk = Ω(1) contribution to the sum, which is also

undesirable. On the other hand, a stochastic gradient step can change a distribution within at most

O(1/n) scale in terms of L1 distance. So for larger steps, a rough estimate based on L1 distance

can be better. As step size changes, the best method of estimation may be different.

In this subsection, we describe a general framework for concatenating two stability bounds

together, as well as a simple bound that tames the large steps.

9



GENERALIZATION BOUNDS OF SGLD FOR NON-CONVEX LEARNING

Theorem 11 For two biconvex and non-expansive bivariate-functionalsDA(·||·) andDB(·||·) that

controls the stability, i.e., εn ≤ AℓDA(pN ||p′N ) ∧BℓDB(pN ||p′N ), for constants Aℓ, Bℓ depending

only on ℓ. For SGLD with step sizes η1, · · · , ηN , if we can estimate DA and DB by DA(pN ||p′N ) ≤
hA(η1, · · · , ηN ), DB(pN ||p′N ) ≤ hB(η1, · · · , ηN ), then we have:

ǫn ≤ AℓhA(η1, · · · , ηk) +BℓhB(ηk+1, · · · , ηN ), ∀k ∈ {1, 2 · · · , N − 1}. (19)

For large step sizes, we can easily obtain a stability bound based on L1 distance, assuming the loss

function ℓ(·, ·) is bounded.

ǫn = sup
z

∣

∣

∣

∣

∫

ℓ(w; z)(pN − p′N )dw

∣

∣

∣

∣

6 sup ‖ℓ‖L∞

∫

|pN − p′N |dw (20)

The L1 distance can be further upper bounded by number of iterations:

Lemma 12 For an SGLD algorithm running k0 iterations, there is dTV (pk0 ||p′k0) ≤
k0
n .

Applying the framework in Theorem 11 with k0 , sup{k : ηk >
ln 2
βL2 }, we obtain the final result.

Theorem 13 Consider N rounds of SGLD with parameters β and {ηi}. Suppose the loss function

ℓ(w; z) is uniformly bounded by C, and ∀z, z′, there is ‖∇f(w; z) − ∇f(w; z′)‖ ≤ L. Let

k0 = sup{k : ηk >
ln 2
βL2 }, we have the following generalization bound in expectation

E[errgen(wN )] ≤ 2k0
n

+
2LC

n



β

N
∑

i=k0+1

ηi





1/2

(21)

5. PAC-Bayesian Theory for Discrete-Time SGLD

In this section, we present a non-asymptotic analysis for the generalization error of SGLD us-

ing PAC-Bayesian theory. We use an ℓ2 regularization term R(w) = λ
2‖w‖2, so that g̃k(w) =

gk(w) + λw, which has been shown to be helpful in the continuous time case. As in the previous

section, we directly construct stochastic processes and corresponding PDEs based on the discrete-

time updates, instead of estimating the discretization gap. However, the uniform way of interpolat-

ing the stochastic process will lead to a conditional expectation term E [θ0|θt = w], which cannot

cancel perfectly with w. Therefore, we construct the stochastic process in a non-uniform way, using

Ornstein-Uhlenbeck process. We also need the prior γk to vary with k in a data-independent way

for technical reasons. In this section, we allow gk to be any estimator for the gradient, since our

proof essentially relies upon the norm for each stochastic gradient, instead of how it is calculated.

5.1. Constructing the PDEs

The following theorem relates discrete-time updates with a PDE:

Theorem 14 Starting from θ0 ∼ π0, for fixed mapping g : Rd → R
d and ∀t ∈ [0, τk], let

θt = e−λtθ0 −
1− e−λt

λ
g(θ0) +N

(

0,
1− e−2λt

β′kλ
Id

)

. (22)

10
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The pdf πt of θt satisfies the following PDE:

∂π

∂t
(w) =

1

β′k
∆π(w) +∇ · (λπ(w)w) +∇ · (π(w)E [g(θ0)|θt = w]) (23)

With the presence of ℓ2 regularization term, we use an Ornstein-Uhlenbeck process and integrate

with respect to the initial distribution for each discrete step, which is different from the differential

equation construction using Brownian motion with constant drifts in previous sections.

The gradient update in Theorem 14 can be related to standard SGLD step as follows:






ηk = 1−e−λτk

λ
√

2ηk
β =

√

1−e−2λτk

β′

k
λ

=⇒
{

τk = − 1
λ ln(1− ηkλ)

β′k =
(

1− ληk
2

)

β
(24)

Using this transformation of parameters, conditioned on the choice of gk(·), the final distribution

πτk in Theorem 14 is exactly the same with output distribution of SGLD update

wk+1 = (1− ληk)wk − ηkgk(wk) +

√

2ηk
β

N (0, Id) (25)

In Section 3.2, we require the regularization parameter λ to be exactly equal to 1
βσ2

0
. However, in

our construction, β′k can vary according to ηk, making it impossible to fit with fixed parameter λ. In

order to handle this technical issue, we allow the prior distribution to change in a data-independent

way during iterations, and let prior at k-th round be γk. (Note that PAC-Bayes theorem is still valid,

since the prior is fixed and data-independent for any fixed k) To exactly cancel out the difference

induced by mismatch between regularization parameter and β′k, we construct a continuous time prior

γ̃ satisfying the following PDE: (in our notation, we use γ̃t and σ̃2t to denote the prior in continuous

time process and its variance, while γk and σ2k denote discrete time steps).

∂γ̃

∂t
=

1

β′k
∆γ̃ +∇ · (λγ̃w), t ∈ [0, τk] (26)

It is easy to prove by induction that γ̃ is isotropic Gaussian. Let γ̃t = N (0, σ̃2t Id), we have:

σ̃2t =







e−2λtσ̃20 +
1−e−2λt

β′

k
λ

, λ > 0

σ̃20 +
t
β′

k
, λ = 0

t=τk==⇒ σ2k+1 =







e−2λτkσ2k +
1−e−2λτk

β′

k
λ

, λ > 0

σ2k +
τk
β′

k
, λ = 0

(27)

Putting them together, we are ready to cancel out the w term in upper bound for KL divergence.

5.2. Estimating the KL Divergence

In this section, we present an upper bound on the KL divergenceDKL(pk||γk) based on the interpo-

lation in previous section, which leads to the final generalization bound. We first give the following

estimate for one-step SGLD update.

Lemma 15 Consider an SGLD update for regularized ERM with transformed parameters (τk, β
′
k),

and let prior σ̃t be defined above. We have the following inequality:

DKL

(

pk+1

∣

∣

∣

∣

∣

∣γk+1

)

≤ e
−

τk
2bkDKL

(

pk
∣

∣

∣

∣γk
)

+
β′kτk
2

E‖gk(wk)‖2 (28)

where bk = max
(

σ2k−1β
′
k,

1
λ

)

for λ > 0, and bk = σ2k−1β
′
k + τk for λ = 0.

11
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Using Lemma 15 iteratively, we can obtain the KL divergence upper bound for the whole SGLD

algorithm, which is stated in the following theorem: (We actually state a special case, with the most

general version postponed to the Appendix)

Theorem 16 Given algorithmic parameters N, {ηk}, β, σ0, λ fixed. Assume that σ20 ≤ 3
2βλ , and

loss function ℓ(w; z) is s-subGaussian with respect to distribution N (0, σ2Id) × D for any σ2 ∈
(

0, 3
2βλ

)

. Assume that f(w; zi) is uniformly L-Lipschitz with respect to w. Assume that ηkλ <
1
2 , ∀k. The following inequality uniformly holds for SGLD with probability 1 − δ: (with respect to

random draw of training data)

errgen(wN ) ≤ 2s

(

β

n

N
∑

k=1

ηke
−λ

3
(TN−Tk)E

[

‖gk(wk)‖2
]

+
logN/δ + log logNL

n

)

1
2

(29)

Though having a slower O(1/
√
n) rate compared with stability results, Theorem 16 makes

milder tail assumptions and achieves high-probability bounds. More importantly, the bound itself

has several advantages, which could be helpful for large model classes such as deep neural networks:

• The uniform Lipschitz constant is replaced with norms of actual gradients E‖gk(wk)‖2 along

optimization trajectory (the expectation is taken only with the randomized algorithm but not

with data). The bound only has doubly logarithmic dependence on L. As L usually depends

on range of data and parameters, it can be large. However, the gradient themselves should not

be large, or the optimization trajectories will be unreliable.

• The time-decaying factor e−
λ
3
(Tn−Tk) eliminates effect of earlier gradients, which could be

much larger than the last few ones. Furthermore, when ℓ2 regularization is imposed on a

Lipschitz function, the bound will be finite when T → ∞, as SGLD will not go too far away

with the presence of ℓ2 regularization.

6. Conclusion

In this paper, we study the problem of non-convex (regularized) ERM with Stochastic Gradient

Langevin Dynamics, from the perspective of statistical learning theory. Algorithm-dependent gen-

eralization bounds are established using uniform stability and PAC-Bayesian theory, respectively.

For stability-based results, we get a generalization error bound of O
(

1
n(k0 + L

√

β
∑

ηi)
)

, where

k0 is the largest index k with ηkβL
2 > ln 2. This bound attains O(1/n) fast rate and only depends

on Lipschitz constant L and aggregated step sizes. For PAC-Bayesian theory with λ
2‖w‖2 regu-

larization, we get a generalization bound of O

(

√

β
n

∑

ηkE‖gk‖2 exp(−λ
3 (TN − Tk))

)

, in which

the contribution of each step decays exponentially. In addition to time-decaying effect, this bound

also replaces the uniform Lipschitz constant with expected gradient norms along trajectory. Our

bounds have no explicit dependence on dimension or norms. This is the first algorithm-dependent

generalization bound for non-convex ERM with polynomial dependence on aggregated step sizes

and smoothness properties of objective function. Our theoretical results provide potential explana-

tions for generalization performance of large non-convex models such as deep neural networks, and

emphasizes the merits of Gaussian noise for non-convex learning problems.
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Appendix A. Additional Related Works

Deliberate injection of Gaussian noise has become a rising star in the literature of non-convex opti-

mization. Ge et al. (2015); Jin et al. (2017) show that Gaussian noise helps SGD escape 2nd order

saddle points efficiently. Stochastic Gradient Langevin Dynamics, proposed as discrete version of

Langevin Equation dwt = −∇F (wt)dt +
√

2
βdBt, also plays an important role in optimization

and sampling. It is well-known that Langevin Equation asymptotically converges to equilibrium

distribution p(w) ∝ e−βF (w), see e.g. (Markowich and Villani, 2000). This property has been

utilized for posterior sampling, known as Langevin Monte Carlo. The discretization error and mix-

ing time are intensively studied by Bubeck et al. (2015); Nagapetyan et al. (2017), for log-concave

distributions. Dalalyan and Tsybakov (2012) also used Langevin MC to approximate Exponential

Weighted Aggregate, and proved PAC-Bayesian bounds for regression learning with sparsity prior.

For non-convex learning and optimization, Raginsky et al. (2017) makes the first attempt towards

excess risks by non-convex SGLD, combining algorithmic convergence and generalization error.

But their results are based on convergence to equilibrium, which relies upon constants in Poincaré

Inequality, leading to inevitably exponential dependence on dimension. Though the mixing time can

be prohibitive in non-convex case, Zhang et al. (2017b) recently show that hitting time of SGLD for

small-loss region can be much better, and the Gaussian noise in SGLD helps to escape shallow local

minima. Their results also emphasize the importance of generalization guarantees for discrete-time

non-asymptotic SGLD in non-convex settings.

Besides, several recent works also studied the connection between SGD and stochastic differ-

ential equations, such as SME (Li et al., 2015, 2017). Though our results for SGLD cannot directly

extend to their SDEs with data-dependent diffusion term, our methods are potentially applicable for

generalization error bounds in their settings.

Appendix B. Illustration about Why Gaussian Noise Helps

In this section, we will first illustrate why prior analyses on stability can be very large for non-convex

objective function, and how this can be overcome by adding Gaussian noise. This important obser-
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vation motivates our analysis based on KL-Divergence and Hellinger distances, which highlights

the effect of smooth distributions on generalization error bounds.

Stability-based analysis for gradient algorithms on non-convex losses will suffer from a ”fence-

sitting” situation, as illustrated in Figure 1. Consider a non-convex empirical loss surface with two

local minima, which is divided into two regions by a ridge. If wk lies on one side of this ridge,

a noiseless first-order method will lead to the local minimum on this side. However, if wk comes

close to the ridge in its trajectory, small shift on the loss surface caused by changing one point will

lead it to a completely different local minimum, as we can see from the figure.

w=(0,0)
w'=(0,0)

Figure 1: Illustration of ”Fence-Sitting” Situation for Stability of Non-convex Optimization

To guarantee stability, we need wk to randomly decide which side to go when it comes close

to the ridge. The noise needs to be isotropic and smooth enough in order to cross this ridge, as the

direction of variation can be quite arbitrary. SGLD successfully tackles the fence-sitting problem

by smoothing the probability of going either side, and adding noise to subsequent steps to avoid un-

stable shallow local minima. The bounds for SGD in Hardt et al. (2015) also exploits randomness

of choosing ik, but the noise is not smooth enough. So their bound requires the subsequent steps to

be very small, to keep wk not far from the ridge.

Appendix C. Backgrounds on Fokker-Planck Equation

It is known that that the movement of a particle in the d-dimensional space influenced by its current

state and random forces (here we only consider a simple case), can be characterized by the following

stochastic differential equation (SDE):

dXt = µ(Xt, t)dt+
√

2β−1dBt (30)

where Xt is the random position of the particle at time t, µ(Xt, t) is the d-dimensional random

drift vector, and Bt is the d dimensional Brownian motion. Denote the density function of Xt as

p(x, t), then Fokker-Planck equation describes the evolution of p(x, t):

∂p(x, t)

∂t
=

1

β
∆p(x, t)−∇ · (p(x, t)µ(x, t)) (31)
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where ∆ is the Laplace operator.

For Gaussian distribution, we have the following log-Sobolev inequality, which relates Fisher

information and KL divergence.

Theorem 17 For γ = N (0, σ20I) and any distribution π which has absolute continuous density, we

have:

Eπ

(

log
π

γ

)

≤ σ20Eπ

∥

∥

∥

∥

∇ log
π

γ

∥

∥

∥

∥

2

(32)

A special case of Langevin equation is Ornstein-Uhlenbeck process, which plays a critical role

in our discretization construction.

Proposition 18 An Ornstein-Uhlenbeck process is solution to the following SDE:

dXt = λ(b−Xt)dt+

√

2

β
dBt, (33)

for some constant vector b ∈ R
d and constant λ > 0. Its Fokker-Planck equation is:

∂π

∂t
=

1

β
∆π + λ∇ · ((w − b)π) , (34)

and the solution can be directly written as:

Xt = e−λtX0 +
(

1− e−λt
)

b+

√

2

β

∫ t

0
e−λ(t−s)dBs (35)

The proof can be found in any standard textbook about Fokker-Planck equations, see, e.g. (Risken,

1996)

Appendix D. Omitted Proofs in Section 2

Proof of theorem 6

Proof For simplicity, we replace ℓ(w, z) with ℓ(w, z) − ED×Pℓ(w, z), and assume the distribu-

tion of loss function is centered under data distribution and the prior. It is easy to check that this

modification does not affect following analysis.

We use the Donsker-Varadhan change of measure inequality: for any pair of distributions P and

Q and functional φ, we have

EQ(φ(ℓ)) ≤ DKL(Q||P) + lnEP

(

eφ(ℓ)
)

(36)

Consider functions φ(ℓ) in the form of φ(w) = λ
(

Eℓ(w; z)− Ênℓ(w; z)
)

(function class of ℓ(w, ·)
indexed by w), while the values of λ will be determined later. (The notation Ên denotes empirical

expectation, i.e., Ênh(x) =
1
n

∑n
i=1 h(xi))

For any fixed λ > 0, δ′ > 0, by Markov inequality we have the following with probability 1−δ′

EP

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

≤ 1

δ′
ESEP

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

(37)
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For any finite set Λ ⊆ R
+, δ > 0, let δ′ = δ

|Λ| , we have:

∀λ ∈ Λ, P

(

EP

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

>
|Λ|
δ
ESEP

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

)

≤ δ

|Λ| (38)

and by union bound,

P

(

∃λ ∈ Λ,EP

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

>
|Λ|
δ
ESEP

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

)

≤ |Λ|δ′ = δ

(39)

Let S′ = {x′1, x′2, · · · , x′n} be an independent copy of n samples, and let Ê′
n denotes empirical

expectation with respect to S′, i.e., Ê′
nh(x) =

1
n

∑n
i=1 h(x

′
i). We have

ES

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

= ES

(

eES′λ(Ê′

nℓ(w;z)−Ênℓ(w;z))
)

≤ ES,S′

(

eλ(Ê
′

nℓ(w;z)−Ênℓ(w;z))
)

(40)

The last inequality is due to convexity of exponential function and Jensen’s Inequality.

Given λ fixed, we can expand the right hand side based on independence, and each term is upper

bounded by exp
(

λ2s2

n2

)

by subGaussian assumption. Putting them together, we have:

ES,S′,P

(

eλ(Ê
′

nℓ(w;z)−Ênℓ(w;z))
)

=

n
∏

i=1

E

(

e
λ
n(ℓ(w;z′i)−ℓ(w;zi))

)

≤ e
λ2s2

n (41)

Combining two inequalities above, we have the following bound:

ES,P

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

≤ e
λ2s2

n (42)

Using Equation (38), we have the following with probability 1− δ:

∀λ ∈ Λ, EP

(

eλ(Eℓ(w;z)−Ênℓ(w;z))
)

≤ |Λ|
δ
e

λ2s2

n (43)

Combined with Equation (36) by letting φλ(w) = λ
(

Eℓ(w; z)− Ênℓ(w; z)
)

for different values

of λ ∈ Λ, for any posterior Q, we have the following result with probability 1− δ:

∀λ ∈ Λ, EQ

(

Eℓ(w; z)− Ênℓ(w; z)
)

≤ 1

λ

(

DKL(Q||P) + log
|Λ|
δ

)

+
λs2

n
(44)

Take Λ =
{

1
s

√

n
(

2i + log 1
δ + log logM

)

}⌈logM⌉

i=1
with |Λ| = ⌈logM⌉. For any poste-

rior Q ∈ Ξ, DKL(Q||P) ≤ M . Choose the index i ∈ {1, 2, · · · , ⌈logM⌉} such that 2i ≤
DKL(Q||P) < 2i+1 (if DKL(Q||P) < 2, let i = 1) and plug the corresponding value of λ into

Equation (44), we can easily get the following upper bound for the right hand side:

1

λ

(

DKL(Q||P) + log
|Λ|
δ

)

+
λs2

n
≤ 2s

√

DKL(Q||P) ∨ 1 + log 1
δ + log logM

n
, ∀Q ∈ Ξ

(45)

So the theorem is proven.
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Remark: if we choose a single value of λ fixed, the proof becomes the same as Germain et al.

(2016), which is based on Donsker-Varadhan change-of-measure inequality. But their bound does

not give optimal dependence on KL divergence. In order to overcome this difficulty, we use a set of

values for λ and union bound to obtain the

√

DKL

n bound, at a price of double logarithmic term.

Appendix E. Omitted Proofs in Section 3

Proof of Lemma 7

Proof

ǫn = sup
z,S,S′

∣

∣

∣

∣

∫

Rd

ℓ(w; z)π(w)dw −
∫

Rd

ℓ(w; z)π′(w)dw

∣

∣

∣

∣

= sup
z,S,S′

∣

∣

∣

∣

∫

Rd

ℓ(w; z)
(√

π +
√
π′
)(√

π −
√
π′
)

dw

∣

∣

∣

∣

≤ sup

{

(∫

Rd

ℓ(w; z)2
(√

π +
√
π′
)2
dw

) 1
2
(∫

Rd

(√
π −

√
π′
)2
dw

) 1
2

}

=2 sup
π

‖ℓ‖L2(π)

√

DH(π||π′)

≤2C
√

DH(π||π′)

(46)

Proof of Proposition 8

Proof According to the analysis above, we only need to bound DH(π||π′) from above.

Apparently, at time t = 0, DH(π||π′) = 0. We then estimate d
dtDH(πt||π′t):

d

dt
DH(πt||π′t) =−

∫

Rd

∂

∂t

√
ππ′dw

= −
∫

Rd

√
π′

2
√
π

∂π

∂t
dw −

∫

Rd

√
π

2
√
π′
∂π′

∂t
dw

= −
∫

Rd

√
π′

2
√
π

(

1

β
∆π +∇ · (π∇Fn)

)

dw −
∫

Rd

√
π

2
√
π′

(

1

β
∆π′ +∇ · (π′∇F ′

n)

)

dw

=
1

2

∫

Rd

∇

√
π′√
π

·
(

1

β
∇π + π∇Fn

)

dw +
1

2

∫

Rd

∇

√
π√
π′

(

1

β
∇π′ + π′∇F ′

n)

)

dw

(47)

The last equality is due to integration by parts. Technical conditions such as uniform decaying

tails of π and π′ can be found in (Risken, 1996). We then proceed to calculate the part induced by

gradient update (with coefficient 1) and those induced by Gaussian convolution (with coefficient 1
β )
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individually, which can be described as follows:

d

dt
DH(πt||π′t) =

1

2

∫

Rd

∇

√
π′√
π

·
(

1

β
∇π + π∇Fn

)

dw +
1

2

∫

Rd

∇

√
π√
π′

(

1

β
∇π′ + π′∇F ′

n)

)

dw

=
1

4

∫

Rd

√
ππ′∇ log

π′

π
·
(

1

β
∇ log π +∇Fn

)

dw +
1

4

∫

Rd

√
ππ′∇ log

π

π′
·
(

1

β
∇ log π′ +∇F ′

n)

)

dw

= −1

4

∫

Rd

√
ππ′

(

1

β
‖∇ log

π′

π
‖2 +∇ log

π

π′
· (∇Fn −∇F ′

n)

)

dw

≤ 1

4

∫

Rd

β

4

√
ππ′‖∇Fn −∇F ′

n‖2dw

≤ βL2

16n2
(48)

Integrating through time and plugging into the estimate above, we have:

ǫn ≤ 2C
√

DH(πT ||π′T ) ≤
LC

√
βT

2n
(49)

Proof of Proposition 9

Proof We only need to bound the KL divergence to prior distribution γ.

d

dt
DKL(πt||γ) =

∫

Rd

∂π

∂t
(log π + 1− log γ)dw

=− 1

β

∫

Rd

π‖∇ log π −∇ log γ‖2dw −
∫

Rd

π〈∇Ênf(w) + λw +
1

β
∇ log γ,∇ log π −∇ log γ〉dw

≤−
(

1

β
− 1

2C

)∫

Rd

π‖∇ log π −∇ log γ‖2dw +
C

2

∫

Rd

π‖∇Ênf(w) + λw +
1

β
∇ log γ‖2dw

(50)

We use Cauchy-Schwartz inequality in the second step, and the constant C will be determined later.

The first term is minus Fisher information I(π||γ), which can be upper bounded by −DKL(π||γ)
itself using logarithmic Sobolev inequality (Gross, 1975; Markowich and Villani, 2000):

DKL(π||γ) ≤ σ20I(π||γ), for γ = N (0, σ20I) (51)

Let C = β and plug into the log Sobolev inequality, we get:

d

dt
DKL(πt||γ) ≤ − 1

2βσ20
DKL(πt||γ) +

β

2

∫

Rd

πt‖∇Ênf(w) + λw +
1

β
∇ log γ‖2dw (52)

Solving for DKL with initial value DKL(π0||γ) = 0, we get:

DKL(πT ||γ) ≤
β

2

∫ T

0
e

−(T−t)

2βσ2
0 Eπt

∥

∥

∥

∥

∇Ênf(w) + λw +
1

β
∇ log γ

∥

∥

∥

∥

2

dt (53)
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Since we use Gaussian prior, the second term in the expectation can be directly calculated as
1
β∇ log γ = − 1

βσ2
0
w, which exactly cancel out with the λw term. So we have:

DKL(πT ||γ) ≤
β

2

∫ T

0
e

−λ(T−t)
2 Eπt‖∇Ênf(w)‖2dt (54)

Remark: if we do not add the ℓ2 regularization term, the bound will become

DKL(πT ||γ) ≤
β

2

∫ T

0
e

−(T−t)

2βσ2
0 Eπt

∥

∥

∥

∥

∇Fn +
1

β
∇ log γ

∥

∥

∥

∥

2

dt, (55)

which directly depends on norm of the parameter. This is undesirable in high dimensions, since the

diffusion term will make the norm at least Ω(d). Therefore, the use of ℓ2 regularization is critical to

our analysis.

Appendix F. Omitted Proofs in Section 4

F.1. Stability of Langevin Monte Carlo

We consider the following LMC algorithm, which uses full gradients in each update.

wk+1 = wk −
ηk
n

n
∑

i=1

∇f(wk; zi) +

√

2ηk
β

N (0, Id) (56)

Suppose two neighboring datasets S, S′ differing only in the i∗-th data. Then one can divide

each iteration into two parts: the first part just update wk and w′
k with gradients over n − 1 same

data and zi∗ , i.e.

w
(1)
k := wk −

ηk
n

∑

i 6=i∗

∇f(wk; zi)−
ηk
n
∇f(wk; zi∗) (57)

,

w
(1)′
k := w′

k −
ηk
n

∑

i 6=i∗

∇f(w′
k; zi)−

ηk
n
∇f(w′

k; zi∗) (58)

and then we obtain wk+1 and w′
k+1 by adding Gaussian noise and replacing the gradient of sample

zi∗ in w
(1)′
k by the gradient of sample z′i∗ , i.e. w′

k+1 = w
(1)′
k − ηk

n ∇(f(wk; z
′
i∗
) − f(wk; zi∗)) +

√

2ηk
β N (0, Id). In the first step, squared Hellinger distance does not increase because of the non-

expansive property. For the second step, one can view them as consecutive SDEs with drift term

g, g′ of orderO( 1n). Hence we can prove the increments ofDH(π||π′) after one iteration is of order

O( 1
n2 ), which leads to the following generalization bound.

Theorem 19 (Generalization Error of LMC) Assuming that

∀z, z′, ∀w, ‖∇f(w; z)−∇f(w; z′)‖ ≤ L
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Let wN be result of LMC atN -th round. If loss function ℓ(·, ·) is uniformly bounded by constant,

then the following inequality holds:

E[errgen(wT )] ≤ O





L
√

β
∑N

k=1 ηk

n



 (59)

where the expectation is taken over the randomness of training data.

Proof Here we bound uniform stability of full gradient SGLD by estimating squared Hellinger

distance.

We shall assume ‖∇fi‖ ≤ L (which can actually be relaxed to ‖∇(fi − fj)‖ ≤ 2L). (In the

proof we will use fi(w) for abbreviation of f(w, zi), and f ′i(w) for f(w, z′i). The prime notation

on f does not stand for derivative, which is always denoted using ∇ operator.)

Suppose at step k, the starting parameters are Wk−1 and W ′
k−1 resp. The ending parameters are

given by

wk+1 = wk −
ηk
n

n
∑

i=1

∇fi(wk) +

√

2ηk
β

Bk (60)

w′
k+1 = w′

k −
ηk
n



∇f ′i∗(w
′
k) +

n
∑

i=1,i 6=i∗

∇fi(w
′
k)



+

√

2ηk
β

B′
k (61)

where Bk,B
′
k ∼ N (0, Id).

We consider a family of random variable θt,θ
′
t(0 ≤ t ≤ ηk) defined by

θt = wk −
ηk
n

n
∑

i=1

∇fi(wk) +

√

2t

β
Bk (62)

θ′
t = w′

k −
ηk
n

n
∑

i=1

∇fi(w
′
k)−

t

n

(

∇f ′i∗(w
′
k)−∇fi∗(w

′
k)
)

+

√

2t

β
B′

k (63)

Till now, we only consider the one-time distribution of θt,θ
′
t, and their dependence on wk,w

′
k,

without taking the inter-dependence of whole process into consideration, so we use a simple way

of expanding the Gaussian noise. In the actual construction of the SDE, it will be expanded via

Brownian motion.

Let the pdf of θt,θ
′
t be πt, π

′
t. We can see that

• θ0 = wk − ηk
n

n
∑

i=1
∇fi(wk),θ

′
0 = w′

k − ηk
n

n
∑

i=1
∇fi(w

′
k), so that

DH(π0||π′0) ≤ DH(pk||p′k) (64)

• the explicit formulae for πt and π′t are given by

πt(w) = Ewk

(

β

4πt

)d/2

exp
(

− β

4t
‖w −wk +

η

n

n
∑

i=1

∇fi(wk)‖2
)

(65)
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and

π′t(w) = Ew
′

k

(

β

4πt

)d/2

exp
(

− β

4t
‖w−w′

k+
η

n

n
∑

i=1

∇fi(w
′
k)+

t

n

(

∇f ′i∗(w
′
k)−∇fi∗(w

′
k)
)

‖2
)

(66)

Although formidable at first glance, πt and π′t are nothing but superposition of Gaussian

density functions w.r.t w.

Define gt(w) to be 0 and define g′
t(w) by

Ew
′

k
[
1

n

(

∇f ′i∗(w
′
k)−∇fi∗(w

′
k)
)

|θ′
t = w]

=
1

nπ′t(w)
Ew

′

k

(

(

∇f ′i∗(w
′
k)−∇fi∗(w

′
k)
)

(

β

4πt

)d/2

e
− β

4t
‖w−w

′

k
+ η

n

n∑

i=1
∇fi(w

′

k
)+ t

n(∇f ′

i∗
(w′

k
)−∇fi∗ (w

′

k
))‖2
)

(67)

Then by taking derivatives w.r.t to w and t, we can obtain the following equations, which has

the same one-time marginal distribution as θt and θ′
t (though they are not the same process):

∂πt
∂t

=
1

β
∆πt +∇ · (πtgt) (68)

∂π′t
∂t

=
1

β
∆π′t +∇ ·

(

π′tg
′
t

)

(69)

From definition and the assumption ∀z, z′, ‖∇f(w; z)−∇f(w; z′)‖ ≤ L, we have

∀w, ‖gt(w)− g′
t(w)‖ ≤ L

n
(70)

d

dt
DH(πt||π′t) = −1

2

∫

Rd

(

1

β

√
ππ′‖∇ log

π

π′
‖2 +

√
ππ′∇ log

π

π′
· (gt − g′

t)

)

dw

≤ β

8

∫

Rd

√
ππ′‖gt − g′

t‖2dw

=
βL2

8n2

As a result, we can estimate the change of squared Hellinger distance in this step:

DH(πk+1||π′k+1) = DH(πηk ||π′ηk)

= DH(π0||π′0) +
∫ ηk

0

d

dt
DH(πt||π′t)dt

≤ DH(p0||p′0) +
∫ ηk

0

βL2

8n2
dt

= DH(p0||p′0) +
βL2

8n2
ηk
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Then by induction we shall have a final bound for DKL(π||π′) of the form βL2

8n2

N
∑

k=1

ηk.

Then the bound for uniform stability is given by

ǫn ≤ O





L
√

β
∑N

k=1 ηk

n



 (71)

Combining the techniques from the proof of Theorem 19 and Lemma 10, we can easily get the

general result for the case of mini-batch.

F.2. Stability of SGLD - A Succinct Analysis

As random draw of a training example is more popular in practice, it is desirable to analyze general-

ization properties of SGLD. In the rest part of this section, we will assume gk = ∇fik(w), where ik
is the index of randomly drawn training example. We will first present a simple analysis for stability

of SGLD. Though the resulting bound is not optimal, the analysis illustrates important principles

for understanding how SGLD helps stability. In the following, we will derive upper bounds for

δk , DH(pk||p′k) recursively. There are two possible cases for ik:

• If ik 6= i∗, then SGLD implemented over S or S′ will use the same gradient mapping, i.e.

ψk : w 7→ w − ηk∇f(w; zik), then we have

DH(P(ψk(wk)|ik)||P(ψk(w
′
k)|ik)) ≤ DH(pk||p′k) = δk (72)

Furthermore let Gk = N (0, ηkβ Id), by the convexity of squared Hellinger distance (which is

implied by joint convexity of f -divergence), there is

DH(P(wk+1|ik)||P(w′
k+1|ik)) = DH(Gk ∗ P(ψk(wk)|ik)||Gk ∗ P(ψk(w

′
k)|ik))

≤ DH(P(ψk(wk)|ik)||P(ψk(w
′
k)|ik))

≤ δk

So in this case, the SGLD update is non-expansive with respect to δk.

• If ik = i∗, we have nothing but limited step size in hand. The increase of f -divergence can

be bounded through norm-based shifts in parameter space only under smoothness conditions,

which is helped by Gaussian noise. Therefore, we expand the discrete-time update into a

stochastic process, where the effect of gradient flow is smoothed by Gaussian at each time t.

Concretely, for ik = i∗, the update can be interpolated as:

∀t ∈ [0, ηk], θt = θ0 −
∫ t

0
∇fik(θ0)ds+

√

2

β

∫ t

0
dBs, θ0 = wk (73)

However, θt is not a Markov process, as it always involves the initial random point θ0. Using the

same technique as in Raginsky et al. (2017), we define gt(v) , E

(

∇fik(θ0)
∣

∣

∣θt = v
)

. Mimicking
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distribution results (Gyöngy, 1986) guarantees solution to the following SDE has the same one-time

marginal as θt.

dvt = gs(vs)ds+

√

2

β
dBs, v0 ∼ pk (74)

The corresponding Fokker-Planck equation for above process is:

∂π

∂t
= ∇ ·

(

1

β
∇π + πgt

)

(75)

We also have counterparts for the neighboring dataset, denoted as π′t. With the help of these PDEs,

we can bound the variation of squared Hellinger distance.

As in the ideal case, we can compute that

d

dt
DH(πt||π′t) = −1

4

∫

Rd

√
ππ′

(

1

β
‖∇ log

π′

π
‖2 +∇ log

π

π′
· (gt − g′

t)

)

dw

≤ β

16

∫

Rd

√
ππ′‖gt − g′

t‖2dw

≤ βL2

16

(76)

For ik = i∗, we have

DH(P(wk+1|i∗)||P(w′
k+1|i∗)) 6 δk +

βL2

16
ηk (77)

Combining above two cases and using the convexity of squared Hellinger distance, we obtain

δk+1 ≤
n− 1

n
δk +

1

n
(δk +

βL2

8
ηk) = δk +

βL2

8n
ηk. (78)

Putting them together, we get following guarantees for SGLD:

Theorem 20 Consider N rounds of SGLD with parameters β and {ηi}. If we assume

1. the loss function ℓ(w; z) is uniformly bounded by C;

2. ∀z, z′, the gradients of objective function satisfy ‖∇f(w; z)−∇f(w; z′)‖ ≤ L

Then we have the following generalization bound in expectation

E[err(wN )] ≤ LC

2

(

β

n

k
∑

i=1

ηi

)1/2

(79)
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F.3. Proof of Lemma 10

Proof Consider the following SGLD update step:

wk+1 = wk−ηk∇f(wk; zik)+

√

2ηk
β

Bk, w0 ∼ N (0, σ20Id), Bk ∼ N (0, Id), ik ∼ U{1, 2, · · · , n}
(80)

where w0,Bk, ik are independent. Apparently it is equivalent to the following one:

wk+1 = wk − (1−X)ηk∇f(wk; zjk)−Xηk∇f(wk; zi∗) +

√

2ηk
β

Bk,

w0 ∼ N (0, σ20Id), Bk ∼ N (0, Id), jk ∼ U({1, 2, · · · , n} \ {i∗})

where w0,Bk, ik, X are independent and P(X = 1) = 1
n ,P(X = 0) = n−1

n .

As in the case of LMC, we are going to construct a pair of random variable sequences indexed

by t, and then construct an SDE with the same one-time marginals.

We consider a family of random variables θt (0 ≤ t ≤ ηk) defined by

θt = wk − ηk∇f(wk; zjk)−Xt(∇f(wk; zi∗)−∇f(wk; zjk)) +

√

2t

β
Bk (81)

Denote pdf of θt by πt. For neighboring datasets, we also have θ′
t and π′t. We can see that

• θ0 = wk − ηk∇f(wk; zjk),θ
′
0 = w′

k − ηk∇f(w′
k; zjk), so by non-expansiveness,

DH(π0||π′0) ≤ DH(pk||p′k) (82)

• θηk = wk+1 and θ′
ηk

= w′
k+1

• For 0 ≤ t ≤ ηk, πt and π′t are given by

πt(w) = EX,jk,wk

(

β

4πt

)d/2

exp(−β‖w−wk+ηk∇fjk(wk)+Xt(∇fi∗(wk)−∇fjk(wk))‖2/(4t))
(83)

and

π′t(w) = EX,jk,w
′

k

(

β

4πt

)d/2

exp(−β‖w−w′
k+ηk∇fjk(w

′
k)+Xt(∇f ′i∗(w

′
k)−∇fjk(w

′
k))‖2/(4t))

(84)

(As in the LMC case, in this proof we use fi(w) for abbreviation of f(w, zi), and f ′i(w) for

f(w, z′i).)
Although formidable at first glance, πt and π′t are nothing but superposition of Gaussian density

functions w.r.t w. Here fi(wk) = f(y; zi), f
′
i(y) = f(y; z′i).

Define ĝ by

EX,jk,wk
[X(∇fi∗(wk)−∇fjk(wk))|θt = w]

=
1

πt(w)
EX,jk,wk

X(∇fi∗(wk)−∇fjk(wk)) ·
(

β

4πt

)d/2

e−β‖w−wk+ηk∇fjk (wk)+Xt(∇fi∗ (wk)−∇fjk (wk))‖
2/(4t)

(85)
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and ĝ′ by

EX,jk,w
′

k
[X(∇f ′i∗(w

′
k)−∇fjk(w

′
k))|θ′

t = w]

=
1

π′t(w)
EX,jk,w

′

k
X(∇f ′i∗(w

′
k)−∇fjk(w

′
k)) ·

(

β

4πt

)d/2

e−β‖w−w
′

k
+ηk∇fjk (w

′

k
)+Xt(∇f ′

i∗
(w′

k
)−∇fjk (w

′

k
))‖2/(4t)

(86)

Then it can be easily verified by calculating derivatives w.r.t w and t that:

∂π

∂t
=

1

β
△π +∇ · (πĝ) (87)

and
∂π′

∂t
=

1

β
△π′ +∇ · (π′ĝ′) (88)

With the Lemma 21 below and using similar analysis as before, then we compute the time

derivative of squared Hellinger distance to be

d

dt
DH(πt||π′t) = −1

4

∫

Rd

√
ππ′

(

1

β
‖∇ log

π′

π
‖2 +∇ log

π

π′
· (ĝt − ĝ′

t)

)

dw

≤ β

16

∫ √
ππ′‖ĝ − ĝ′‖2dw

<
βL2

n2

So we have

DH(pk+1||p′k+1) = DH(πηk ||π′ηk) ≤ DH(π0||π′0) +
βL2

n2
ηk ≤ DH(pk||p′k) +

βL2

n2
ηk (89)

Then one arrives at the statement by induction.

Lemma 21 Under the same assumptions with Lemma 10, there is

∫ √
ππ′‖gt − g′

t‖2dw ≤ 4
√
2L2

(n− 1)2
(90)

Proof Let ut, u
′
t denote the pdfs of θt, θ

′
t conditioned on X = 1 respectively, and let vt, v

′
t denote

the pdfs of θt, θ
′
t conditioned on X = 0 respectively.

Then it’s easily seen from equation 85 and equation 86 that

ĝt(w) =
ut(w)

nπt(w)
E(∇fi∗(wk)−∇fjk(wk)|θt = w) (91)

and

ĝ′
t(w) =

u′t(w)

nπ′t(w)
E(∇fi∗(w

′
k)−∇f ′jk(w

′
k)|θ′

t = w) (92)
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So we have bounds:

‖ĝt(w)‖ ≤ ut(w)L

nπt(w)
(93)

and

‖ĝ′
t(w)‖ ≤ u′t(w)L

nπ′t(w)
(94)

Then we have
∫

Rd

√

πtπ′t‖ĝt − ĝ′
t‖2dw ≤ 2

∫

Rd

√

πtπ′t‖ĝ‖2dw + 2

∫

Rd

√

πtπ′t‖ĝ′‖2dw

≤ 2

√

∫

πt‖ĝ‖4dw
∫

π′tdw + 2

√

∫

π′t‖ĝ′‖4dw
∫

πtdw

= 2

√

∫

πt‖ĝ‖4dw + 2

√

∫

π′t‖ĝ′‖4dw

≤ 2

√

∫

πt

(

utL

nπt

)4

dw + 2

√

∫

π′t

(

u′tL

nπ′t

)4

dw

≤ 2L2

√

∫

u4t
n((n− 1)vt + ut)3

dw + 2L2

√

∫

u′4t
n((n− 1)v′t + u′t)

3
dw

≤ 2L2

(n− 1)2

√

∫

u4t
v3t
dw +

2L2

(n− 1)2

√

∫

u′4t
v′3t
dw

To proceed, we shall first seek to find the PDEs satisfied by ut, vt, u
′
t, v

′
t.

By definition, the explicit expressions for ut, vt are

ut(w) = Ejk,wk

(

β

4πt

)d/2

exp(−β‖w−wk+ηk∇fjk(wk)+t(∇fi∗(wk)−∇fjk(wk))‖2/(4t))
(95)

and

vt(w) = Ejk,wk

(

β

4πt

)d/2

exp(−β‖w −wk + ηk∇fjk(wk)‖2/(4t)) (96)

Define gt(w) by

Ejk,wk

[

∇fi∗(wk)−∇fjk(wk)
∣

∣

∣X = 1,θt = w
]

=
1

ut(w)
Ejk,wk

(

∇fi∗(wk)−∇fjk(wk)
)

·
(

β

4πt

)d/2

e−β‖w−wk+ηk∇fjk (wk)+t(∇fi∗ (wk)−∇fjk (wk))‖
2/(4t)

(97)

Then the following equality holds:

∂ut
∂t

=
1

β
∆ut +∇ · (ugt) (98)
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And for vt, the following equality holds:

∂vt
∂t

=
1

β
∆vt (99)

Using the Lemma 22 below, it follows that for t ≤ ηk ≤ ln 2
βL2

∫

u4t
v3t
dw ≤ 8 (100)

Similarly we have
∫

u′4t
v′3t
dw ≤ 8 (101)

As a result,
∫ √

ππ′‖gt − g′
t‖2dw ≤ 4

√
2L2

(n− 1)2
(102)

Lemma 22 Let u, v ∈ C∞([0,+∞)× R
d) satisfying respectively:

• ∂u
∂t = 1

β△u+∇ · (ugt)

• ∂v
∂t = 1

β△v +∇ · (vg′
t)

and u0 = v0.

Assume that ‖gt − g′
t‖ ≤ L

Then for t ≤ ln 2
βL2 , we have

∫

u4t
v3t
dw ≤ 8 (103)

Proof

d

dt

∫

Rd

u4t
v3t
dw =

∫

4
∂u

∂t

u3

v3
dw − 3

∂v

∂t

u4

v4
dw

=

∫ (

−4(
1

β
∇u+ ug) ·∇u3

v3
+ 3(

1

β
∇v + vg′) ·∇u4

v4

)

dw

=

∫

u4

v3

{

−4(
1

β
∇ log u+ g) ·∇ log

u3

v3
+ 3(

1

β
∇ log v + g′) ·∇ log

u4

v4

}

dw

=

∫

12u4

v3

{

−(
1

β
∇ log u+ g) ·∇ log

u

v
+ (

1

β
∇ log v + g′) ·∇ log

u

v

}

dw

=

∫

12u4

v3

{

− 1

β
‖∇ log

v

u
‖2 − (g − g′) ·∇ log

u

v

}

dw

≤
∫

3βu4

v3
‖g − g′‖2dw

≤ 3βL2

∫

Rd

u4t
v3t
dw
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Then
d

dt
ln

∫

u4t
v3t
dw ≤ 3βL2 (104)

For t ≤ ln 2
βL2 , we have

ln

∫

u4t
v3t
dw ≤ ln 2

βL2
· 3βL2 = 3 ln 2 (105)

i.e.
∫

u4t
v3t
dw ≤ 8 (106)

F.4. Dealing with Large Step Sizes

Proof of Theorem 11

Proof Consider the concatenated procedure A′′ that use samples S for the first k steps and samples

S′ for the rest steps. We denote the corresponding parameters and densities by w′′
k and p′′k.

ǫn = sup
z

∣

∣

∣

∫

ℓ(w; z)(p′N (w)− pN (w))dw
∣

∣

∣

≤ sup
z

∣

∣

∣

∫

ℓ(w; z)(p′N (w)− p′′N (w))dw
∣

∣

∣+ sup
z

∣

∣

∣

∫

ℓ(w; z)(pN (w)− p′′N (w))dw
∣

∣

∣

≤ AℓDA(p
′
N ||p′′N ) +BℓDB(pN ||p′′N )

For step k+1, · · · , N the concatenated procedure A′′ uses sample set S′. So the transformation

from p′k to p′N is the same as the transformation from p′′k to p′′N . By non-expansiveness, we have

DA(p
′
N ||p′′N ) ≤ DA(p

′
k||p′′k) ≤ hA(η1, · · · , ηk).

Note that pl = p′′l for l = 1, · · · , k, so we have DB(pN ||p′′N ) ≤ hB(ηk+1, · · · , ηN ).
Therefore, we obtain

ǫn ≤ AℓhA(η1, · · · , ηk) +BℓhB(ηk+1, · · · , ηN ) (107)

Proof of Lemma 12

Proof For k = 0, both pk and p′k are equal to the prior distribution so that

∫

|p0 − p′0|dw = 0 (108)
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Assume the distributions before the k th step is pk and p′k, and denote the distribution density

functions for wk,w
′
k after k steps conditioned on ik = i by p

(i)
k , p

(i)′
k respectively, then

∫

|pk+1 − p′k+1|dw =

∫

∣

∣

∣

∣

∣

1

n

n
∑

i=1

p
(i)
k − 1

n

n
∑

i=1

p
(i)′
k

∣

∣

∣

∣

∣

dw

≤ 1

n

n
∑

i=1

∫

∣

∣

∣p
(i)
k − p

(i)′
k

∣

∣

∣ dw

For i 6= i∗,
∫

|p(i)k − p
(i)′
k |dw ≤

∫

|pk − p′k|dw since they undergo the same gradient step and

Gaussian convolution.

For i = i∗,
∫

|p(i)k − p
(i)′
k |dw ≤ 2.

As a result, we have

∫

|pk+1 − p′k+1|dw ≤
∫

|pk − p′k|dw +
2

n
(109)

By induction, after k0 steps,

∫

|pk0 − p′k0 |dw ≤ 2k0
n

(110)

Appendix G. Omitted Proofs in Section 5

Proof of Theorem 14

Proof Given θ0 = y fixed, the conditional density of θt given by the assumption is a Gaussian

pdf, which satisfies Ornstein-Uhlenbeck equation with b = − 1
λg(y) and parameter λ, according to

Proposition 18.

So the conditional density π(·|θ0 = y) satisfies Fokker-Planck Equation:

∂π(w|θ0 = y)

∂t
=

1

β
∆π(w|θ0 = y) +∇ · (λπ(w|θ0 = y)w) +∇ · (π(w|θ0 = y)g(y)) (111)

Let θ0 = y ∼ π0, and take expectations for both sides. By construction πt is smooth enough to

justify exchange of order of integration and differentiation. So, for any w ∈ R
d, we have:



































E

(

∂π(w|θ0 = y)

∂t

)

=
∂π

∂t

E (∆π(w|θ0 = y)) = ∆π

E (∇ · (λπ(w|θ0 = y)w)) = ∇ · (λπw)

E (∇ · (π(w|θ0 = y)g(y))) = ∇ ·
∫

Rd

g(y)π0,t(y,w)dy = ∇ · (π(w)E(g(θ0)|θt = w))

,

(112)
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where π0,t(·, ·) is the joint density of θ0 and θt. Putting them together we get the PDE as desired.

Proof of Lemma 15

Proof Consider the partial differential equations constructed in Section 5.1. We take pk as the

initial distribution. The randomness of this SGLD update comes from two sources: random choice

of stochastic gradient operator gk(·) and the Gaussian noise. The first one is by uniform draw of

data points, and is independent with the rest part of the algorithm. (Though gk(wk) depends on

previous trajectory through wk, gk(·) as a random function is independent.) So we first condition

on the choice of gk(·), and let the conditional distribution of wk+1 be pk+1|gk . By convexity of KL

divergence, any upper bound for the conditional distribution is a valid upper bound for pk.

For the PDE, we take derivative of KL divergence between time-varying posterior and time-

varying prior. In the following, we denote E [∇fik(θ0)|θt = w] by ht(w) for convenience.

d

dt
DKL(πt||γ̃t) =

∫

Rd

∂π

∂t
(log π + 1− log γ̃)dw −

∫

Rd

π

γ̃

∂γ̃

∂t
dw

=

∫

Rd

π〈ht(w) + λw +
1

β′k
∇ log π,∇ log π −∇ log γ̃〉dw

−
∫

Rd

π〈λw +
1

β′k
∇ log γ̃,∇ log π −∇ log γ̃〉dw

≤−
(

1

β′k
− 1

2C

)∫

Rd

π‖∇ log π −∇ log γ̃‖2dw +
C

2

∫

Rd

π‖ht‖2dw

(113)

As in the ideal case, we choose C = β′k and use logarithmic Sobolev inequality for the first term.

The variance parameter in the inequality can vary through time. Fortunately, since τk is typically

small, we can use worst-case upper bounds for this parameter, which is easy to obtain as σ̃2t is

monotonic in both cases.

σ̃2t ≤







σ̃20 +
τk
β′

k
, λ = 0

max
(

σ̃20,
1

β′

k
λ

)

, λ > 0
(114)

Using the ODE approach in the analysis for ideal case, we can obtain an upper bound for KL

divergence after gradient update.

DKL

(

pk+1|gk
∣

∣

∣

∣

∣

∣γk+1

)

≤ e
−

τk
2bkDKL

(

pk
∣

∣

∣

∣γk
)

+
β′kτk
2

∫ τk

0

∫

Rd

πt‖ht(w)‖2dwdt (115)

For the last integral, we have:

∫

Rd

πt‖ht(w)‖2dw =

∫

Rd

p(θt = w)

∥

∥

∥

∥

∫

Rd

p(θt = w,θ0 = y)

p(θt = w)
gk(y)dy

∥

∥

∥

∥

2

dw

≤
∫

Rd

1

p(θt = w)

(∫

Rd

p(θt = w,θ0 = y)dy

)(∫

Rd

p(θt = w,θ0 = y)‖gk(y)‖2dy
)

dw

=E‖gk(wk)‖2
(116)

By convexity of KL divergence,

DKL

(

pk+1

∣

∣

∣

∣

∣

∣γk+1

)

≤ E

(

DKL

(

pk+1|gk
∣

∣

∣

∣

∣

∣γk+1

))

≤ e
−

τk
2bkDKL

(

pk
∣

∣

∣

∣γk
)

+
β′kτk
2

E‖gk(wk)‖2
(117)
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Proof of Theorem 16

We actually prove a more general version, which allows arbitrary choice of initialization vari-

ance and regularization parameter.

Theorem 23 (General version of Theorem 16) Assuming that for σk defined above, loss function

ℓ(w;x) is sk-subGaussian with respect to distribution N (0, σ2kId) × D. Assume that fi(w) is

uniformly L-Lipschitz with respect to w. Assume ηkλ ≤ 1
2 , ∀k. Given algorithmic parameters

N, {ηk}, β, σ0, λ fixed, the following inequalities uniformly holds for SGLD with probability 1− δ:

(with respect to random draw of training data)

errgen(wN ) ≤ 2sN

(

β

n

N
∑

k=1

ηke
−Rk,NE

[

‖gk(wk)‖2
]

+
logN/δ + log logNL

n

)

1
2

(118)

where the decaying factor Rk,N is defined as follows:

• If λ = 0, Rk,N =
∑N

j=k+1
ηj

2σ2
0β+6Tj

.

• If 0 < λ ≤ 1
βσ2

0
, Rk,N = λ

3 (TN − Tk).

• If λ > 1
βσ2

0
, Rk,N =

{

λ
4 (TN − Tk1) +

1
2βσ2

0
(Tk1 − Tk), k < k1

λ
4 (TN − Tk), k ≥ k1,

where k1 , min{k : Tk >
1
2λ ln(1 + 1

2σ
2
0βλ)}.

Proof Our analysis is divided into 3 cases based on choice of regularization parameter λ. Assuming

that ηkλ < 0.5, ∀k, the transformed parameters are at the same order with original ones, namely,
3
4β ≤ β′k ≤ β and ηk ≤ τk ≤ 2ηk.

Case I: λ = 0.

In this case, the variance of each prior is σ2k = σ2k−1 +
τk
β′

k
≤ σ20 + 4

3β

∑k
j=1 τj . So we have

bk = σ20β + 4
3

∑k
j=1 τj ≤ σ20β + 3

∑k
j=1 ηj . By iteratively using Lemma 15, we get

DKL(pN ||γN ) ≤ β

N
∑

k=1

ηk exp



−
N
∑

j=k+1

ηj

2σ20β + 6
∑j

l=1 ηl



E
[

‖gk(wk)‖2
]

(119)

Case II: 0 < λ ≤ 3
2βσ2

0
.

In this case, note that by construction,

σ2k+1 = e−2λτkσ2k +
1− e−2λτk

β′kλ
= (1− ληk)

2σ2k +
2ηk
β
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We can easily prove by a simple induction argument that ∀k, σ2k ≤ 3
2λβ . So we have bk ≤ 3

2λ Using

Lemma 15 iteratively, we have the following upper bound for KL divergence:

DKL(pN ||γN ) ≤ β
N
∑

k=1

ηke
−λ

3
(TN−Tk)E

[

‖gk(wk)‖2
]

(120)

where Tk =
∑k

j=1 ηj .

Case III: λ > 3
2βσ2

0
.

In this case, using the fact that (1−ληk)2 ≤ e−2ληk , we can easily expand the iteration formula

and get the upper bound:

σ2k ≤ e−2λTkσ20 +
(1− e−2λTk)

(1− e−1)βλ
≤ e−2λTkσ20 +

2(1− e−2λTk)

βλ
.

And it is easy to see that bk ≤ σ2k−1β. For simplicity, we divide the procedure into two parts:

• For Tk ≤ 1
2λ ln(1 + 1

2σ
2
0βλ), we have σ2k ≤ σ20 , and bk+1 ≤ σ20β.

• For Tk >
1
2λ ln(1 + 1

2σ
2
0βλ), we have σ2k ≤ 2

βλ , and bk+1 ≤ 2
λ .

Let k1 , min{k : Tk >
1
2λ ln(1 + 1

2σ
2
0βλ)}. We can obtain the KL divergence bound by treating

two parts differently.

DKL(pN ||γN ) ≤ β

k1
∑

k=1

ηke
−λ

4
(TN−Tk1

)− 1

2βσ2
0
(Tk1

−Tk)
E
[

‖gk(wk)‖2
]

+β
N
∑

k=k1+1

ηke
−λ

4
(TN−Tk)E

[

‖gk(wk)‖2
]

(121)

In this case, the contribution of each round will first decay with a slower rate ( 1
2βσ2

0
on the exponent).

As variance for each prior becomes smaller along iterations, faster rate of decay with λ
4 on the

exponent will be achieved.

Putting them together, we get the final PAC-Bayesian results.

Remarks:

• For the case of λ = 0, we can still get rid of the parameter norm dependence using a vary-

ing prior. In this case, the ∇ log γ term cancels out with a term from time derivative of γ.

However, we actually pay two prices for this norm-free properties: On the one hand, unless

the loss class is uniformly bounded, the Orlicz norm for ℓ can grow with N since σ2N grows

linearly with N ; On the other hand, the exponential decaying factor becomes significantly

weakened. For example, if we take ηk to be a fixed constant, we will have Rk,N ∼ 1
6 ln

N
k

and the rate of decaying factor is (N − k)−
1
6 , which is much slower.

• Although the exponential decaying factor comes from the Gaussian initialization at the first

glance. If we are trying to get bounds that are independent of parameter norm, the choice of

initialization variance does not affect the time-varying prior very much. And the decaying

factor will be eventually depending only on the ℓ2 regularization parameter λ.
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