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Abstract

We study the training and generalization of deep neural networks (DNNs) in the
over-parameterized regime, where the network width (i.e., number of hidden nodes
per layer) is much larger than the number of training data points. We show that, the
expected 0-1 loss of a wide enough ReLU network trained with stochastic gradient
descent (SGD) and random initialization can be bounded by the training loss of
a random feature model induced by the network gradient at initialization, which
we call a neural tangent random feature (NTRF) model. For data distributions
that can be classified by NTRF model with sufficiently small error, our result

yields a generalization error bound in the order of rOpn´1{2q that is independent
of the network width. Our result is more general and sharper than many existing
generalization error bounds for over-parameterized neural networks. In addition,
we establish a strong connection between our generalization error bound and the
neural tangent kernel (NTK) proposed in recent work.

1 Introduction

Deep learning has achieved great success in a wide range of applications including image processing
[20], natural language processing [17] and reinforcement learning [34]. Most of the deep neural
networks used in practice are highly over-parameterized, such that the number of parameters is much
larger than the number of training data. One of the mysteries in deep learning is that, even in an
over-parameterized regime, neural networks trained with stochastic gradient descent can still give
small test error and do not overfit. In fact, a famous empirical study by Zhang et al. [38] shows the
following phenomena:

• Even if one replaces the real labels of a training data set with purely random labels, an over-
parameterized neural network can still fit the training data perfectly. However since the labels are
independent of the input, the resulting neural network does not generalize to the test dataset.

• If the same over-parameterized network is trained with real labels, it not only achieves small
training loss, but also generalizes well to the test dataset.

While a series of recent work has theoretically shown that a sufficiently over-parameterized (i.e.,
sufficiently wide) neural network can fit random labels [12, 2, 11, 39], the reason why it can generalize
well when trained with real labels is less understood. Existing generalization bounds for deep neural
networks [29, 6, 27, 15, 13, 5, 24, 35, 28] based on uniform convergence usually cannot provide
non-vacuous bounds [21, 13] in the over-parameterized regime. In fact, the empirical observation by
Zhang et al. [38] indicates that in order to understand deep learning, it is important to distinguish the
true data labels from random labels when studying generalization. In other words, it is essential to
quantify the “classifiability” of the underlying data distribution, i.e., how difficult it can be classified.
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Certain effort has been made to take the “classifiability” of the data distribution into account for
generalization analysis of neural networks. Brutzkus et al. [7] showed that stochastic gradient descent
(SGD) can learn an over-parameterized two-layer neural network with good generalization for linearly
separable data. Li and Liang [25] proved that, if the data satisfy certain structural assumption, SGD
can learn an over-parameterized two-layer network with fixed second layer weights and achieve a
small generalization error. Allen-Zhu et al. [1] studied the generalization performance of SGD and
its variants for learning two-layer and three-layer networks, and used the risk of smaller two-layer or
three-layer networks with smooth activation functions to characterize the classifiability of the data
distribution. There is another line of studies on the algorithm-dependent generalization bounds of
neural networks in the over-parameterized regime [10, 4, 8, 37, 14], which quantifies the classifiability
of the data with a reference function class defined by random features [31, 32] or kernels1. Specifically,
Daniely [10] showed that a neural network of large enough size is competitive with the best function
in the conjugate kernel class of the network. Arora et al. [4] gave a generalization error bound for two-
layer ReLU networks with fixed second layer weights based on a ReLU kernel function. Cao and Gu
[8] showed that deep ReLU networks trained with gradient descent can achieve small generalization
error if the data can be separated by certain random feature model [32] with a margin. Yehudai and
Shamir [37] used the expected loss of a similar random feature model to quantify the generalization
error of two-layer neural networks with smooth activation functions. A similar generalization error
bound was also given by E et al. [14], where the authors studied the optimization and generalization
of two-layer networks trained with gradient descent. However, all the aforementioned results are still
far from satisfactory: they are either limited to two-layer networks, or restricted to very simple and
special reference function classes.

In this paper, we aim at providing a sharper and generic analysis on the generalization of deep ReLU
networks trained by SGD. In detail, we base our analysis upon the key observations that near random
initialization, the neural network function is almost a linear function of its parameters and the loss
function is locally almost convex. This enables us to prove a cumulative loss bound of SGD, which
further leads to a generalization bound by online-to-batch conversion [9]. The main contributions of
our work are summarized as follows:

• We give a bound on the expected 0-1 error of deep ReLU networks trained by SGD with random
initialization. Our result relates the generalization bound of an over-parameterized ReLU network
with a random feature model defined by the network gradients, which we call neural tangent
random feature (NTRF) model. It also suggests an algorithm-dependent generalization error bound

of order rOpn´1{2q, which is independent of network width, if the data can be classified by the
NTRF model with small enough error.

• Our analysis is general enough to cover recent generalization error bounds for neural networks
with random feature based reference function classes, and provides better bounds. Our expected
0-1 error bound directly covers the result by Cao and Gu [8], and gives a tighter sample complexity

when reduced to their setting, i.e., rOp1{ǫ2q versus rOp1{ǫ4q where ǫ is the target generalization
error. Compared with recent results by Yehudai and Shamir [37], E et al. [14] who only studied
two-layer networks, our bound not only works for deep networks, but also uses a larger reference
function class when reduced to the two-layer setting, and therefore is sharper.

• Our result has a direct connection to the neural tangent kernel studied in Jacot et al. [18]. When
interpreted in the language of kernel method, our result gives a generalization bound in the form of
rOpL ¨

a
yJpΘpLqq´1y{nq, where y is the training label vector, and ΘpLq is the neural tangent

kernel matrix defined on the training input data. This form of generalization bound is similar to,
but more general and tighter than the bound given by Arora et al. [4].

Notation We use lower case, lower case bold face, and upper case bold face letters to denote scalars,
vectors and matrices respectively. For a vector v “ pv1, . . . , vdqT P R

d and a number 1 ď p ă 8,

let }v}p “ přd

i“1
|vi|pq1{p. We also define }v}8 “ maxi |vi|. For a matrix A “ pAi,jqmˆn, we

use }A}0 to denote the number of non-zero entries of A, and denote }A}F “ přd

i,j“1
A2

i,jq1{2

and }A}p “ max}v}p“1 }Av}p for p ě 1. For two matrices A,B P R
mˆn, we define xA,By “

TrpAJBq. We denote by A ľ B if A ´ B is positive semidefinite. In addition, we define the

1Since random feature models and kernel methods are highly related [31, 32], we group them into the same
category. More details are discussed in Section 3.2.
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asymptotic notations Op¨q, rOp¨q, Ωp¨q and rΩp¨q as follows. Suppose that an and bn be two sequences.
We write an “ Opbnq if lim supnÑ8 |an{bn| ă 8, and an “ Ωpbnq if lim infnÑ8 |an{bn| ą 0.

We use rOp¨q and rΩp¨q to hide the logarithmic factors in Op¨q and Ωp¨q.

2 Problem Setup

In this section we introduce the basic problem setup. Following the same standard setup implemented
in the line of recent work [2, 11, 39, 8], we consider fully connected neural networks with width m,
depth L and input dimension d. Such a network is defined by its weight matrices at each layer: for
L ě 2, let W1 P R

mˆd, Wl P R
mˆm, l “ 2, . . . , L ´ 1 and WL P R

1ˆm be the weight matrices
of the network. Then the neural network with input x P R

d is defined as

fWpxq “
?
m ¨ WLσpWL´1σpWL´2 ¨ ¨ ¨σpW1xq ¨ ¨ ¨ qq, (2.1)

where σp¨q is the entry-wise activation function. In this paper, we only consider the ReLU activation
function σpzq “ maxt0, zu, which is the most commonly used activation function in applications. It
is also arguably one of the most difficult activation functions to analyze, due to its non-smoothess. We
remark that our result can be generalized to many other Lipschitz continuous and smooth activation
functions. For simplicity, we follow Allen-Zhu et al. [2], Du et al. [11] and assume that the widths of
each hidden layer are the same. Our result can be easily extended to the setting that the widths of
each layer are not equal but in the same order, as discussed in Zou et al. [39], Cao and Gu [8].

When L “ 1, the neural network reduces to a linear function, which has been well-studied. Therefore,
for notational simplicity we focus on the case L ě 2, where the parameter space is defined as

W :“ R
mˆd ˆ pRmˆmqL´2 ˆ R

1ˆm.

We also use W “ pW1, . . . ,WLq P W to denote the collection of weight matrices for all layers.

For W,W1 P W , we define their inner product as xW,W1y :“ řL

l“1
TrpWJ

l W
1
lq.

The goal of neural network learning is to minimize the expected risk, i.e.,

min
W

LDpWq :“ Epx,yq„DLpx,yqpWq, (2.2)

where Lpx,yqpWq “ ℓry ¨ fWpxqs is the loss defined on any example px, yq, and ℓpzq is the loss
function. Without loss of generality, we consider the cross-entropy loss in this paper, which is defined
as ℓpzq “ logr1 ` expp´zqs. We would like to emphasize that our results also hold for most convex
and Lipschitz continuous loss functions such as hinge loss. We now introduce stochastic gradient
descent based training algorithm for minimizing the expected risk in (2.2). The detailed algorithm is
given in Algorithm 1.

Algorithm 1 SGD for DNNs starting at Gaussian initialization

Input: Number of iterations n, step size η.

Generate each entry of W
p0q
l independently from Np0, 2{mq, l P rL ´ 1s.

Generate each entry of W
p0q
L independently from Np0, 1{mq.

for i “ 1, 2, . . . , n do
Draw pxi, yiq from D.

Update Wpiq “ Wpi´1q ´ η ¨ ∇WLpxi,yiqpWpiqq.
end for
Output: Randomly choose xW uniformly from tWp0q, . . . ,Wpn´1qu.

The initialization scheme for Wp0q given in Algorithm 1 generates each entry of the weight matrices
from a zero-mean independent Gaussian distribution, whose variance is determined by the rule that
the expected length of the output vector in each hidden layer is equal to the length of the input.
This initialization method is also known as He initialization [16]. Here the last layer parameter is
initialized with variance 1{m instead of 2{m since the last layer is not associated with the ReLU
activation function.

3



3 Main Results

In this section we present the main results of this paper. In Section 3.1 we give an expected 0-1 error
bound against a neural tangent random feature reference function class. In Section 3.2, we discuss
the connection between our result and the neural tangent kernel proposed in Jacot et al. [18].

3.1 An Expected 0-1 Error Bound

In this section we give a bound on the expected 0-1 error L0´1

D
pWq :“ Epx,yq„Dr1ty ¨fWpxq ă 0us

obtained by Algorithm 1. Our result is based on the following assumption.

Assumption 3.1. The data inputs are normalized: }x}2 “ 1 for all px, yq P supppDq.

Assumption 3.1 is a standard assumption made in almost all previous work on optimization and
generalization of over-parameterized neural networks [12, 2, 11, 39, 30, 14]. As is mentioned in
Cao and Gu [8], this assumption can be relaxed to c1 ď }x}2 ď c2 for all px, yq P supppDq, where
c2 ą c1 ą 0 are absolute constants.

For any W P W , we define its ω-neighborhood as

BpW, ωq :“ tW1 P W : }W1
l ´ Wl}F ď ω, l P rLsu.

Below we introduce the neural tangent random feature function class, which serves as a reference
function class to measure the “classifiability” of the data, i.e., how easy it can be classified.

Definition 3.2 (Neural Tangent Random Feature). Let Wp0q be generated via the initialization
scheme in Algorithm 1. The neural tangent random feature (NTRF) function class is defined as

FpWp0q, Rq “
 
fp¨q “ fWp0q p¨q ` x∇WfWp0q p¨q,Wy : W P Bp0, R ¨ m´1{2q

(
,

where R ą 0 measures the size of the function class, and m is the width of the neural network.

The name “neural tangent random feature” is inspired by the neural tangent kernel proposed by
Jacot et al. [18], because the random features are the gradients of the neural network with random
weights. Connections between the neural tangent random features and the neural tangent kernel will
be discussed in Section 3.2.

We are ready to present our main result on the expected 0-1 error bound of Algorithm 1.

Theorem 3.3. For any δ P p0, e´1s and R ą 0, there exists

m˚pδ,R, L, nq “ rO
`
polypR,Lq

˘
¨ n7 ¨ logp1{δq

such that if m ě m˚pδ,R, L, nq, then with probability at least 1 ´ δ over the randomness of Wp0q,
the output of Algorithm 1 with step size η “ κ ¨ R{pm?

nq for some small enough absolute constant
κ satisfies

E
“
L0´1

D
pxWq

‰
ď inf

fPFpWp0q,Rq

#
4

n

nÿ

i“1

ℓryi ¨ fpxiqs
+

` O

«
LR?
n

`
c

logp1{δq
n

ff
, (3.1)

where the expectation is taken over the uniform draw of xW from tWp0q, . . . ,Wpn´1qu.

The expected 0-1 error bound given by Theorem 3.3 consists of two terms: The first term in (3.1)
relates the expected 0-1 error achieved by Algorithm 1 with a reference function class–the NTRF
function class in Definition 3.2. The second term in (3.1) is a standard large-deviation error term. As

long as R “ rOp1q, this term matches the standard rOpn´1{2q rate in PAC learning bounds [33].

Remark 3.4. The parameter R in Theorem 3.3 is from the NTRF class and introduces a trade-off

in the bound: when R is small, the corresponding NTRF class FpWp0q, Rq is small, making the
first term in (3.1) large, and the second term in (3.1) is small. When R is large, the corresponding

function class FpWp0q, Rq is large, so the first term in (3.1) is small, and the second term will be

large. In particular, if we set R “ rOp1q, the second term in (3.1) will be rOpn´1{2q. In this case, the
“classifiability” of the underlying data distribution D is determined by how well its i.i.d. samples

can be classified by FpWp0q, rOp1qq. In other words, Theorem 3.3 suggests that if the data can be

classified by a function in the NTRF function class FpWp0q, rOp1qq with a small training error, the
over-parameterized ReLU network learnt by Algorithm 1 will have a small generalization error.
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Remark 3.5. The expected 0-1 error bound given by Theorem 3.3 is in a very general form. It
directly covers the result given by Cao and Gu [8]. In Appendix A.1, we show that under the same
assumptions made in Cao and Gu [8], to achieve ǫ expected 0-1 error, our result requires a sample

complexity of order rOpǫ´2q, which outperforms the result in Cao and Gu [8] by a factor of ǫ´2.

Remark 3.6. Our generalization bound can also be compared with two recent results [37, 14] for

two-layer neural networks. When L “ 2, the NTRF function class FpWp0q, rOp1qq can be written as

 
fWp0q p¨q ` x∇W1

fWp0q p¨q,W1y ` x∇W2
fWp0q p¨q,W2y : }W1}F , }W2}F ď rOpm´1{2q

(
.

In contrast, the reference function classes studied by Yehudai and Shamir [37] and E et al. [14] are
contained in the following random feature class:

F “
 
fWp0q p¨q ` x∇W2

fWp0q p¨q,W2y : }W2}F ď rOpm´1{2q
(
,

where Wp0q “ pWp0q
1

,W
p0q
2

q P R
mˆd ˆ R

1ˆm are the random weights generated by the initial-

ization schemes in Yehudai and Shamir [37], E et al. [14]2. Evidently, our NTRF function class

FpWp0q, rOp1qq is richer than F–it also contains the features corresponding to the first layer gradient
of the network at random initialization, i.e., ∇W1

fWp0q p¨q. As a result, our generalization bound is
sharper than those in Yehudai and Shamir [37], E et al. [14] in the sense that we can show that neural
networks trained with SGD can compete with the best function in a larger reference function class.

As previously mentioned, the result of Theorem 3.3 can be easily extended to the setting where the
widths of different layers are different. We should expect that the result remains almost the same,
except that we assume the widths of hidden layers are all larger than or equal to m˚pδ,R, L, nq.
We would also like to point out that although this paper considers the cross-entropy loss, the proof
of Theorem 3.3 offers a general framework based on the fact that near initialization, the neural
network function is almost linear in terms of its weights. We believe that this proof framework can
potentially be applied to most practically useful loss functions: whenever ℓp¨q is convex/Lipschitz
continuous/smooth, near initialization, LipWq is also almost convex/Lipschitz continuous/smooth
in W for all i P rns, and therefore standard online optimization analysis can be invoked with
online-to-batch conversion to provide a generalization bound. We refer to Section 4 for more details.

3.2 Connection to Neural Tangent Kernel

Besides quantifying the classifiability of the data with the NTRF function class FpWp0q, rOp1qq, an
alternative way to apply Theorem 3.3 is to check how large the parameter R needs to be in order to

make the first term in (3.1) small enough (e.g., smaller than n´1{2). In this subsection, we show that
this type of analysis connects Theorem 3.3 to the neural tangent kernel proposed in Jacot et al. [18]
and later studied by Yang [36], Lee et al. [23], Arora et al. [3]. Specifically, we provide an expected
0-1 error bound in terms of the neural tangent kernel matrix defined over the training data. We first
define the neural tangent kernel matrix for the neural network function in (2.1).

Definition 3.7 (Neural Tangent Kernel Matrix). For any i, j P rns, define

rΘp1q
i,j “ Σ

p1q
i,j “ xxi,xjy, A

plq
ij “

˜
Σ

plq
i,i Σ

plq
i,j

Σ
plq
i,j Σ

plq
j,j

¸
,

Σ
pl`1q
i,j “ 2 ¨ E

pu,vq„N

`
0,A

plq
ij

˘rσpuqσpvqs,

rΘpl`1q
i,j “ rΘplq

i,j ¨ 2 ¨ E
pu,vq„N

`
0,A

plq
ij

˘rσ1puqσ1pvqs ` Σ
pl`1q
i,j .

Then we call ΘpLq “ rp rΘpLq
i,j ` Σ

pLq
i,j q{2snˆn the neural tangent kernel matrix of an L-layer ReLU

network on training inputs x1, . . . ,xn.

Definition 3.7 is the same as the original definition in Jacot et al. [18] when restricting the kernel
function on tx1, . . . ,xnu, except that there is an extra coefficient 2 in the second and third lines. This
extra factor is due to the difference in initialization schemes–in our paper the entries of hidden layer

2Normalizing weights to the same scale is necessary for a proper comparison. See Appendix A.2 for details.
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matrices are randomly generated with variance 2{m, while in Jacot et al. [18] the variance of the
random initialization is 1{m. We remark that this extra factor 2 in Definition 3.7 will remove the
exponential dependence on the network depth L in the kernel matrix, which is appealing. In fact, it is

easy to check that under our scaling, the diagonal entries of ΣpLq are all 1’s, and the diagonal entries

of rΘpLq are all L’s.

The following lemma is a summary of Theorem 1 and Proposition 2 in Jacot et al. [18], which ensures

that ΘpLq is the infinite-width limit of the Gram matrix pm´1x∇WfWp0q pxiq,∇WfWp0q pxjqyqnˆn,
and is positive-definite as long as no two training inputs are parallel.

Lemma 3.8 (Jacot et al. [18]). For an L layer ReLU network with parameter set Wp0q initialized in
Algorithm 1, as the network width m Ñ 83, it holds that

m´1x∇WfWp0q pxiq,∇WfWp0q pxjqy PÝÑ Θ
pLq
i,j ,

where the expectation is taken over the randomness of Wp0q. Moreover, as long as each pair of inputs

among x1, . . . ,xn P Sd´1 are not parallel, ΘpLq is positive-definite.

Remark 3.9. Lemmas 3.8 clearly shows the difference between our neural tangent kernel matrix

ΘpLq in Definition 3.7 and the Gram matrix KpLq defined in Definition 5.1 in Du et al. [11]. For any
i, j P rns, by Lemma 3.8 we have

Θ
pLq
i,j “ lim

mÑ8
m´1

řL

l“1
x∇Wl

fWp0q pxiq,∇Wl
fWp0q pxjqy.

In contrast, the corresponding entry in KpLq is

K
pLq
i,j “ lim

mÑ8
m´1x∇WL´1

fWp0q pxiq,∇WL´1
fWp0q pxjqy.

It can be seen that our definition of kernel matrix takes all layers into consideration, while Du
et al. [11] only considered the last hidden layer (i.e., second last layer). Moreover, it is clear that

ΘpLq
ľ KpLq. Since the smallest eigenvalue of the kernel matrix plays a key role in the analysis of

optimization and generalization of over-parameterized neural networks [12, 11, 4], our neural tangent
kernel matrix can potentially lead to better bounds than the Gram matrix studied in Du et al. [11].

Corollary 3.10. Let y “ py1, . . . , ynqJ and λ0 “ λminpΘpLqq. For any δ P p0, e´1s, there exists
rm˚pδ, L, n, λ0q that only depends on δ, L, n and λ0 such that if m ě rm˚pδ, L, n, λ0q, then with

probability at least 1 ´ δ over the randomness of Wp0q, the output of Algorithm 1 with step size

η “ κ ¨ inf ryiyiě1

a
ryJpΘpLqq´1ry{pm?

nq for some small enough absolute constant κ satisfies

E
“
L0´1

D
pxWq

‰
ď rO

«
L ¨ inf

ryiyiě1

c
ryJpΘpLqq´1ry

n

ff
` O

«c
logp1{δq

n

ff
,

where the expectation is taken over the uniform draw of xW from tWp0q, . . . ,Wpn´1qu.

Remark 3.11. Corollary 3.10 gives an algorithm-dependent generalization error bound of over-
parameterized L-layer neural networks trained with SGD. It is worth noting that recently Arora et al.

[4] gives a generalization bound rO
`a

yJpH8q´1y{n
˘

for two-layer networks with fixed second
layer weights, where H8 is defined as

H8
i,j “ xxi,xjy ¨ Ew„Np0,Iqrσ1pwJxiqσ1pwJxjqs.

Our result in Corollary 3.10 can be specialized to two-layer neural networks by choosing L “ 2, and

yields a bound rO
`a

yJpΘp2qq´1y{n
˘
, where

Θ
p2q
i,j “ H8

i,j ` 2 ¨ Ew„Np0,IqrσpwJxiqσpwJxjqs.
Here the extra term 2 ¨ Ew„Np0,IqrσpwJxiqσpwJxjqs corresponds to the training of the second

layer–it is the limit of 1

m
x∇W2

fWp0q pxiq,∇W2
fWp0q pxjqy. Since we have Θp2q

ľ H8, our bound
is sharper than theirs. This comparison also shows that, our result generalizes the result in Arora et al.
[4] from two-layer, fixed second layer networks to deep networks with all parameters being trained.

3The original result by Jacot et al. [18] requires that the widths of different layers go to infinity sequen-
tially. Their result was later improved by Yang [36] such that the widths of different layers can go to infinity
simultaneously.
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Remark 3.12. Corollary 3.10 is based on the asymptotic convergence result in Lemma 3.8, which
does not show how wide the network need to be in order to make the Gram matrix close enough
to the NTK matrix. Very recently, Arora et al. [3] provided a non-asymptotic convergence result
for the Gram matrix, and showed the equivalence between an infinitely wide network trained by
gradient flow and a kernel regression predictor using neural tangent kernel, which suggests that the
generalization of deep neural networks trained by gradient flow can potentially be measured by the
corresponding NTK. Utilizing this non-asymptotic convergence result, one can potentially specify
the detailed dependency of rm˚pδ, L, n, λ0q on δ, L, n and λ0 in Corollary 3.10.

Remark 3.13. Corollary 3.10 demonstrates that the generalization bound given by Theorem 3.3
does not increase with network width m, as long as m is large enough. Moreover, it provides a clear

characterization of the classifiability of data. In fact, the
a
ryJpΘpLqq´1ry factor in the generalization

bound given in Corollary 3.10 is exactly the NTK-induced RKHS norm of the kernel regression
classifier on data tpxi, ryiquni“1

. Therefore, if y “ f˚pxq for some f˚p¨q with bounded norm in the
NTK-induced reproducing kernel Hilbert space (RKHS), then over-parameterized neural networks
trained with SGD generalize well. In Appendix E, we provide some numerical evaluation of the
leading terms in the generalization bounds in Theorem 3.3 and Corollary 3.10 to demonstrate that
they are very informative on real-world datasets.

4 Proof of Main Theory

In this section we provide the proof of Theorem 3.3 and Corollary 3.10, and explain the intuition
behind the proof. For notational simplicity, for i P rns we denote LipWq “ Lpxi,yiqpWq.

4.1 Proof of Theorem 3.3

Before giving the proof of Theorem 3.3, we first introduce several lemmas. The following lemma
states that near initialization, the neural network function is almost linear in terms of its weights.

Lemma 4.1. There exists an absolute constant κ such that, with probability at least 1 ´ OpnL2q ¨
expr´Ωpmω2{3Lqs over the randomness of Wp0q, for all i P rns and W,W1 P BpWp0q, ωq with

ω ď κL´6rlogpmqs´3{2, it holds uniformly that

|fW1 pxiq ´ fWpxiq ´ x∇fWpxiq,W1 ´ Wy| ď O

´
ω1{3L2

a
m logpmq

¯
¨ řL´1

l“1
}W1

l ´ Wl}2.

Since the cross-entropy loss ℓp¨q is convex, given Lemma 4.1, we can show in the following lemma
that near initialization, LipWq is also almost a convex function of W for any i P rns.
Lemma 4.2. There exists an absolute constant κ such that, with probability at least 1 ´ OpnL2q ¨
expr´Ωpmω2{3Lqs over the randomness of Wp0q, for any ǫ ą 0, i P rns and W,W1 P BpWp0q, ωq
with ω ď κL´6m´3{8rlogpmqs´3{2ǫ3{4, it holds uniformly that

LipW1q ě LipWq ` x∇WLipWq,W1 ´ Wy ´ ǫ.

The locally almost convex property of the loss function given by Lemma 4.2 implies that the dynamics
of Algorithm 1 is similar to the dynamics of convex optimization. We can therefore derive a bound of
the cumulative loss. The result is given in the following lemma.

Lemma 4.3. For any ǫ, δ, R ą 0, there exists

m˚pǫ, δ, R, Lq “ rO
`
polypR,Lq

˘
¨ ǫ´14 ¨ logp1{δq

such that if m ě m˚pǫ, δ, R, Lq, then with probability at least 1 ´ δ over the randomness of Wp0q,

for any W˚ P BpWp0q, Rm´1{2q, Algorithm 1 with η “ νǫ{pLmq, n “ L2R2{p2νǫ2q for some
small enough absolute constant ν has the following cumulative loss bound:

řn

i“1
LipWpi´1qq ď řn

i“1
LipW˚q ` 3nǫ.

We now finalize the proof by applying an online-to-batch conversion argument [9], and use Lemma 4.1
to relate the neural network function with a function in the NTRF function class.
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Proof of Theorem 3.3. For i P rns, let L0´1

i pWpi´1qq “ 1
 
yi ¨ fWpi´1q pxiq ă 0

(
. Since cross-

entropy loss satisfies 1tz ď 0u ď 4ℓpzq, we have L0´1

i pWpi´1qq ď 4LipWpi´1qq. Therefore,

setting ǫ “ LR{
?
2νn in Lemma 4.3 gives that, if η is set as

a
ν{2R{pm?

nq, then with probability
at least 1 ´ δ,

1

n

nÿ

i“1

L0´1

i pWpi´1qq ď 4

n

nÿ

i“1

LipW˚q ` 12?
2ν

¨ LR?
n
. (4.1)

Note that for any i P rns, Wpi´1q only depends on px1, y1q, . . . , pxi´1, yi´1q and is independent of
pxi, yiq. Therefore by Proposition 1 in Cesa-Bianchi et al. [9], with probability at least 1´ δ we have

1

n

nÿ

i“1

L0´1

D
pWpi´1qq ď 1

n

nÿ

i“1

L0´1

i pWpi´1qq `
c

2 logp1{δq
n

. (4.2)

By definition, we have 1

n

řn

i“1
L0´1

D
pWpi´1qq “ E

“
L0´1

D
pxWq

‰
. Therefore combining (4.1) and

(4.2) and applying union bound, we obtain that with probability at least 1 ´ 2δ,

E
“
L0´1

D
pxWq

‰
ď 4

n

nÿ

i“1

LipW˚q ` 12?
2ν

¨ LR?
n

`
c

2 logp1{δq
n

(4.3)

for all W˚ P BpWp0q, Rm´1{2q. We now compare the neural network function fW˚ pxiq with the

function FWp0q,W˚ pxiq :“ fWp0q pxiq ` x∇fWp0q pxiq,W˚ ´ Wp0qy P FpWp0q, Rq. We have

LipW˚q ď ℓryi ¨ FWp0q,W˚ pxiqs ` O

´
pRm´1{2q1{3L2

a
m logpmq

¯
¨ řL´1

l“1

››W˚
l ´ W

p0q
l

››
2

ď ℓryi ¨ FWp0q,W˚ pxiqs ` O

´
L3

a
m logpmq

¯
¨ R4{3 ¨ m´2{3

ď ℓryi ¨ FWp0q,W˚ pxiqs ` LRn´1{2,

where the first inequality is by the 1-Lipschitz continuity of ℓp¨q and Lemma 4.1, the second inequality

is by W˚ P BpWp0q, Rm´1{2q, and last inequality holds as long as m ě C1R
2L12rlogpmqs3n3 for

some large enough absolute constant C1. Plugging the inequality above into (4.3) gives

E
“
L0´1

D
pxWq

‰
ď 4

n

nÿ

i“1

ℓryi ¨ FWp0q,W˚ pxiqs `
ˆ
1 ` 12?

2ν

˙
¨ LR?

n
`
c

2 logp1{δq
n

.

Taking infimum over W˚ P BpWp0q, Rm´1{2q and rescaling δ finishes the proof.

4.2 Proof of Corollary 3.10

In this subsection we prove Corollary 3.10. The following lemma shows that at initialization, with

high probability, the neural network function value at all the training inputs are of order rOp1q.

Lemma 4.4. For any δ ą 0, if m ě KL logpnL{δq for a large enough absolute constant K, then

with probability at least 1 ´ δ, |fWp0q pxiq| ď Op
a
logpn{δqq for all i P rns.

We now present the proof of Corollary 3.10. The idea is to construct suitable target values py1, . . . , pyn,
and then bound the norm of the solution of the linear equations pyi “ x∇fWp0q pxiq,Wy, i P rns. In

specific, for any ry with ryiyi ě 1, we examine the minimum distance solution to Wp0q that fit the

data tpxi, ryiquni“1
well and use it to construct a specific function in F

`
Wp0q, rO

`a
ryJpΘpLqq´1ry

˘˘
.

Proof of Corollary 3.10. Set B “ logt1{rexppn´1{2q ´ 1su “ Oplogpnqq, then for cross-entropy

loss we have ℓpzq ď n´1{2 for z ě B. Moreover, let B1 “ maxiPrns |fWp0q pxiq|. Then by

Lemma 4.4, with probability at least 1 ´ δ, B1 ď Op
a
logpn{δqq for all i P rns. For any ry with

ryiyi ě 1, let B “ B ` B1 and py “ B ¨ ry, then it holds that for any i P rns,
yi ¨ rpyi ` fWp0q pxiqs “ yi ¨ pyi ` yi ¨ fWp0q pxiq ě B ` B1 ´ B1 ě B,

8



and therefore

ℓtyi ¨ rpyi ` fWp0q pxiqsu ď n´1{2, i P rns. (4.4)

Denote F “ m´1{2 ¨ pvecr∇fWp0q px1qs, . . . , vecr∇fWp0q pxnqsq P R
rmd`m`m2pL´2qsˆn. Note that

entries of ΘpLq are all bounded by L. Therefore, the largest eigenvalue of ΘpLq is at most nL, and

we have ryJpΘpLqq´1ry ě n´1L´1}ry}2
2

“ L´1. By Lemma 3.8 and standard matrix perturbation
bound, there exists m˚pδ, L, n, λ0q such that, if m ě m˚pδ, L, n, λ0q, then with probability at least

1 ´ δ, FJF is strictly positive-definite and

}pFJFq´1 ´ pΘpLqq´1}2 ď inf
ryiyiě1

ryJpΘpLqq´1ry{n. (4.5)

Let F “ PΛQJ be the singular value decomposition of F, where P P R
mˆn,Q P R

nˆn have
orthogonal columns, and Λ P R

nˆn is a diagonal matrix. Let wvec “ PΛ´1QJpy, then we have

FJwvec “ pQΛPJqpPΛ´1QJpyq “ py. (4.6)

Moreover, by direct calculation we have

}wvec}2
2

“ }PΛ´1QJpy}2
2

“ }Λ´1QJpy}2
2

“ pyJQΛ´2QJpy “ pyJpFJFq´1py.

Therefore by (4.5) and the fact that }py}2
2

“ B
2

n, we have

}wvec}2
2

“ pyJrpFJFq´1 ´ pΘpLqq´1spy ` pyJpΘpLqq´1py
ď B

2 ¨ n ¨ }pFJFq´1 ´ pΘpLqq´1}2 ` B
2 ¨ ryJpΘpLqq´1ry

ď 2B
2 ¨ ryJpΘpLqq´1ry.

Let W P W be the parameter collection reshaped from m´1{2wvec. Then clearly

}Wl}F ď m´1{2}wvec}2 ď rO
´b

ryJpΘpLqq´1ry ¨ m´1{2
¯
,

and therefore W P B
`
0,O

`a
ryJpΘpLqq´1ry ¨ m´1{2

˘˘
. Moreover, by (4.6), we have pyi “

x∇WfWp0q pxiq,Wy. Plugging this into (4.4) then gives

ℓ
 
yi ¨

“
fWp0q pxiq ` x∇WfWp0q pxiq,Wy

‰(
ď n´1{2.

Since pfp¨q “ fWp0q p¨q ` x∇WfWp0q p¨q,Wy P F
`
Wp0q, rO

`a
ryJpΘpLqq´1ry

˘˘
, applying Theo-

rem 3.3 and taking infimum over ry completes the proof.

5 Conclusions and Future Work

In this paper we provide an expected 0-1 error bound for wide and deep ReLU networks trained with
SGD. This generalization error bound is measured by the NTRF function class. The connection to
the neural tangent kernel function studied in Jacot et al. [18] is also discussed. Our result covers a
series of recent generalization bounds for wide enough neural networks, and provides better bounds.

An important future work is to improve the over-parameterization condition in Theorem 3.3 and
Corollary 3.10. Other future directions include proving sample complexity lower bounds in the
over-parameterized regime, implementing the results in Jain et al. [19] to obtain last iterate bound
of SGD, and establishing uniform convergence based generalization bounds for over-parameterized
neural networks with methods developped in Bartlett et al. [6], Neyshabur et al. [27], Long and
Sedghi [26].
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