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Abstract

Bayesian approaches to learning and estimation have played a significant role in the Statistics lit-
erature over many years. While they are often provably optimal in a frequentist setting, and lead
to excellent performance in practical applications, there have not been many precise characteri-
zations of their performance for finite sample sizes under general conditions. In this paper we
consider the class of Bayesian mixture algorithms, where an estimator is formed by constructing a
data-dependent mixture over some hypothesis space. Similarly to what is observed in practice, our
results demonstrate that mixture approaches are particularly robust, and allow for the construction
of highly complex estimators, while avoiding undesirable overfitting effects. Our results, while
being data-dependent in nature, are insensitive to the underlying model assumptions, and apply
whether or not these hold. At a technical level, the approach applies to unbounded functions, con-
strained only by certain moment conditions. Finally, the bounds derived can be directly applied to
non-Bayesian mixture approaches such as Boosting and Bagging.

1. Introduction and Motivation

The standard approach to Computational Learning Theory is usually formulated within the so-called
frequentist approach to Statistics. Within this paradigm one is interested in constructing an estima-
tor, based on a finite sample, which possesses a small loss (generalization error). While many algo-
rithms have been constructed and analyzed within this context, it is not clear how these approaches
relate to standard optimality criteria within the frequentist framework. Two classic optimality cri-
teria within the latter approach areminimaxityandadmissibility, which characterize optimality of
estimators in a rigorous and precise fashion (Robert, 2001). Minimaxity essentially measures the
performance of thebestestimator for theworstpossible distribution from some set of distributions.
Admissibility is related to the extent to which an estimator uniformly dominates all other estimators.
We refer the reader to Robert (2001) for precise definitions of these notions, as they play no role
in the sequel. Except for some special cases (e.g., Yang, 1999), it is not known whether any of the
approaches used within the Machine Learning community lead to optimality in either of the above
senses of the word. On the other hand, it is known that under certain regularity conditions, Bayesian
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estimators lead to either minimax or admissible estimators, and thus to well-defined optimality in
the classical (frequentist) sense. In fact, it can be shown that Bayes estimators, or limits thereof,
are essentially the only estimators which can achieve optimality in the above senses (Robert, 2001).
This optimality feature provides strong motivation for the study of Bayesian approaches in afre-
quentistsetting.

While Bayesian approaches have been widely studied, there have not been generally applicable
finite-sample bounds in the frequentist framework. Recently, several approaches have attempted to
address this problem. In this paper we establish finite sample data-dependent bounds for Bayesian
mixture methods, which together with the above optimality properties suggest that these approaches
should become even more widely used.

Consider the problem of supervised learning where we attempt to construct an estimator based on
a finite sample of pairs of examplesS= {(X1,Y1), . . . ,(Xn,Yn)}, Xi ∈ X , Yi ∈ Y , each pair drawn
independently at random according to an unknown distributionµ(X,Y). Let A be a learning algo-
rithm which, based on the sampleS, selects a hypothesis (estimator)h from some set of hypotheses
H . Denoting bỳ (y,h(x)) the instantaneous loss of the hypothesish, we wish to assess the true loss

L(h) = EX,Y`(Y,h(X)) ((X,Y)∼ µ).

In particular, the objective is to providealgorithm and data-dependentbounds of the following
form. For anyh∈H andδ ∈ (0,1), with probability at least 1−δ,

L(h)≤ Λ(h,S)+ ∆(h,S,δ),

whereΛ(h,S) is some empirical assessment of the true loss, and∆(h,S,δ) is a complexity term. For
example, in the classic Vapnik-Chervonenkis framework (Vapnik and Chervonenkis, 1971),Λ(h,S)
is the empirical error(1/n)∑n

i=1`(Yi ,h(Xi)), and ∆(h,S,δ) depends on the VC-dimension ofH
but is independent of both the hypothesish and the sampleS. By algorithm and data-dependent
bounds we mean bounds where the complexity term depends on both the hypothesis (chosen by the
algorithmA) and the sampleS.

The main contribution of the present work is the extension of the PAC-Bayesian framework of
McAllester (1999, 2003) to a rather unified setting for Bayesian mixture methods, where different
regularization criteria may be incorporated, and their effect on the performance can be easily as-
sessed. Furthermore, it is also essential that the bounds obtained aredimension-independent, since
otherwise they yield useless results when applied to methods based on high-dimensional mappings,
such as kernel machines. Similar results can also be obtained using the covering number analysis
by Zhang (2002a). However the approach presented in the current paper, which relies on the direct
computation of the Rademacher complexity, is more direct and gives better bounds in many cases.
The analysis is also easier to generalize than the corresponding covering number approach. More-
over, our analysis applies directly to other non-Bayesian mixture approaches such as Bagging and
Boosting. On a technical level, our results remove a common limitation of many of the bounds in the
learning community, namely their assumption of the boundedness of the underlying loss functions.
This latter assumption is usually inappropriate for regression, and is often inapplicable to classifi-
cation problems, where the 0− 1 loss function is replaced by a convex upper bound (see Section
6.4).

The remainder of the paper is organized as follows. We begin in Section 2 with a description of
the decision theoretic framework for Bayesian learning. We then move on in Section 3 to discuss
mixture distributions, and recall some basic properties of convex functions. Section 4 presents a new
uniform convergence result for unbounded loss functions, and Section 5 then establishes bounds

840



GENERALIZATION ERROR BOUNDS FORBAYESIAN MIXTURE ALGORITHMS

on the (Rademacher) complexity of classes of functions defined by convex constraints. Section 6
applies these general results to several cases of interest, establishing data-dependent bounds. We
conclude in Section 7 and present some technical details in the appendix.

Before moving to the body of the paper, we make several comments concerning notation. Unless
otherwise specified, the natural base of the logarithm is used. We denote random variables by
upper-case letters and their realizations by lower case letters. Expectations with respect to a random
variableX are denoted byEX. Vectors will be denoted using boldface.

2. A Decision Theoretic Bayesian Framework

In the decision theoretic Bayesian setting we consider three spaces. An input spaceX , an action
spaceA and an output spaceY . Consider a (deterministic) actiona= a(x) performed upon observ-
ing inputx, and let the loss functioǹ: Y ×A 7→ R, be given bỳ (y,a(x)). Let µ be a probability
measure defined overX × Y . The Bayes optimaldecision rulea

.= aµ is given by minimizing
EX,Y`(Y,a(X)), namely

EX,Y`(Y,aµ(X))≤ inf
a∈A

EX,Y`(Y,a(X)) ((X,Y)∼ µ),

where, for ease of notation, we suppress theµ-dependence in the expectation.

In general, we do not have access toµ, but rather observe a sampleS= {(Xi,Yi)}n
i=1, Xi ∈ X , Yi ∈ Y .

Let a= a(x,S) be an action selected based on the sampleSand the current inputx. We refer to such
a sample-dependent action as analgorithm. Thesample dependentloss ofa is given by

R(µ,a,S) = EX,Y`(Y,a(X,S)).

We are interested in the expected loss of an algorithm averaged over samplesS,

R(µ,a) = ESR(µ,a,S) =
∫

R(µ,a,S)dµ(S),

where the expectation is taken with respect to the sampleSdrawn i.i.d. from the probability measure
µ. If we consider a family of measuresµ, which possesses some underlyingprior distribution π(µ),
then we can construct the averaged risk function with respect to the prior as,

r(π,a) = EπR(µ,a) =
∫

dµ(S)dπ(µ)
∫

R(µ,a,S)dπ(µ|S),

where

dπ(µ|S) =
dµ(S)dπ(µ)∫ ′

µdµ′(S)dπ(µ′)

is theposterior distributionon theµ family, which induces a posterior distribution on the sample
space asπS = Eπ(µ|S)µ. An action (algorithm)a

.= aB minimizing the Bayes riskr(π,a) is referred
to as aBayes algorithm, namely

r(π,aB)≤ inf
a∈A

r(π,a).

In fact, for a given prior, and a given sampleS, the optimal algorithm should return the Bayes
optimal predictor with respect to the posterior measureπS.

For many important practical problems, the optimal Bayes predictor is a linear functional of the
underlying probability measure. For example, if the loss function is quadratic, namely`(y,a(x)) =

841



MEIR AND ZHANG

(y−a(x))2, then the optimal Bayes predictoraµ(x) is the conditional mean ofy, namelyE[Y|x]. For
binary classification problems, we can let the predictor be the conditional probabilityaµ(x) = µ(Y =
1|x) (the optimal classification decision rule then corresponds to a test of whetheraµ(x) > 0.5),
which is also a linear functional ofµ. Clearly if the Bayes predictor is a linear functional of the
probability measure, then the optimal Bayes algorithm with respect to the priorπ is given by

aB(x,S) =
∫

µ
aµ(x)dπ(µ|S) =

∫
µaµ(x)dµ(S)dπ(µ)∫

µdµ(S)dπ(µ)
. (1)

In this case, an optimal Bayesian algorithm can be regarded as the predictor constructed by averag-
ing over all predictors with respect to a data-dependent posteriorπ(µ|S). We refer to such methods
asBayesian mixture methods. While the Bayes estimatoraB(x,S) is optimal with respect to the
Bayes riskr(π,a), it can be shown, that under appropriate conditions (and an appropriate prior) it is
also a minimax and admissible estimator (Robert, 2001).

In general,aµ is unknown. Rather we may have some prior information about possible models
for aµ. In view of (1) we consider a hypothesis spaceH , and an algorithm based on a mixture
of hypothesesh ∈ H . This should be contrasted with classical approaches where an algorithm
selects a single hypothesish from H . For simplicity, we consider a countable hypothesis space
H = {h1,h2, . . .}, and a probability distribution{qj}∞

j=1 overH , namelyqj ≥ 0 and∑ j qj = 1.1 We
introduce the vector notationq = (q1,q2, . . .) andh = (h1,h2, . . .), and define theprobability simplex

Π =

{
q : qj ≥ 0, ∑

j

qj = 1

}
.

Further, denote

fq(x)
4
= 〈q,h(x)〉=

∞

∑
j=1

qjhj(x) (q ∈ Π).

Observe that in generalfq(x) may be a great deal more complex that any single hypothesishj . For
example, ifhj(x) are non-polynomial ridge functions, the composite predictorf corresponds to a
two-layer neural network with universal approximation power (Leshno et al., 1993).

A main feature of this work is the establishment of data-dependent bounds onL( fq), the loss of
the Bayes mixture algorithm. There has been a flurry of recent activity concerning data-dependent
bounds (a non-exhaustive list includes Bartlett et al., 2002b, Bousquet and Chapelle, 2002, Koltchinksii
and Panchenko, 2002, Shawe-Taylor et al., 1998, Zhang, 2001). In a related vein, McAllester (1999,
2003) provided a data-dependent bound for the so-called Gibbs algorithm, which selects a hypoth-
esis at random fromH based on the posterior distributionπ(h|S). Essentially, this result provides a
bound on the average error∑ j qjL(hj) rather than a bound on the error of theaveraged hypothesis,
L(∑ j qjhj), which may be much smaller. Later, Langford et al. (2001) extended this result to a mix-
ture of classifiers using a margin-based loss function. A more general result can also be obtained
using the covering number approach described by Zhang (2002a). Finally, Herbrich and Graepel
(2001) showed that under certain conditions the bounds for the Gibbs classifier can be extended
to a Bayesian mixture classifier. However, their bound contained an explicit dependence on the
dimension (see Thm. 3 in Herbrich and Graepel, 2001).

Although the approach pioneered by McAllester (1999, 2003) came to be known as PAC-Bayes, this
term is somewhat misleading since an optimal Bayesian method (in the decision theoretic frame-
work outline above) does not average over loss functions but rather over hypotheses. In this regard,

1. The assumption that the hypothesis space is countable can be removed. We retain it, however, for ease of presentation.
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the learning behavior of a true Bayesian method is not addressed in the PAC-Bayes analysis. In this
paper, we attempt to narrow the discrepancy by analyzing Bayesian mixture methods, where we
consider a predictor that is the average of a family of predictors with respect to a data-dependent
posterior distribution. Bayesian mixtures can often be regarded as a good approximation to truly op-
timal Bayesian methods. In fact, we have argued above that they are equivalent for many important
practical problems.

3. Mixture Algorithms with Convex Constraints

A learning algorithm within the Bayesian mixture framework uses the sampleS to select a distri-
bution q over H and then constructs a mixture hypothesisfq. In order to constrain the class of
mixtures used in forming the mixturefq we impose constraints on the mixture vectorq. Let g(q)
be a non-negative convex function ofq and define for any positiveA,

ΩA = {q ∈Π : g(q)≤ A} ,

FA =
{

fq : fq(x) = 〈q,h(x)〉, q ∈ΩA
}

. (2)

In subsequent sections we will consider different choices forg(q), which essentially acts as a regu-
larization term. Finally, for any mixturefq we define the loss by

L( fq) = EX,Y`(Y, fq(X))

and the empirical loss incurred on the sample by

L̂( fq) = (1/n)
n

∑
i=1

`(Yi , fq(Xi)) .

In the sequel we use the notationÊn f = 1
n ∑n

i=1 f (Xi), andES stands for an average over the sample
Swith respect to the distributionµ(S).

For future reference, we formalize our assumptions concerningg(q).

Assumption 1 The constraint function g(q) is convex and non-negative.

An important tool which is used extensively in this paper is the theory of convex duality (Rock-
afellar, 1970, Boyd and Vandenberghe, 2002). We begin by discussing some issues and introduce
several useful results.

3.1 Some Results on Convex Functions and Duality

Let f (x) denote a convex function, namelyf is defined over a convex domainK and for any 0≤
θ ≤ 1 andx,y ∈ K

f (θx+(1−θ)y) ≤ θ f (x)+ (1−θ) f (y).

Definition 1 For a function f , we define

uf (x) = sup
r∈K

[
f (r +x)+ f (r −x)

2
− f (r)

]
.

The following result follows directly from a Taylor expansion.
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Lemma 2 Assume f possesses continuous first order derivatives. Then for all q> 1:

uf (x)≤ sup
r ,θ∈(0,1)

θ1−q d
dθ

{
f (r + θx)− f (r −θx)

2q

}
.

Moreover, if f possesses continuous second order derivatives, then

uf (x)≤ 1
2

sup
r ,|θ|≤1

d2

dθ2 f (r + θx).

Proof For anyθ ∈ R, let s(θ) = [ f (r + θx)+ f (r − θx)]/2− f (r). Observe thats(0) = s′(0) = 0.
From the generalized mean value Theorem (e.g., Theorem 5.15 in Apostol 1957) it is known that
for two functionsh andg, which are continuously differentiable over[0,1], [h(θ)−h(θ0)]g′(θ1) =
[g(θ)− g(θ0)] f ′(θ1), for any θ,θ0 ∈ [0,1] and someθ1 ∈ [θ0,θ]. Replacingh by s and setting
g(θ) = θq, q ≥ 1, we infer that there exists aθ1 ∈ (0,1) such thats(1) = s′(θ1)/(qθq−1

1 ). If s
is continuously second order differentiable, then a second order Taylor expansion with remainder
shows that there exists aθ2 ∈ (0,1) such thats(1) = s′′(θ2)/2. �
For any functionf defined over a domainK we define the conjugatef ∗ by

f ∗(y) = sup
x∈K

(〈y,x〉− f (x)) ,

noting thatf ∗(·) is always convex (irrespective of the convexity off (·)). The domain off ∗ consists
of all values ofy for which the supremum is finite, namely the values ofy for which 〈y,x〉− f (x) is
bounded from above onK.

A simple consequence of the definition off ∗ is the so calledFenchel inequality, which states that
for all x andy

〈y,x〉 ≤ f (x)+ f ∗(y). (3)

4. A Concentration Inequality for Unbounded Functions

In general, loss functions used in applications cannot be bounded a-priori. The starting point for our
analysis is a concentration result similar to Theorem 1 of Koltchinksii and Panchenko (2002) (see
also Theorem 8 of Bartlett and Mendelson, 2002). The main advantage of the current formulation
is that the functions inF are not assumed to be bounded. This is particularly useful in the context
of regression. The proof is given in the appendix.

Theorem 3 Let F be a class of functions mapping from a domainX to R, and let{Xi}n
i=1 be

independently selected according to a probability measure P. Assume that there exists a positive
number M(F ) such that for allλ > 0:

logEX sup
f∈F

cosh(2λ f (X))≤ λ2M(F )2/2.

Then, for any integer n and0< δ < 1, with probability at least1−δ over samples of length n, every
f ∈ F satisfies

E f (X)≤ Ên f (X)+ESsup
f∈F

{
E f (X)− Ên f (X)

}
+M(F )

√
2log(1/δ)

n
.
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We note that the dependence ofM on F is made explicit, as it will play a role in the sequel. The
bound can be slightly improved when the functions inF are bounded.

Corollary 4 Let the conditions of Theorem 3 hold, and in addition assume that

sup
f ,x,x′

| f (x)− f (x′)| ≤M(F ) .

Then

E f (X)≤ Ên f (X)+ESsup
f∈F

{
E f (X)− Ên f (X)

}
+M(F )

√
log(1/δ)

2n
.

Proof In the proof of Lemma 17 in the Appendix, note that supx1,x′1
|c′(x1)−c′(x′1)| ≤ λsupx,x′ | f (x)−

f (x′)| ≤ λM. Now instead of boundingEX1 exp(c′(X1)−EX′
1
c′(X′

1)) using the symmetrization ar-
gument as in Lemma 17, we may apply Chernoff’s bound which leads to logEX1 exp(c′(X1)−
EX′

1
c′(X′

1))≤ λ2M2/8. �
In spite of the slightly improved bound in the case of bounded functions, we will use the bound of
Theorem 3 for generality.

A great deal of recent work has dealt with Rademacher complexity based bounds. Denote by{σi}n
i=1

independent Bernoulli random variables assuming the values±1 with equal probability. For a set
of n data pointsXn = {Xi}n

i=1 ∈ X n, we define the data-dependent Rademacher complexity ofF as

R̂n(F ) = Eσ

[
sup
f∈F

1
n

n

∑
i=1

σi f (Xi) | Xn

]
,

whereσ = (σ1, . . . ,σn). The expectation of̂Rn(F ) with respect toXn will be denoted byRn(F ).
Note thatR̂n(F ) differs from the standard Rademacher complexityR̂n(F ) which is defined using
the absolute value|(1/n)∑n

i=1 σi f (Xi)| in the argument of the supremum (van der Vaart and Wellner,
1996). The current version of Rademacher complexity has the merit that it vanishes for function
classes consisting of single constant function, and is always dominated by the standard Rademacher
complexity. Both definitions agree for function classes which are closed under negation, namely
classesF for which f ∈ F implies− f ∈ F .

Using standard symmetrization arguments (for example, Lemma 2.3.1 of van der Vaart and Wellner,
1996) one can show that

EXn sup
f∈F

{
E f (X)− Ên f (X)

}≤ 2Rn(F ).

It is often convenient to use the Rademacher average due to the following Lemma.

Lemma 5 Let {gi(θ)} and{hi(θ)} be sets of functions defined for allθ in some domainΘ. If for
all i, θ, θ′, |gi(θ)−gi(θ′)| ≤ |hi(θ)−hi(θ′)|, then for any function c(x,θ), x∈ X1, and probability
distribution overX ,

EσEX sup
θ∈Θ

{
c(X,θ)+

n

∑
i=1

σigi(θ)

}
≤ EσEX sup

θ∈Θ

{
c(X,θ)+

n

∑
i=1

σihi(θ)

}
.
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Proof By induction. The result holds forn = 0. Then whenn = k+1

Eσ1,...,σk+1EX sup
θ

{
c(X,θ)+

k+1

∑
i=1

σigi(θ)

}

= Eσ1,...,σkEX sup
θ1,θ2

{
c(X,θ1)+c(X,θ2)

2
+

k

∑
i=1

σi
gi(θ1)+gi(θ2)

2
+

gk+1(θ1)−gk+1(θ2)
2

}

= Eσ1,...,σkEX sup
θ1,θ2

{
c(X,θ1)+c(X,θ2)

2
+

k

∑
i=1

σi
gi(θ1)+gi(θ2)

2
+
|gk+1(θ1)−gk+1(θ2)|

2

}

≤ Eσ1,...,σkEX sup
θ1,θ2

{
c(X,θ1)+c(X,θ2)

2
+

k

∑
i=1

σi
gi(θ1)+gi(θ2)

2
+
|hk+1(θ1)−hk+1(θ2)|

2

}

= Eσ1,...,σkEσk+1EX sup
θ

{
c(X,θ)+ σk+1hk+1(θ)+

k

∑
i=1

σigi(θ)

}

≤ Eσ1,...,σkEσk+1EX sup
θ

{
c(X,θ)+ σk+1hk+1(θ)+

k

∑
i=1

σihi(θ)

}
.

The last inequality follows from the induction hypothesis. �

Remark 6 The above lemma is a refined (andsymmetric) version of the Rademacher process com-
parison theorem (Theorem 4.12 of Ledoux and Talgrand, 1991). The proof presented here is also
simpler.

Let {φi} be a set of functions, each characterized by a Lipschitz constantγi , namely |φi(θ)−
φi(θ′)| ≤ γi|θ−θ′|. The following consequence is immediate from Lemma 5.

Theorem 7 Let{φi}n
i=1 be functions with Lipschitz constantsγi , then

Eσ

{
sup
f∈F

n

∑
i=1

σiφi( f (xi))

}
≤ Eσ

{
sup
f∈F

n

∑
i=1

σiγi f (xi)

}
.

Let `(y, f (x)) be a loss function and setφi( f (xi)) = (φi ◦ f )(yi ,xi) = `(yi , f (xi)). Assume that
φi( f (Xi)) is Lipschitz with constantκ, namely|φi( f (xi))− φi( f ′(xi)| ≤ κ| f (xi)− f ′(xi)| for all i.
Let LF consist of functions fromY ×X , defined byLF = {g : g = φ ◦ f , f ∈ F }, whereφ is
Lipschitz with constantκ. Then we find from Theorem 7 thatRn(LF ) ≤ κRn(F ). We note in
passing that by using Theorem 7 we gain a factor of 2 compared to the bound in Corollary 3.17 of
Ledoux and Talgrand (1991) and do away with their requirement thatφi(0) = 0.

SettingL( f ) = EX,Y`(Y, f (X)) and L̂( f ) = Ên`(Y, f (X)), we obtain the following bound for the
expected loss.

Theorem 8 Let F be a class of functions mapping from a domainX to R, and let{(Xi ,Yi)}n
i=1,

Xi ∈ X , Yi ∈ R, be independently selected according to a probability measure P. Assume there
exists a positive real number M(F ) such that for all positiveλ

logEX,Y sup
f∈F

cosh(2λ`(Y, f (X))) ≤ λ2M(F )2/2,
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where for every f∈ F , φi( f (Xi)) = (φ ◦ f )(Yi ,Xi) = `(Yi , f (Xi)) is Lipschitz with constantκ(F ).
Then with probability at least1−δ over samples of length n, every f∈ F satisfies

L( f )≤ L̂( f )+2κ(F )Rn(F )+M(F )

√
2log(1/δ)

n
.

5. The Rademacher Complexity for Classes Defined by Convex Constraints

We consider the class of functionsFA defined in (2) through a convex constraint functiong(q). We
wish to compute the Rademacher complexityRn(FA). Denoting byg∗ the conjugate function tog,
we have from (3) that for allq andz

〈q,z〉 ≤ g(q)+g∗(z).

Settingz = (λ/n)∑n
i=1 σih(Xi), we conclude that for any positiveλ

Eσ sup
q∈ΩA

{
1
n

n

∑
i=1

σi〈q,h(Xi)〉
}
≤ 1

λ

{
A+Eσg∗

(
(λ/n)

n

∑
i=1

σih(Xi)

)}
.

Since this inequality holds for everyλ > 0, we obtain the following upper bound on the Rademacher
complexity,

R̂n(FA)≤ inf
λ≥0

{
A
λ

+
1
λ

Eσg∗
(

(λ/n)
n

∑
i=1

σih(Xi)

)}
. (4)

We note that a similar use of convex duality was made in a related context by Seeger (2002)

In general, it may be difficult to compute the expectation ofg∗ with respect toσ. For this purpose we
make use of the following Lemma. Note thatg(q)≥ 0 implies thatg∗(0) = supq∈ΩA

{−g(q)} ≤ 0.

Lemma 9 For any a> 0 and convex function f such that f(0)≤ 0,

Eσ f

(
a

n

∑
i=1

σih(xi)

)
≤

n

∑
i=1

uf (ah(xi)). (5)

Proof We prove the claim by induction. Forn = 1 we have

Eσ f (aσh(x1)) =
1
2

[ f (ah(x1))+ f (−ah(x1))]− f (0)+ f (0)

≤ uf (ah(x1)),
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where we have usedf (0) ≤ 0. Next, assume the claim holds forn and letσn = {σ1, . . . ,σn}. We
have

EσnEσn+1 f

(
a

n+1

∑
i=1

σih(xi)

)

=
1
2

Eσn

[
f

(
a

n

∑
i=1

σih(xi)+ah(xn+1)

)
+ f

(
a

n

∑
i=1

σih(xi)−ah(xn+1)

)]

=
1
2

Eσn

[
f

(
a

n

∑
i=1

σih(xi)+ah(xn+1)

)
+ f

(
a

n

∑
i=1

σih(xi)−ah(xn+1)

)]

−Eσ f

(
a

n

∑
i=1

σih(xi)

)
+Eσ f

(
a

n

∑
i=1

σih(xi)

)

≤ uf (ah(xn+1))+
n

∑
i=1

uf (ah(xi)),

where the last step used the definition ofuf and the induction hypothesis. �
Using (4) and Lemma 9 we find that

R̂n(FA)≤ inf
λ≥0

{
A
λ

+
1
λ

n

∑
i=1

ug∗((λ/n)h(Xi))

}
. (6)

6. Data-dependent Bounds

Consider the loss bound derived in Theorem 8. This bound requires prior knowledge of the constant
A, characterizing the classFA. In general, we would like to be able to establish a bound which is
data-dependent, namely does not assume any such a-priori knowledge. We begin by rewriting the
bound of Theorem 8 in a slightly different form. For anyfq = 〈q,h〉, q ∈ ΩA, with probability at
least 1−δ

L( fq)≤ L̂( fq)+2κ(A)ϒ(A)+M(A)

√
2log(1/δ)

n
, (7)

where we slightly abuse notation, settingκ(A) = κ(FA), M(A) = M(FA) and where

ϒ(A) = Rn(FA).

Observe thatϒ(A) is monotonically increasing inA. Either (4) or (6) may be used to upper bound
ϒ(A). For example, using (4) we have that

ϒ(A)≤ ES inf
λ≥0

{
A
λ

+
1
λ

Eσg∗
(

(λ/n)
n

∑
i=1

σih(Xi)

)}
.

Eliminating the dependence onA in (7) leads to the following fully data-dependent bound.

Theorem 10 Let the assumptions of Theorem 8 hold. Consider two parameters g0 > 0 and s> 1,
and letg̃(q) = smax(g(q),g0). Then with probability at least1−δ for all fq, q ∈ Π,

L( fq)≤ L̂( fq)+2κ(g̃(q))ϒ(g̃(q))+M(g̃(q))

√
4log logs(sg̃(q)/g0)+2log(1/δ)

n
.
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Proof First, observe that ˜g(q)/g0 ≥ s, so that the final term is always well-defined. Let{Ai}∞
i=1 and

{pi}∞
i=1 be a sets of positive numbers such that∑i pi = 1. From Theorem 8 and the multiple-testing

Lemma (essentially a slightly refined union bound) we have that with probability at least 1− δ for
all Ai andq ∈ ΩAi ,

L( fq)≤ L̂( fq)+2κ(Ai)ϒ(Ai)+M(Ai)

√
2log(1/piδ)

n
. (8)

Next, pickAi = g0si andpi = 1/i(i +1), i = 1,2, . . . (note that∑i pi = 1). For eachq let iq denote
the smallest index for whichAiq ≥ g(q). We haveiq ≤ logs(g̃(q)/g0), andAiq ≤ g̃(q). Substituting
piq = 1/iq(1+ iq) we have that log(1/piq) ≤ 2log(iq + 1) ≤ 2log logs(sg̃(q)/g0). Combing these
bounds with (8), and keeping in mind the monotonicity ofϒ(A), we have that with probability at
least 1−δ for all q

L( fq)≤ L̂( fq)+2κ(g̃(q))ϒ(g̃(q))+M(g̃(q))

√
4log logs(sg̃(q)/g0)+2log(1/δ)

n
,

which concludes the proof. �
Note that the parameterg0 essentially ‘sets the scale’ forg(q). For example, ifg0 is selected so that
g(q)≤ g0 for all q, we get a data-independent bound, whereq0 replacesg(q). We also observe that
the bounds derived in Theorem 10 aredata-dependentand can thus be used in order to select the
optimal posterior distributionq. We comment on this further in Section 6.1.

We observe that the bounds in Theorem 10 yields rates which areO
(
n−1/2

)
. More recent techniques

based on more refined concentration inequalities (e.g. Boucheron et al. 2003, Bartlett et al. 2002a,
Mannor et al. 2003) are sometimes able to achieve faster rates of convergence under favorable
circumstances. For example, faster rates are possible if the empirical error is small. We leave the
extension of our results to these situations to future work.

6.1 Entropic Constraints

Assume adata-independentprior distributionν is assigned to all hypotheses inH , namelyν j ≥ 0
and∑ j ν j = 1, whereν j = ν(hj). We setg(q) to be the Kullback-Leibler divergence ofq from ν.

g(q) = D(q‖ν) ; D(q‖ν) = ∑
j

qj log(qj/ν j).

In this case, the conjugate functiong∗ can be explicitly calculated yielding

g∗(z) = log∑
j

ν j e
zj .

Note that
d2

dθ2 g∗(z+ θz′)≤ ∑ j ν j z′j
2ezj+θz′j

∑ j ν j e
zj+θz′j

.

It is easy to see that

sup
z,z′,θ

d2

dθ2 g∗(z+ θz′)≤ ‖z′‖2
∞.

Using Lemma 2, we haveug∗(h(xi))≤‖h(xi)‖2
∞/2, and (6) can then be applied. However, a slightly

better bound can be obtained with a more refined derivation. Using (4) we can derive an upper bound
on the Rademacher complexity, captured in the following Lemma.

849



MEIR AND ZHANG

Lemma 11 The empirical Rademacher complexity ofFA using g(q) = D(q‖ν) is upper bounded
as follows:

R̂n(FA)≤
(√

2A
n

)
sup

j

√
1
n

n

∑
i=1

hj(Xi)2 .

Proof From (4) and the expression forg∗ we have that for anyλ > 0

sup
q∈ΩA

{
1
n

n

∑
i=1

σi〈q,h(Xi)〉
}
≤ 1

λ

{
A+ log∑

j

ν j exp

[
λ
n ∑

i

σihj(Xi)

]}
.

Taking the expectation with respect toσ = (σ1, . . . ,σn), and using the Chernoff boundEσ {exp(∑i σiai)}≤
exp
(
∑i a

2
i /2
)
, we have that for anyλ ≥ 0

R̂n(FA)≤ 1
λ

{
A+Eσ log∑

j

ν j exp

[
λ
n ∑

i

σihj(Xi)

]}

(a)
≤ 1

λ

{
A+sup

j
logEσ exp

[
λ
n ∑

i

σihj(Xi)

]}

(b)
≤ 1

λ

{
A+sup

j
logexp

[
λ2

n2 ∑
i

hj(Xi)2

2

]}

=
A
λ

+
λ

2n2 sup
j

∑
i

hj(Xi)2,

where(a) made use of Jensen’s inequality and(b) used Chernoff’s bound. Minimizing the r.h.s.
with respect toλ, we obtain the desired result. �
Using this result in Theorem 10 we obtain the main result of this section.

Theorem 12 Let the conditions of Theorem 10 hold, and set

g̃(q) = smax(D(q‖ν),g0) ; ∆H =

√
1
n

ESsup
j

n

∑
i=1

hj(Xi)2.

Then for all fq, q ∈ Π, with probability at least1−δ,

L( fq)≤ L̂( fq)+2∆H κ(g̃(q))

√
2g̃(q)

n
+M(g̃(q))

√
4log logs(sg̃(q)/g0)+2log(1/δ)

n
(9)

Note that if the functionshj are uniformly bounded, say|hj(x)| ≤ c, then∆H ≤ c.

It is instructive to compare the results of Theorem 12 to those obtained by McAllester (2003) using
the Gibbs algorithm. The latter algorithm selects a hypothesish at random from the posterior distri-
butionq and forms a prediction based onh. McAllester (2003) establishes the following bound on
the expected performance of the randomized predictor. With probability at least 1−δ for all q ∈ Π

Eh∼qL(h)≤ Eh∼qL̂(h)+

√
D(q‖ν)+ ln(1/δ)+ lnn+2

2n−1
. (10)

When the hypotheses and losses are bounded in value (as assumed in McAllester, 2003), we see
that, up to small numerical constants, the leading terms in the complexity penalties in (9) and (10)
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are very similar. While the bound in (10) contains an extra logarithmic term inn, the bound in
(9) contains an extra term of order log logD(q‖ν). Note, however, that the termEh∼qL̂(h) can be
significantly larger than the term̂L( fq), since the mixture hypothesisfq = Eh∼qh can be far more
complex than a single hypothesish. A more detailed numerical comparison of the two bounds is
left for future work. We comment that a similar bound to (10), based on the the margin loss, was
established by Langford et al. (2001) for a mixture of classifiers.

Finally, as mentioned following Theorem 10, these data-dependent bounds can be used in order to
select an optimal posterior distributionq. While D(q‖ν) is convex inq, this is not the case for√

D(q‖ν). However, one may formulate the optimization problem as a constrained optimization
problem of the form

min
q∈Π

D(q‖ν)

s.t. L̂( fq)≤ a,

for some parametera which can be optimized in order to obtain the best bound. IfL̂( fq) is a convex
function ofq (for example, if a quadratic loss is used), we obtain a convex programming problem
which can be solved using standard approaches (e.g., Boyd and Vandenberghe, 2002). We note that
this approach is very similar to the so-calledmaximum entropy discriminationproposed by Jaakkola
et al. (1999). Finally, if̀ (y, fq(x)) is convex inq, we may use Jensen’s inequality to upper bound
L̂( fq) = L̂(〈q,h〉) by ∑ j qjL(hj). In the latter case, McAllester (2003) has shown that an exact
solution in the form of a Gibbs distribution can be obtained. This solution may in principle be used
as a starting point for numerical optimization algorithms for solving the current problem.

6.2 Norm-Based Constraints

In Section 6.1 we used an entropic term to constrain the distributionsq relative to some prior distri-
bution p. In many cases we do not have prior information provided in terms of a priorp. Instead,
we may believe that sparser solutions are more appropriate, which in principle would require us to
use a constraint of the form‖q‖p with p close to zero. While our results below do not hold for the
casep = 0, they indicate in principle how to take into account other types of norms. Moreover, it
is not hard to use our approach to derive bounds for support vector machines, in which case we can
replace theL1 constraint∑ j qj = 1 by theL2 constraint.

We begin with the simple case whereg(q) = (1/2)‖q‖2
2, namely theL2 norm is used. In this case,

we simplify the notation by using‖q‖ .= ‖q‖2. It is then easy to see thatg∗(z) = (1/2)‖z‖2. A
simple calculation yields

Eσg∗
(

(λ/n)
n

∑
i=1

σih(Xi)

)
=

λ2

2n2

n

∑
i=1

‖h(Xi)‖2.

Substituting this result in (4), and minimizing overλ, we find that

R̂n(FA)≤
√√√√2A

n

(
1
n

n

∑
i=1

‖h(Xi)‖2

)
.

Using Theorem 10, and Jensen’s inequalityE
√

X ≤√E[X], X ≥ 0, we obtain the following bound.

Theorem 13 Let the conditions of Theorem 10 hold, and set

g̃(q) = smax((1/2)‖q‖2,g0), ∆H =

√
1
n

ES

n

∑
i=1

‖h(Xi)‖2
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Then for all fq, q ∈ Π, with probability at least1−δ,

L( fq)≤ L̂( fq)+2∆H κ(g̃(q))

√
2g̃(q)

n
+M(g̃(q))

√
4log logs(sg̃(q)/g0)+2log(1/δ)

n
.

Consider next the case of generalp andq such that 1/q+1/p = 1, p∈ (1,∞). Let p′ = max(p,2)
andq′ = min(q,2), and considerp-norm regularizationg(q) = 1

p′ ‖q‖p′
p and its associated conjugate

functiong∗(z), namely

g(q) =
1
p′
‖q‖p′

p ; g∗(z) =
1
q′
‖z‖q′

q .

Note that ifp≤ 2 thenq≥ 2 andq′ = p′ = 2, while if p > 2 thenq < 2, q′ = q, p′ = p.

In the present case, the average overσ required in (4) is rather cumbersome, and we resort to using
(6) instead. The Rademacher averaging result forp-norm regularization is known in the Geometric
theory of Banach spaces (type structure of the Banach space), for example, see Ledoux and Talgrand
(1991), and follows from Khinchine’s inequality. It can also be derived from the general techniques
developed in this work, where we use the following bound onug∗ in (6).

Lemma 14 The following bound is valid,

ug∗(h(x))≤ max(1,q−1)
q′

‖h(x)‖q′
q .

Proof Whenq≥ 2 (implying q′ = 2), we have thatg∗(z+θz′) = (1/2)
(

∑ j |zj + θz′j |q
)2/q

. A direct

computation of the second order derivatives required in Lemma 2, and use of the conditionq≥ 2,
yields

d2

dθ2 g∗(z+ θz′)≤ (q−1)‖z+ θz′‖2−q
q ∑

j

|zj + θz′j |q−2z′j
2

≤ (q−1)‖z+ θz′‖2−q
q ‖z+ θz′‖q−2

q ‖z′‖2
q

= (q−1)‖z′‖2
q,

where the second inequality follows from H¨older’s inequality with the dual pair(q/(q−2),q/2).

Whenq < 2 (implying q′ = q), we haveg∗(z+ θz′) = (1/q)∑ j |zj + θz′j |q and use the first part of
Lemma 2.

|θ|1−q

∣∣∣∣ d
dθ

{
g∗(z+ θz′)−g∗(z−θz′)

2q

}∣∣∣∣≤ |θ|1−q∑
j

∣∣∣∣∣ |zj + θz′j |q−1−|zj −θz′j |q−1

2q
z′j

∣∣∣∣∣
≤ |θ|1−q∑

j

∣∣∣∣∣ |2θz′j |q−1z′j
2q

∣∣∣∣∣
=

2q−2

q
‖z′‖q

q.

where the inequality||a|q−1−|b|q−1| ≤ |a−b|q−1 was used in the second inequality. Use of Lemma
2 and the observation that max(1,q− 1)/q′ = (q− 1)/2 if q ≥ 2, and max(1,q− 1)/q′ = 1/2 if
q < 2 establishes the claim. �
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From (4) we obtain a bound on the Rademacher complexity ofFA.

R̂n(FA)≤ inf
λ≥0

{
A
λ

+
max(1,q−1)

λq′

(
λ
n

)q′ n

∑
i=1

‖h(Xi)‖q′
q

}

=
Cq

n
A1−1/q′

(
n

∑
i=1

‖h(Xi)‖q′
q

)1/q′

, (11)

whereCq = (1−1/q′)1/q′−1max(1,q−1)1/q′ . Combining (11) with Theorem 10, and using Jensen’s

inequalityE[X1/q′ ]≤ (E[X])1/q′ , we obtain the following result.

Theorem 15 Let the conditions of Theorem 10 hold, and set

g̃(q) = smax
(
(1/p′)‖q‖p′

p ,g0

)
; ∆H ,q =

[
(1/n)ES

n

∑
i=1

‖h(Xi)‖q′
q

]1/q′

.

Then for all fq, q ∈ Π, with probability at least1−δ,

L( fq)≤ L̂( fq)+
2Cq∆H ,qκ(g̃(q))(g̃(q))1/p′

n1/p′ +M(g̃(q))

√
4log logs(sg̃(q)/g0)+2log(1/δ)

n
.

where Cq = (1−1/q′)1/q′−1max(q−1,1)1/q′ .

6.3 Oracle Inequalities

Up to this point we have obtained data-dependent bounds which can be used for the purpose of
model selection. In general, one is interested in knowing how the empirical estimator compares to
the best possible mixture estimator, which can only be known if the underlying probability distribu-
tion is known. Such bounds are referred to asoracle inequalities. Let q̂ be an empirically derived
posterior distribution. In particular, we establish an oracle inequality which relates the lossL(〈q̂,h〉)
to the minimal loss infq∈Π L(〈q,h〉).
We recall from Theorem 10 that with probability at least 1−δ for all fq, q ∈ Π,

L( fq)≤ L̂( fq)+ ∆n(H ,q,δ), (12)

where

∆n(H ,q,δ) = 2κ(g̃(q))ϒ(g̃(q))+M(g̃(q))

√
4log logs(sg̃(q)/g0)+2log(1/δ)

n
.

As in structural risk minimization (Vapnik, 1998), we selectq̂ based on a complexity regularization
criterion

q̂ = argmin
q∈Π

{
L̂( fq)+ ∆n(H ,q,δ)

}
.

From (12), with probability at least 1−δ/2

L( fq̂)≤ L̂( fq̂)+ ∆n(H , q̂,δ/2).
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By the optimality of the selection of̂q

L̂( fq̂)+ ∆n(H , q̂,δ/2)≤ L̂( fq̄)+ ∆n(H , q̄,δ/2),

whereq̄ is an arbitrary hypothesis that does not depend on the data. We may apply Theorem 3 to
−L( fq̄) and obtain that with probability greater than 1−δ/2

L̂( fq̄) < L( fq̄)+M(g(q̄))

√
2log(2/δ)

n
≤ L( fq̄)+ ∆n(H , q̄,δ/2).

Note that in this case the function classF consists of the single elementfq̄, so that the term leading
to the Rademacher complexity vanishes. Therefore, with probability at least 1−δ,

L̂( fq̂)+ ∆n(H , q̂,δ/2)≤ L( fq̄)+2∆n(H , q̄,δ/2).

Sinceq̄ is arbitrary, we obtain the following result.

Theorem 16 Under the same conditions as in Theorem 10, with probability at least1−δ

L( fq̂)≤ inf
q∈Π

[L( fq)+2∆n(H ,q,δ/2)].

Note that if∆n(H ,q,δ/2) can be uniformly bounded, say 2∆n(H ,q,δ/2)≤ cn(δ) independently of
q, we find that with probability at least 1−δ, L( fq̂)≤ infq∈Π L( fq)+cn(δ).

6.4 Binary Classification

So far we have mainly been concerned with regression. The case of binary classification can easily
be incorporated into the present framework. LetS= {(Xi,Yi)}n

i=1 be a sample whereXi ∈ X andYi ∈
{−1,+1}. Consider a soft classifierf (x) and define the 0−1 loss as̀ 0−1(y, f (x)) = I(y f(x) ≤ 0).
Let φ(y f(x)) be a Lipschitz function with Lipschitz constantκ(F ), which dominates the 0−1 loss,
namely`0−1(y, f (x)) ≤ φ(y f(x)). It is then not hard to conclude that under the same conditions as
those in Theorem 8 we find that for allf ∈ F , with probability at least 1−δ,

P{Y f(X)≤ 0} ≤ Ênφ(Y f(X))+2κ(F )Rn(F )+M(F )

√
2log(1/δ)

n
.

One can then proceed to develop data-dependent bounds for this problem along the lines of Theorem
10. Note that several possible choices forφ( f (x),y) have been proposed in the literature. A proof of
the Bayes consistency of algorithms based on these dominating functions can be found in work by
Lugosi and Vayatis (2002), Mannor et al. (2002) and Zhang (2003). An extension to multi-category
classification has recently been proposed by Desyatnikov and Meir (2003).

7. Conclusion

We have developed a general procedure for establishing data-dependent bounds for mixture based
approaches to regression and classification. As discussed in Section 1, Bayesian mixture approaches
possess several desirable attributes from a frequentist perspective. However, in opposition to many
Bayesian approaches, our results hold independently of the correctness of the model assumptions.
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The approach pursued can effectively use many forms of prior knowledge, which may be incorpo-
rated through the selection of appropriate constraint functions. Additionally, the results apply to
general mixture based approaches such as Bagging and Boosting. At a technical level, we have re-
placed the boundedness assumptions, prevalent in the Learning Theory literature, with more general
moment constraint conditions.

Several open issues remain for future research. First, it would be be interesting to combine the
current approach with recent methods based on local Rademacher complexities (e.g., Bartlett et al.,
2002a), which are sometimes able to attain faster convergence rates. Second, a particularly inter-
esting question relates to using the data itself to learn an appropriate constraint function, or perhaps
several constraint functions. Finally, it is clearly important to conduct careful numerical studies of
the bounds. Related work by Seeger (2002) demonstrated the tightness of similar bounds in the con-
text of Gaussian processes, and their relevance to real-world problems. Preliminary studies indicate
similar behavior for our bounds, but a systematic numerical investigation still needs to be done.

In this paper we have been concerned solely with mixture based Bayesian solutions. As pointed out
in Section 1, general optimal Bayesian solutions are not always of a mixture form. In this context, it
would be particularly interesting to establish finite sample bounds for optimal Bayesian procedures,
which, under appropriate conditions, would provide tight upper bounds on the performance ofany
learning algorithm, and not only those based on selecting hypotheses from some class of hypotheses.

Given the suggested connections established in this work between the frequentist and Bayesian
approaches, we would like to conclude with the following quote from Lehmann and Casella (1998).

“The strengths of combining the Bayesian and frequentist approaches are
evident. The Bayes approach provides a clear methodology for construct-
ing estimators, while the frequentist approach provides the methodology for
evaluation.”

Although we have restricted ourselves to Bayesianmixturealgorithms, which are not necessarily
optimal in general, we hope that this paper has made some steps towards strengthening this claim.

AcknowledgmentsThe work of R.M. was partially supported by the Technion V.P.R. fund for the
promotion of sponsored research. Support from the Ollendorff center of the department of Electrical
Engineering at the Technion is also acknowledged.

Appendix A. Examples of Convex Functions and their Conjugates

We provide several examples of convex functions and their conjugates. Further examples can be
found in Boyd and Vandenberghe (2002) and Zhang (2002b).

We useg(u) to denote a convex function with variableu, while g∗(v) denotes its conjugate with

dual variablev. The`p norm of a vectoru is given by‖u‖p =
(
∑ j |uj |p

)1/p
.

• Let K be a symmetric positive-definite matrix. Then

g(u) =
1
2
〈u,Ku〉 ; g∗(v) =

1
2
〈v,K−1v〉.
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• Let p, p′,q,q′ ≥ 1 be real numbers obeying 1/p+1/q = 1 and 1/p′+1/q′ = 1. Then

g(u) =
1
p′
‖u‖p′

p ; g∗(v) =
1
q′
‖v‖q′

q .

• Assumeuj ≥ 0 andµj > 0. Then

g(u) = ∑
j

uj log
uj

eµj
; g∗(v) = ∑

j
µj exp(vj).

Appendix B. Proof of Theorem 3

We first prove the following lemma.

Lemma 17 Consider real-valued functions ci : Θ×Xi →R, i = 1,2. Define c(x1,x2)= supθ∈Θ(c1(θ,x1)+
c2(θ,x2)). Let X1 ∈ X1 and X2 ∈ X2 be two independent random variables. Then

logEX1 exp(EX2c(X1,X2))≤ EX1,X2c(X1,X2)+ logEX1 sup
θ∈Θ

cosh(2(c1(θ,X1)).

Proof Let

c′(X1) = EX2[c(X1,X2)− sup
θ∈Θ

c2(θ,X2)].

It is clear that

inf
θ∈Θ

c1(θ,X1)≤ c′(X1)≤ sup
θ∈Θ

c1(θ,X1).

Therefore using Jensen’s inequality and symmetrization, we obtain

EX1 exp
{

c′(X1)−EX′
1
c′(X′

1)
} (a)
≤ EX1,X′

1
exp
{

c′(X1)−c′(X′
1)
}

(b)
≤ EX1,X′

1

1
2
[exp(2c′(X1))+exp(−2c′(X′

1))]

(c)
= EX1 cosh(2c′(X1))
≤ EX1 sup

θ∈Θ
cosh(2c1(θ,X1)),

where(a) and(b) used Jensen’s inequality and(c) applied a symmetrization argument. �
Let Zn = {Z1, . . . ,Zn}, Zi ∈ Z, be independently drawn from a distributionP, and letF be a class
of functions fromZ to R. Set

ÂF (Zn) = sup
f∈F

[
nEZ f (Z)−

n

∑
i=1

f (Zi)

]
.

Lemma 18 For all positiveλ

logEZn exp
{

λÂF (Zn)
}≤ λEZnÂF (Zn)+nlogEZ sup

f∈F
cosh(2λ( f (Z)).
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Proof The lemma follows by recursively applying Lemma 17 fork = n,n−1, . . . ,1, and identifying
the function f with the parameterθ. For each value ofk we set

X1 = Zk ; X2 = {Zk+1, . . . ,Zn},

where we assume that{Z1, . . . ,Zk−1} are fixed. Moreover, set

c1(θ,X1) =−λ f (Zk)
c2(θ,X2) = nλEZ f (Z)−∑

i 6=k

λ f (Zi),

and note thatc(X1,X2) = λÂF (Zn). We simplify the notation by usingZl
k = {Zk, . . . ,Zl} for any

positive integersk andl , l ≥ k. From Lemma 17 we have (for fixedZk
1),

logEZk exp
{

EZn
k+1

λÂF (Zn)
}
≤ EZn

k
λÂF (Zn)+ logEZ sup

f∈F
cosh(2λ f (Z)) ,

which, upon exponentiation, is rewritten as

EZk exp
{

EZn
k+1

λÂF (Zn)
}
≤ exp

{
EZn

k
λÂF (Zn)+ logEZ sup

f∈F
cosh(2λ f (Z))

}
.

Taking expectations with respect toZk−1
1 on both sides of the inequality, followed by applying the

logarithm function, we find that

logEZk
1
e

EZn
k+1

λÂF (Zn) ≤ logEZk−1
1

e
EZn

k
λÂF (Zn) + logEZ sup

f∈F
cosh(2λ f (Z)) . (13)

Summing both sides of (13) overk = n,n−1, . . . ,1 we obtain

logEZn
1
eλÂF (Zn) + logEZn−1

1
eEZnλÂF (Zn) + · · ·+ logEZ1e

EZn
2

λÂF (Zn)

≤ logEZn−1
1

eEZnλÂF (Zn) + logEZn−2
1

e
EZn

n−1
λÂF (Zn) + · · ·+ loge

EZn
1

λÂF (Zn)

+nlogEZ sup
f∈F

cosh(2λ f (Z)) .

Upon subtracting identical terms from both sides of the inequality we find that

logEZn
1
eλÂF (Zn) ≤ λEZn

1
ÂF (Zn)+nlogEZ sup

f∈F
cosh(2λ f (Z)) ,

which establishes the claim. �
Let Xn = {X1, . . . ,Xn}, and set

δ = P

{
sup
f∈F

[
nEX f (X)−

n

∑
i=1

f (Xi)

]
≥ EXn sup

f∈F

[
nEX f (X)−

n

∑
i=1

f (Xi)

]
+nε

}
.

From Chernoff’s inequality,P{X ≥ x} ≤ infλ {exp(−λx)Eexp(λx) : λ ≥ 0}, we have for all non-
negativeλ

δ ≤ e−λEXnÂF (Xn)−λnεEXneλÂF (Xn).
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Taking logarithms of both sides of the inequality, we find that

logδ ≤−λEXnÂF (Xn)−λnε+ logEXneλÂF (Xn)

(a)
≤ −λnε+nlogEX sup

f∈F
cosh(2λ f (X))

(b)
≤ −λnε+

n
2

λ2M2,

where Lemma 18 was used in(a) and the assumption of Theorem 3 was used in(b).

Sinceλ ≥ 0 is arbitrary, we conclude that

logδ ≤ inf
λ≥0

[n
2

λ2M2−λnε
]

=− nε2

2M2 .

We thus obtain with probability of at least 1−δ,

sup
f∈F

{
E f (X)− Ê f (X)

}≤ EXn sup
f∈F

{
E f (X)− Ên f (X)

}
+M

√
2log(1/δ)

n
. �
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