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Abstract

Exposure bias refers to the train-test discrep-

ancy that seemingly arises when an autoregres-

sive generative model uses only ground-truth

contexts at training time but generated ones at

test time. We separate the contributions of the

model and the learning framework to clarify

the debate on consequences and review pro-

posed counter-measures.

In this light, we argue that generalization is

the underlying property to address and pro-

pose unconditional generation as its funda-

mental benchmark. Finally, we combine la-

tent variable modeling with a recent formu-

lation of exploration in reinforcement learn-

ing to obtain a rigorous handling of true and

generated contexts. Results on language mod-

eling and variational sentence auto-encoding

confirm the model’s generalization capability.

1 Introduction

Autoregressive models span from n-gram mod-

els to recurrent neural networks to transformers

and have formed the backbone of state-of-the-

art machine learning models over the last decade

on virtually any generative task in Natural Lan-

guage Processing. Applications include machine

translation (Bahdanau et al., 2015; Vaswani et al.,

2017), summarization (Rush et al., 2015; Khan-

delwal et al., 2019), dialogue (Serban et al., 2016)

and sentence compression (Filippova et al., 2015).

The training methodology of such models is

rooted in the language modeling task, which is to

predict a single word given a context of previous

words. It has often been criticized that this set-

ting is not suited for multi-step generation where

– at test time – we are interested in generating

words given a generated context that was poten-

tially not seen during training. The consequences

of this train-test discrepancy are summarized as

exposure bias. Measures to mitigate the prob-

lem typically rely on replacing, masking or per-

tubing ground-truth contexts (Bengio et al., 2015;

Bowman et al., 2016; Norouzi et al., 2016; Ran-

zato et al., 2016). Unfortunately, exposure bias

has never been succesfully separated from general

test-time log-likelihood assessment and minor im-

provements on the latter are used as the only signi-

fier of reduced bias. Whenever explicit effects are

investigated, no significant findings are made (He

et al., 2019).

In this work we argue that the standard training

procedure, despite all criticism, is an immediate

consequence of combining autoregressive model-

ing and maximum-likelihood training. As such,

the paramount consideration for improving test-

time performance is simply regularization for bet-

ter generalization. In fact, many proposed mea-

sures against exposure bias can be seen as exactly

that, yet with respect to an usually implicit metric

that is not maximum-likelihood.

With this in mind, we discuss regularization

for conditional and unconditional generation. We

note that in conditional tasks, such as translation,

it is usually sufficient to regularize the mapping

task – here translation – rather than the generative

process itself. For unconditional generation,

where tradeoffs between accuracy and coverage

are key, generalization becomes much more

tangible.

The debate on the right training procedure for

autoregressive models has recently been ampli-

fied by the advent of latent generative models

(Rezende et al., 2014; Kingma and Welling, 2013).

Here, the practice of decoding with true contexts

during training conflicts with the hope of obtain-

ing a latent representation that encodes significant

information about the sequence (Bowman et al.,

2016). Interestingly, the ad hoc tricks to reduce

the problem are similar to those proposed to ad-
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dress exposure bias in deterministic models.

Very recently, Tan et al. (2017) have presented

a reinforcement learning formulation of explo-

ration that allows following the intuition that an

autoregressive model should not only be trained on

ground-truth contexts. We combine their frame-

work with latent variable modeling and a reward

function that leverages modern word-embeddings.

The result is a single learning regime for uncon-

ditional generation in a deterministic setting (lan-

guage modeling) and in a latent variable setting

(variational sentence autoencoding). Empirical re-

sults show that our formulation allows for better

generalization than existing methods proposed to

address exposure bias. Even more, we find the re-

sulting regularization to also improve generaliza-

tion under log-likelihood.

We conclude that it is worthwhile explor-

ing reinforcement learning to elegantly extend

maximum-likelihood learning where our desired

notion of generalization cannot be expressed with-

out violating the underlying principles. As a re-

sult, we hope to provide a more unified view on

the training methodologies of autoregressive mod-

els and exposure bias in particular.

2 Autoregressive Modeling

Modern text generation methods are rooted in

models trained on the language modeling task. In

essence, a language model p is trained to predict a

word given its left-side context

p(wt|w1:t−1) . (1)

With a trained language model at hand, a simple

recurrent procedure allows to generate text of arbi-

trary length. Starting from an initial special sym-

bol ŵ0, we iterate t = 1 . . . and alternate between

sampling ŵt ∼ p(wt|ŵ1:t−1) and appending ŵt to

the context ŵ1:t−1. Models of this form are called

autoregressive as they condition new predictions

on old predictions.

Neural Sequence Models Although a large cor-

pus provides an abundance of word-context pairs

to train on, the cardinality of the context space

makes explicit estimates of (1) infeasible. There-

fore, traditional n-gram language models rely on

a truncated context and smoothing techniques to

generalize well to unseen contexts.

Neural language models lift the context re-

striction and instead use neural context represen-

tations. This can be a hidden state as found

in recurrent neural networks (RNNs), i.e. an

LSTM (Hochreiter and Schmidhuber, 1997) state,

or a set of attention weights, as in a transformer

architecture (Vaswani et al., 2017). While the con-

siderations in this work apply to all autoregressive

models, we focus on recurrent networks which en-

code the context in a fixed-sized continuous rep-

resentation h(w1:t−1). In contrast to transformers,

RNNs can be generalized easily to variational au-

toencoders with a single latent bottleneck (Bow-

man et al., 2016), a particularly interesting special

case of generative models .

2.1 Evaluation and Generalization

Conditional vs. Unconditional

Conditional generation tasks, such as translation

or summarization, are attractive from an appli-

cation perspective. However, for the purpose of

studying exposure bias, we argue that uncondi-

tional generation is the task of choice for the fol-

lowing reasons.

First, exposure bias addresses conditioning on

past words generated which becomes less essen-

tial when words in a source sentence are available,

in particular when attention is used.

Second, the difficulty of the underlying map-

ping task, say translation, is of no concern for

the mechanics of generation. This casts sentence

autoencoding as a less demanding, yet more eco-

nomic task.

Finally, generalization of conditional models is

only studied with respect to the underlying map-

ping and not with respect to the conditional distri-

bution itself. A test-set in translation usually does

not contain a source sentence seen during training

with a different target1. Instead, it contains un-

seen source-target pairs that evaluate the general-

ization of the mapping. Even more, at test-time

most conditional models resort to an arg-max de-

coding strategy. As a consequence, the entropy

of the generative model is zero (given the source)

and there is no generalization at all with respect to

generation. For these reasons, we address uncon-

ditional generation and sentence auto-encoding for

the rest of this work.

The big picture Let us briefly characterize out-

put we should expect from a generative model

with respect to generalization. Figure 1 shows

1Some datasets do provide several targets for a single
source. However, those are typically only used for BLEU
computation, which is the standard test metric reported.



159

Figure 1: Generalization

an idealized two-dimensional dataspace of (fixed-

length) sentences w ∈ V T . We sketch the sup-

port of the unknown underlying generating distri-

bution, the train set and the test set.2 Let us look at

some hypothetical examples ŵ1, ŵ2, ŵ3, ŵ4 gen-

erated from some well trained model. Samples

like ŵ1 certify that the model did not overfit to

the training data as can be certified by test log-

likelihood. In contrast, the remaining samples

are indistinguishable under test log-likelihood in

the sense that they identically decrease the metric

(assuming equal model probability) even though

ŵ2, ŵ3 have non-zero probability under the true

data distribution. Consequently, we cannot iden-

tify ŵ4 as a malformed example. Holtzman et

al. (2019) show that neural generative models –

despite their expressiveness – put significant prob-

ability on clearly unreasonable repetitive phrases,

such as I dont know. I dont know. I dont know.3

Evaluation under smoothed data distribution

The most common approach to evaluating an un-

conditional probabilistic generative model is train-

ing and test log-likelihood. For a latent variable

model, the exact log-likelihood (2) is intractable

and a lowerbound must be used instead. How-

ever, at this point it should be noted that one can

always estimate the log-likelihood from an empir-

ical distribution across output generated. That is,

one generates a large set of sequences S and sets

p̂(w) to the normalized count of w in S . However,

the variance of this estimate is impractical for all

but the smallest datasets. Also, even a large test-

set cannot capture the flexibility and composition-

ality found in natural language.

2Here we do not discuss generalization error, the discrep-
ancy between empirical test error and expected test error. It
should also be noted that cross-validation provides another
complementary technique to more robust model estimation,
which we omit to keep the picture simple.

3They report that this also holds for non-grammatical
repetitive phrase, which is what we would expect for ŵ4.

With aforementioned shortcomings of test log-

likelihood in mind, it is worthwhile discussing

a recently proposed evaluation technique. Fe-

dus et al. (2018) propose to use n-gram statis-

tics of the underlying data to asses generated out-

put. For example, one can estimate an n-gram lan-

guage model and report perplexity of the gener-

ated data under the n-gram model. Just as BLEU

and ROUGE break the sequence reward assign-

ment problem into smaller sub-problems, n-gram

language models effectively smooth the sequence

likelihood assignment which is usually done with

respect to the empirical data distribution. Under

this metric, some sequences such as ŵ2 which are

close to sequences in the dataset at hand might re-

ceive positive probability.

This raises two questions. First, can we break

sequence-level evaluation into local statistics by

using modern word embeddings instead of n-

grams (as BLEU does)? Second, can we incor-

porate these measures already during training to

obtain better generative models. These considera-

tions will be key when defining a reward function

in Section 4.5.

3 Teacher Forcing and Exposure Bias

A concern often expressed in the context of au-

toregressive models is that the recursive sampling

procedure for generation presented in Section 1 is

never used at training time; hence the model can-

not learn to digest its own predictions. The result-

ing potential train-test discrepancy is referred to as

exposure bias and is associated with compounding

errors that arise when mistakes made early accu-

mulate (Bengio et al., 2015; Ranzato et al., 2016;

Goyal et al., 2016; Leblond et al., 2018). In this

context, teacher-forcing refers to the fact that –

seen from the test-time perspective – ground-truth

contexts are substituted for model predictions. Al-

though formally teacher forcing and exposure bias
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should be seen as cause (if any) and symptom, they

are often used exchangeably.

As is sometimes but rarely mentioned, the

presence of the ground-truth context is simply

a consequence of maximum-likelihood train-

ing and the chain rule applied to (1) as in

p(w1:T ) =
∏

p(wt|w1:t−1) (Goodfellow et al.,

2016). As such, it is out of question whether

generated contexts should be used as long as log-

likelihood is the sole criterion we care about. In

this work we will furthermore argue the following:

Proposition 1 Exposure bias describes a lack

of generalization with respect to an – usually

implicit and potentially task and domain depen-

dent – measure other than maximum-likelihood.

The fact that we are dealing with generalization is

obvious, as one can train a model – assuming suffi-

cient capacity – under the criticized methodology

to match the training distribution. Approaches that

address exposure bias do not make the above no-

tion of generalization explicit, but follow the in-

tuition that training on other contexts than (only)

ground-truth contexts should regularize the model

and result in – subjectively – better results. Of

course, these forms of regularization might still

implement some form of log-likelihood regular-

ization, hence improve log-likelihood generaliza-

tion. Indeed, all of the following methods do re-

port test log-likelihood improvements.

Proposed methods against exposure bias

Scheduled sampling (Bengio et al., 2015) pro-

posed for conditional generation randomly mixes

in predictions form the model, which violates

the underlying learning framework (Husz’ar,

2015). RAML (Norouzi et al., 2016) proposes

to effectively perturbs the ground-truth context

according to the exponentated payoff distribution

implied by a reward function. Alternatively,

adversarial approaches (Goyal et al., 2016) and

learning-to-search (Leblond et al., 2018) have

been proposed.

VAE Collapse In Section 4.1 we will take a look

at latent generative models. In that context, the

standard maximum-likelihood approach to autore-

gressive models has been criticized from a second

perspective that is worth mentioning. Bowman et

al. (2016) show empirically that autoregressive de-

coders p(w|z) do not rely on the latent code z, but

collapse to a language model as in (1).

While some work argues that the problem is

rooted in autoregressive decoders being “too pow-

erful” (Shen et al., 2018), the proposed measures

often address the autoregressive training regime

rather than the models (Bowman et al., 2016) and,

in fact, replace ground-truth contexts just as the

above methods to mitigate exposure bias.

In addition, a whole body of work has discussed

the implications of optimizing only a bound to the

log-likelihood (Alemi et al., 2017) and the impli-

cations of re-weighting the information-theoretic

quantities inside the bound (Higgins et al., 2017;

Rainforth et al., 2018).

4 Latent Generation with ERPO

We have discussed exposure bias and how it has

been handled by either implicitly or explicitly

leaving the maximum-likelihood framework. In

this section, we present our reinforcement learning

framework for unconditional sequence generation

models. The generative story is the same as in a

latent variable model:

1. Sample a latent code z ∼ R
d

2. Sample a sequence from a code-conditioned

policy pθ(w|z).

However, we will rely on reinforcement learning

to train the decoder p(w|z). Note that for a con-

stant code z = 0 we obtain a language model as

a special case. Let us now briefly review latent

sequential models.

4.1 Latent sequential models

Formally, a latent model of sequences w = w1:T

is written as a marginal over latent codes

p(w) =

∫

p(w, z)dz =

∫

p(w|z)p0(z)dz . (2)

The precise form of p(w|z) and whether z refers

to a single factor or a sequence of factors z1:T de-

pends on the model of choice.

The main motivation of enhancing p with a la-

tent factor is usually the hope to obtain a meaning-

ful structure in the space of latent codes. How such

a structure should be organized has been discussed

in the disentanglement literature in great detail, for

example in Chen et al. (2018), Hu et al. (2017) or

Tschannen et al. (2018).
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In our context, latent generative models are in-

teresting for two reasons. First, explicitly in-

troducing uncertainty inside the model is often

motivated as a regularizing technique in Bay-

seian machine learning (Murphy, 2012) and has

been applied extensively to latent sequence mod-

els (M. Ziegler and M. Rush, 2019; Schmidt and

Hofmann, 2018; Goyal et al., 2017; Bayer and Os-

endorfer, 2014). Second, as mentioned in Sec-

tion 3 (VAE collapse) conditioning on ground-

truth contexts has been identified as detrimental to

obtaining meaningful latent codes (Bowman et al.,

2016) – hence a methodology to training decoders

that relaxes this requirement might be of value.

Training via Variational Inference Variational

inference (Zhang et al., 2018) allows to optimize

a lower-bound instead of the intractable marginal

likelihood and has become the standard method-

ology to training latent variable models. Introduc-

ing an inference model q and applying Jensen’s in-

equality to (2), we obtain

log p(w) = Eq(z|w)

[

log
p0(z)

q(z|w)
+logP (w|z)

]

≥ DKL(q(z|w)||p0(z)) + Eq(z|w) [logP (w|z)] (3)

Neural inference networks (Rezende et al., 2014;

Kingma and Welling, 2013) have proven as effec-

tive amortized approximate inference models.

Let us now discuss how reinforcement learning

can help training our model.

4.2 Generation as Reinforcement Learning

Text generation can easily be formulated as a re-

inforcement learning (RL) problem if words are

taken as actions (Bahdanau et al., 2016). Formally,

pθ is a parameterized policy that factorizes autore-

gressively pθ(w) =
∏

pθ(wt|h(w1:t−1)) and h is

is a deterministic mapping from past predictions

to a continuous state, typically a recurrent neural

network (RNN). The goal is then to find policy pa-

rameters θ that maximize the expected reward

J(θ) = Epθ(w)[R(w,w⋆)] (4)

where R(w,w⋆) is a task-specific, not necessarily

differentiable metric.

Policy gradient optimization The REIN-

FORCE (Williams, 1992) training algorithm is a

common strategy to optimize (4) using a gradient

estimate via the log-derivative

∇θJ(θ) = Epθ(w)[R(w,w⋆) log pθ(w)] (5)

Since samples from the policy ŵ ∼ pθ often yield

low or zeros reward, the estimator (5) is known for

its notorious variance and much of the literature is

focused on reducing this variance via baselines or

control-derivative (Rennie et al., 2016).

4.3 Reinforcement Learning as Inference

Recently, a new family of policy gradient meth-

ods has been proposed that draws inspiration from

inference problems in probablistic models. The

underlying idea is to pull the reward in (5) into

a new implicit distribution p̃ that allows to draw

samples ŵ with much lower variance as it is in-

formed about reward.

We follow Tan et al. (2017) who optimize

an entropy-regularized version of (4), a common

strategy to foster exploration. They cast the rein-

forcement learning problem as

J(θ, p̃) = Ep̃[R(w,w⋆)]

+ αDKL(p̃(w)||pθ(w))

+ βH(p̃) (6)

where α, β are hyper-parameters and p̃ is the new

non-parametric, variational distribution4 across

sequences. They show that (6) can be optimized

using the following EM updates

E-step: p̃n+1∝ exp

(

αpθ
n(w) +R(w,w⋆)

α+ β

)

(7)

M-step: θn+1=argmax
θ

Ep̃n+1 [log pθ(w)] (8)

As Tan et al. 2018 have shown, for α → 0,

β = 1 and a specific reward, the framework re-

covers maximum-likelihood training.5 It is explic-

itly not our goal to claim text generation with end-

to-end reinforcement learning but to show that it

is beneficial to operate in an RL regime relatively

close to maximum-likelihood.

4.4 Optimization with Variational Inference

In conditional generation, a policy is conditioned

on a source sentence, which guides generation to-

wards sequences that obtain significant reward.

Often, several epochs of MLE pretraining (Rennie

et al., 2016; Bahdanau et al., 2016) are necessary

to make this guidance effective.

4In (Tan et al., 2018) p̃ is written as q, which resembles
variational distributions in approximate Bayesian inference.
However, here p̃ is not defined over variables but datapoints.

5Refer to their work for more special cases, including
MIXER (Ranzato et al., 2016)
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In our unconditional setting, where a source is

not available, we employ the latent code z to pro-

vide guidance. We cast the policy pθ as a code-

conditioned policy pθ(w|z) which is trained to

maximize a marginal version of the reward (6):

J(θ) = Ep0(z)Epθ(w|z)[R(w,w⋆)]] . (9)

Similar formulations of expected reward have re-

cently been proposed as goal-conditioned poli-

cies (Ghosh et al., 2018). However, here it is our

explicit goal to also learn the representation of the

goal, our latent code. We follow Equation (3) and

optimize a lower-bound instead of the intractable

marginalization (9). Following (Bowman et al.,

2015; Fraccaro et al., 2016) we use a deep RNN

inference network for q to optimize the bound.

The reparametrization-trick (Kingma and Welling,

2013) allows us to compute gradients with respect

to q. Algorithm 1 shows the outline of the training

procedure.

Algorithm 1 Latent ERPO Training

for do w⋆ ∈ DATASET

Sample a latent code z ∼ q(z|w⋆)
Sample a datapoint w̃ ∼ p̃(w|z)
Perform a gradient step ∇θ log pθ(w̃|z)

Note that exploration (sampling w̃) and the gra-

dient step are both conditioned on the latent code,

hence stochasticity due to sampling a single z is

coupled in both. Also, no gradient needs to be

propagated into p̃.

So far, we have not discussed how to efficiently

sample from the implicit distribution p̃. In the

remainder of this section we present our reward

function and discuss implications on the tractabil-

ity of sampling.

4.5 Reward

Defining a meaningful reward function is central

to the success of reinforcement learning. The

usual RL forumlations in NLP require a measure

of sentence-sentence similarity as reward. Com-

mon choices include BLEU (Papineni et al., 2002),

ROUGE (Lin, 2004), CIDEr (Banerjee and Lavie,

2005) or SPICE (Anderson et al., 2016). These are

essentially n-gram metrics, partly augmented with

synonym resolution or re-weighting schemes.

Word-movers distance (WMD) (Kusner et al.,

2015) provides an interesting alternative based on

the optimal-transport problem. In essence, WMD

computes the minimum accumulated distance that

the word vectors of one sentence need to “travel”

to coincide with the word vectors of the other

sentence. In contrast to n-gram metrics, WMD

can leverage powerful neural word representa-

tions. Unfortunately, the complexity of computing

WMD is roughly O(T 3 log T ).

4.6 A Reward for Tractable Sampling

Tan et al. (2018) show that thanks to the factor-

ization of pθ the globally-normalized inference

distribution p̃ in (7) can be written as a locally-

normalized distribution at the word-level

p̃(wt|w1:t−1)∝

exp

(

αpθ(wt|w1:t−1)+Rt(w,w
⋆)

α+ β

)

(10)

when the reward is written as incremental re-

ward Rt defined via Rt(w,w
⋆) = R(w1:t, w

⋆) −
R(w1:t−1, w

⋆). Sampling form (10) is still hard, if

Rt hides dynamic programming routines or other

complex time-dependencies. With this in mind,

we choose a particularly simple reward

R(w,w⋆) =
T
∑

t=1

φ(wt)
⊤φ(w⋆

t ) (11)

where φ is a lookup into a length-normalized pre-

trained but fixed word2vec (Mikolov et al., 2013)

embedding. This casts our reward as an effi-

cient, yet drastic approximation to WMD, which

assumes identical length and one-to-one word cor-

respondences. Putting (10) and (11) together, we

sample sequentially from

p̃(wt|w1:t−1)∝

exp

(

αpθ(wt|w1:t−1)+φ(wt)
⊤φ(w⋆

t )

α+ β

)

(12)

with the complexity O(dV ) of a standard softmax.

Compared to standard VAE training, Algorithm 1

only needs one additional forward pass (with iden-

tical complexity) to sample w̃ form p̃.

Equation (12) gives a simple interpretation of

our proposed training methodology. We locally

correct predictions made by the model proportion-

ally to the distance to the ground-truth in the em-

beddings space. Hence, we consider the ground-

truth and the model prediction for exploration.
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Figure 2: Generalization performance in terms of sequence NLL across latent and deterministic methods

5 Related Work

Our discussion of exposure bias complements re-

cent work that summarizes modern generative

models, for example Caccia et al. (2018) and Lu et

al. (2018). Shortcomings of maximum-likelihood

training for sequence generation have often been

discussed (Ding and Soricut, 2017; Leblond et al.,

2018; Ranzato et al., 2016), but without pointing

to generalization as the key aspect. An overview

of recent deep reinforcement learning methods for

conditional generation can be found in (Keneshloo

et al., 2018).

Our proposed approach follows work by Ding

et al. (2017) and Tan et al. (2018) by employing

both, policy and reward for exploration. In con-

trast to them, we do not use n-gram based reward.

Compared to RAML (Norouzi et al., 2016), we do

not perturb the ground-truth context, but correct

the policy predictions. Scheduled sampling (Ben-

gio et al., 2015) and word-dropout (Bowman et al.,

2016) also apply a correction, yet one that only

affects the probability of the ground-truth. Chen

et al. (2017) propose Bridge modules that simi-

larly to Ding et al. (2017) can incorporate arbitrary

ground-truth perturbations, yet in an objective mo-

tivated by an auxiliary KL-divergence.

Merity et al. (2017) have shown that gener-

alization is crucial to language modeling, but

their focus is regularizing parameters and activa-

tions. Word-embeddings to measure deviations

from the ground-truth have also been used by Inan

et al. (2016), yet under log-likelihood. Concur-

rently to our work, Li et al. (2019) employ em-

beddings to design reward functions in abstractive

summarization.

6 Experiments

Parametrization The policies of all our mod-

els and all baselines use the same RNN. We use

a 256 dimensional GRU (Cho et al., 2014) and

100-dimensional pre-trained word2vec input em-

beddings. Optimization is preformed by Adam

(Kingma and Ba, 2014) with an initial learning

rate of 0.001 for all models. For all methods,

including scheduled sampling, we do not anneal

hyper-parameters such as the keep-probability for

the following reasons. First, in an unconditional

setting, using only the model’s prediction is not a

promissing setting, so it is unclear what value to

anneal to. Second, the continous search-space of

schedules makes it sufficiently harder to compare

different methods. For the same reason, we do

not investigate annealing the KL term or the α, β-

parametrization of the models. We use the infer-

ence network parametrization of (Bowman et al.,

2016) which employs a diagonal Gaussian for q.

We found the training regime to be very sensi-

tive to the α, β-parametrization. In particular, it is

easy to pick a set of parameters that does not truly

incorporate exploration, but reduces to maximum

likelihood training with only ground truth contexts

(see also the discussion of Figure 3 in Section 6.2).

After performing a grid-search (as done also for

RAML) we choose6 α = 0.006, β = 0.067 for

OURS, the method proposed. In addition, we re-

port for an alternative model OURS-B with α =
0.01, β = 0.07.

6The scale of α is relatively small as the log-probabilities
in (12) have significantly larger magnitude than the inner
products, which are in [0, 1] due to the normalization.
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Data For our experiments, we use a one million

sentences subset of the BooksCorpus (Kiros et al.,

2015; Zhu et al., 2015) with a 90-10 train-test split

and a 40K words vocabulary. The corpus size is

chosen to challenge the above policy with both

scenarios, overfitting and underfitting.

6.1 Baselines

As baselines we use a standard VAE and a VAE

with RAML decoding that uses identical reward

as our method (see Tan et al.(2018) for details on

RAML as a special case). Furthermore, we use

two regularizations of the standard VAE, sched-

uled sampling SS-P and word-dropout WDROP-P

as proposed by Bowman et al. (2016), both with

fixed probability p of using the ground-truth.

In addition, we report as special cases with

z = 0 results for our model (OURS-DET), RAML

(RAML-DET), scheduled sampling (SS-P-DET),

and the VAE (LM, a language model).

6.2 Results

Figure 2 shows training and test negative sequence

log-likelihood evaluated during training and Table

1 shows the best performance obtained. All figures

and tables are averaged across three runs.

Model Train NLL Test NLL

OURS 48.52 52.54

OURS-B 49.51 52.61

OURS-DET 48.06 52.87

SS-0.99 48.11 52.60

SS-0.98 48.21 52.62

SS-0.95 48.38 52.69

SS-0.90 49.02 52.89

SS-0.99-DET 48.08 52.90

RAML 48.26 52.56

RAML-DET 48.26 52.86

WDROP-0.99 48.19 52.86

LM 47.65 53.01

VAE 47.86 52.66

WDROP-0.9 50.86 54.65

Table 1: Training and test performance

We observe that all latent models outperform

their deterministic counterparts (crossed curves)

in terms of both, generalization and overall test

performance. This is not surprising as regulariza-

tion is one of the benefits of modeling uncertainty

through latent variables. Scheduled sampling does

improve generalization for p ≈ 1 with diminishing

returns at p = 0.95 and in general performed bet-

ter than word dropout. Our proposed models out-

perform all others in terms of generalization and

test performance. Note that the performance dif-

ference over RAML, the second best method, is

solely due to incorporating also model-predicted

contexts during training.

Despite some slightly improved performance,

all latent models except for OURS-B have a KL-

term relatively close to zero. OURS-B is α-β-

parametrized to incorporte slightly more model

predictions at higher temperatur and manages to

achieve a KL-term of about 1 to 1.5 bits. These

findings are similar to what (Bowman et al., 2016)

report with annealing but still significantly behind

work that addresses this specific problem (Yang

et al., 2017; Shen et al., 2018). Appendix A illus-

trates how our models can obtain larger KL-terms

– yet at degraded performance – by controlling ex-

ploration. We conclude that improved autoregres-

sive modeling inside the ERPO framework cannot

alone overcome VAE-collapse.

We have discussed many approaches that devi-

ate from training exclusively on ground-truth con-

texts. Therefore, an interesting quantity to mon-

itor across methods is the fraction of words that

correspond to the ground-truth. Figure 3 shows

these fractions during training for the configura-

tions that gave the best results. Interestingly, in the

latent setting our method relies by far the least on

ground-truth contexts whereas in the deterministic

setting the difference is small.

0.9

0.95

1

Training Time

OURS OURS-B OURS-DET RAML

SS-0.98 SS-0.99 SS-0.95 LM/VAE

Figure 3: Fraction of correct words during training.

Numbers include forced and correctly predicted words.

7 Conclusion

We have argued that exposure bias does not point

to a problem with the standard methodology of

training autoregressive sequence model. Instead,

it refers to a notion of generalization to unseen se-

quences that does not manifest in log-likelihood

training and testing, yet might be desirable in or-

der to capture the flexibility of natural language.

To rigorously incorporate the desired gener-

alization behavior, we have proposed to follow
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the reinforcement learning formulation of Tan et

al. (2018). Combined with an embedding-based

reward function, we have shown excellent gener-

alization performance compared to the unregular-

ized model and better generalization than existing

techniques on language modeling and sentence au-

toencoding.

Future work We have shown that the simple

reward function proposed here leads to a form

of regularization that fosters generalization when

evaluated inside the maximum-likelihood frame-

work. In the future, we hope to conduct a human

evaluation to assess the generalization capabili-

ties of models trained under maximum-likelihood

and reinforcement learning more rigorously. Only

such a framework-independent evaluation can re-

veal the true gains of carefully designing re-

ward functions compared to simply performing

maximum-likelihood training.
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