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Modern quantum machine learning (QML) methods involve variationally
optimizing a parameterized quantum circuit on a training data set, and sub-
sequently making predictions on a testing data set (i.e., generalizing). In this
work, we provide a comprehensive study of generalization performance in
QML after training on a limited number N of training data points. We show that
the generalization error of a quantum machine learning model with T trainable
gates scales at worst as /7 /N. When only K < T gates have undergone sub-
stantial change in the optimization process, we prove that the generalization
error improves to /K /N. Our results imply that the compiling of unitaries into
a polynomial number of native gates, a crucial application for the quantum
computing industry that typically uses exponential-size training data, can be
sped up significantly. We also show that classification of quantum states across
a phase transition with a quantum convolutional neural network requires only
a very small training data set. Other potential applications include learning
quantum error correcting codes or quantum dynamical simulation. Our work
injects new hope into the field of QML, as good generalization is guaranteed

from few training data.

The ultimate goal of machine learning (ML) is to make accurate pre-
dictions on unseen data. This is known as generalization, and sig-
nificant effort has been expended to understand the generalization
capabilities of classical ML models. For example, theoretical results
have been formulated as upper bounds on the generalization error as a
function of the training data size and the model complexity'~. Such
bounds provide guidance as to how much training data is required
and/or sufficient to achieve accurate generalization.

Quantum machine learning (QML) is an emerging field that has
generated great excitement® . Modern QML typically involves training
a parameterized quantum circuit in order to analyze either classical or
quantum data sets', Early results indicate that, for classical data
analysis, QML models may offer some advantage over classical models

under certain circumstances” ™. It has also been proven that QML
models can provide an exponential advantage in sample complexity
for analyzing quantum data?®?.

However, little is known about the conditions needed for accurate
generalization in QML. Significant progress has been made in under-
standing the trainability of QML models'®**>¢, but trainability is a
separate question from generalization®*%, Overfitting of training
data could be an issue for QML, just as it is for classical machine
learning. Moreover, the training data size required for QML general-
ization has yet to be fully studied. Naively, one could expect that an
exponential number of training points are needed when training a
function acting on an exponentially large Hilbert space. For instance,
some studies have found that, exponentially in n, the number of
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qubits, large amounts of training data would be needed, assuming that
one is trying to train an arbitrary unitary***°. This is a concerning result,
since it would imply exponential scaling of the resources required for
QML, which is precisely what the field of quantum computation would
like to avoid.

In practice, a more relevant scenario to consider instead of arbi-
trary unitaries is learning a unitary that can be represented by a
polynomial-depth quantum circuit. This class of unitaries corresponds
to those that can be efficiently implemented on a quantum computer,
and it is exponentially smaller than that of arbitrary unitaries. More
generally, one could consider a QML model with T parameterized
gates and relate the training data size N needed for generalizationto T.
Even more general would be to consider generalization error a
dynamic quantity that varies during the optimization.

In this work, we prove highly general theoretical bounds on the
generalization error in variational QML: The generalization error is
approximately upper bounded by /T/N. In our proofs, we first
establish covering number bounds for the class of quantum operations
that a variational QML model can implement. From these, we then
derive generalization error bounds using the chaining technique for
random processes. A key implication of our results is that an efficiently
implementable QML model, one such that T € O(polyn), only requires
an efficient amount of training data, N € O(polyn), to obtain good
generalization. This implication, by itself, will improve the efficiency
guarantees of variational quantum algorithms'®*-** that employ train-
ing data, such as quantum autoencoders”, quantum generative
adversarial networks*, variational quantum error correction***, var-
iational quantum compiling*®”’, and variational dynamical
simulation*®™", It also yields improved efficiency guarantees for clas-
sical algorithms that simulate QML models.

We furthermore refine our bounds to account for the optimiza-
tion process. We show that generalization improves if only some
parameters have undergone substantial change during the optimiza-
tion. Hence, even if we used a number of parameters T larger than the
training data size N, the QML model could still generalize well if only
some of the parameters have changed significantly. This suggests that
QML researchers should be careful not to overtrain their models
especially when the decrease in training error is insufficient.

To showcase our results, we consider quantum convolutional
neural networks (QCNNs)”*°, a QML model that has received sig-
nificant attention. QCNNs have only 7 =O(log n) parameters and yet
they are capable of classifying quantum states into distinct phases. Our
theory guarantees that QCNNs have good generalization error for
quantum phase recognition with only polylogarithmic training
resources, N € O(log”n). We support this guarantee with a numerical
demonstration, which suggests that even constant-size training data
can suffice.

Finally, we highlight the task of quantum compiling, a crucial
application for the quantum computing industry. State-of-the-art
classical methods for approximate optimal compiling of unitaries
often employ exponentially large training data sets*’>*. However,
our work indicates that only polynomial-sized data sets are
needed, suggesting that state-of-the-art compilers could be further
improved. Indeed, we numerically demonstrate the surprisingly low
data cost of compiling the quantum Fourier transform at relatively
large scales.

Results

Framework

Let us first outline our theoretical framework. We consider a quantum
machine learning model (QMLM) as being a parameterized quantum
channel, i.e., a completely positive trace preserving (CPTP) map that is
parameterized. We denote a QMLM as £2MM() where a=(6,k)
denotes the set of parameters, including continuous parameters 6
inside gates, as well as discrete parameters k that allow the gate

structure to vary. We make no further assumptions on the form of the
dependence of the CPTP map E2"'™(.) on the parameters a. During the
training process, one would optimize the continuous parameters 8 and
potentially also the structure k of the QMLM.

A QMLM takes input data in the form of quantum states. For
classical data x, the input is first encoded in a quantum state via a map
X p(x). This allows the data to be either classical or quantum in
nature, since regardless it is eventually encoded in a quantum state. We
assume that the data encoding is fixed in advance and not optimized
over. We remark here that our results also apply for more general
encoding strategies involving data re-uploading™, as we explain in
Supplementary Note 3.

For the sake of generality, we allow the QMLM to act on a sub-
system of the state p(x). Hence, the output state can be written as
(EMM & id)(p(x)). For a given data point (x; y,), we can write the loss
function as

(@ x,.9) = Tr |05 (6™ & id ) (o)) M

for some Hermitian observable OL‘?S; As is common in classical learn-
ing theory, the prediction error bounds will depend on the largest

(absolute) value that the loss function can attain. In our case, we

therefore assume Cjo : = SuUpy, ||Ol§f;5||<oo, i.e., the spectral norm can

be bounded uniformly over all possible loss observables.

In Eq. (1), we take the measurement to act on a single copy of the
output of the QMLM EM™(.) upon input of (a subsystem of) the data
encoding state p(x;). At first this looks like a restriction. However, note
that one can choose E"™(.) to be a tensor product of multiple copies
of a QMLM, each with the same parameter setting, applied to multiple
copies of the input state. Hence our framework is general enough to
allow for global measurements on multiple copies. In this addition to
the aforementioned situation, we further study the case in which
trainable gates are more generally reused.

For a training dataset S = {(xi,y,-)}f.":1 of size N, the average loss for
parameters a on the training data is

) 1N
Rg(a)= Ni; Ua;xy;), )

which is often referred to as the training error. When we obtain a new
input x, the prediction error of a parameter setting a is taken to be the
expected loss

Riay= 15 Jaxy)l, 3)

where the expectation is with respect to the distribution P from which
the training examples are generated.

Achieving small prediction error R(a) is the ultimate goal of
(quantum) machine learning. As P is generally not known, the training
error Ry(@) is often taken as a proxy for R(a). This strategy can be
justified via bounds on the generalization error

gen (@) =R(@) — Rs(a), )
which is the key quantity that we bound in our theorems.

Analytical results

We prove probabilistic bounds on the generalization error of a QMLM.
Our bounds guarantee that a good performance on a sufficiently large
training data set implies, with high probability, a good performance on
previously unseen data points. In particular, we provide a precise
meaning of "sufficiently large” in terms of properties of the QMLM and
the employed training procedure.
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Fig. 1| Various types of Quantum Machine Learning Models (QMLMs). Panel (a)
depicts a basic QMLM with T= 6 independently parameterized gates. The gray
boxes illustrate some global evolutions that are not trainable. Panel (b) shows a
gate-sharing QMLM with 7=2 independently parameterized gates, each gate is
repeatedly used for M =3 times. In panel (c), we depict a multi-copy QMLM. We take
measurement data from M rounds of a basic QMLM with T = 6 parameterized gates
and post-process the measurement outcomes to produce an output. Running M
copies of a basic QMLM with T gates is equivalent to running a gate-sharing QMLM

with T=6 parameterized gates, in which each gate is repeated M times. Panel (d)
describes a gate-sharing QMLM under optimization. The parameterized gate to the
left undergoes a small change, while the one to the right undergoes a large change.
If we sort the changes A;, A, from large to small, then A; > A, = 0. Finally, panel (e)
illustrates gate-sharing QMLM with variable structure. The number T of para-
meterized gates changes throughout the optimization. The figure begins with T=1
and ends with T=2.

Figure 1 gives an overview of the different scenarios considered in
this work. We begin with the basic form of our result. We consider a
QMLM that has arbitrarily many non-trainable global quantum gates
and T trainable local quantum gates. Here, by local we mean «-local for
some n-independent locality parameter k, and a local quantum gate
can be a unitary or a quantum channel acting on k qubits. Then we have
the following bound on the generalization error for the QMLM with
final parameter setting a* after training:

Theorem 1. (Basic QMLM). For a QMLM with T parameterized local
quantum channels, with high probability over training data of size N,
we have that

S

gen (a*) e o( le/g T) .

Remark 1. Theorem 1 directly implies sample complexity bounds: For
any £>0, we can, with high success probability, guarantee that
gen(a*) < ¢, already with training data of size N-TlogT/£2, which
scales effectively linearly with 7, the number of parameterized gates.

For efficiently implementable QMLMs with T € O(polyn), a sam-
ple size of N € O(polyn/e?) is already sufficient. More concretely, if
T € O(n?) for some degree D, then the corresponding sufficient
sample complexity obtained from Theorem 1 satisfies N @(n” /€%),
where the O hides factors logarithmic in n. In the NISQ era*’, we expect
the number T of trainable maps to only grow mildly with the number of
qubits, e.g., as in the architectures discussed in refs. 18, 45, 57. In this
case, Theorem 1 gives an especially strong guarantee.

In various QMLMs, such as QCNNs, the same parameterized local
gates are applied repeatedly. One could also consider running the
same QMLM multiple times to gather measurement data and then
post-processing that data. In both cases, one should consider the
QMLM as using the same parameterized local gates repeatedly. We
assume each gate to be repeated at most M times. A direct application
of Theorem 1 would suggest that we need a training data size N of
roughly MT, the total number of parameterized gates. However, the
required number of training data actually is much smaller:

Theorem 2. (Gate-sharing QMLM). Consider a QMLM with T indepen-
dently parameterized local quantum channels, where each channel

is reused at most M times. With high probability over training data of

size N, we have
gen(a*) € (9(\ /%) .

Thus, good generalization, as in Remark 1, can already be guar-
anteed, with high probability, when the data size effectively scales
linearly in T (the number of independently parameterized gates) and
only logarithmically in M (the number of uses). In particular, applying
multiple copies of the QMLM in parallel does not significantly worsen
the generalization performance compared to a single copy. Thus, as we
discuss in Supplementary Note 3, Theorem 2 ensures that we can
increase the number of shots used to estimate expectation values at
the QMLM output without substantially harming the generalization
behavior.

The optimization process of the QMLM also plays an important
role in the generalization performance. Suppose that during the
optimization process, the £ local gate changed by a distance A, We
can bound the generalization error by a function of the changes {A,},.

(6)

Theorem 3. (Gate-sharing QMLM under optimization). Consider a
QMLM with T independently parameterized local quantum channels,
where the £" channel is reused at most M times and is changed by A,
during the optimization. Assume A;>...>A7. With high probability over
training data of size N, we have

. K log(MT L
gen(a*) € O(K[r(l)lnlr{ $)+ k-zK:HMAk}). @)

When only K< T local quantum gates have undergone a sig-
nificant change, then the generalization error will scale at worst line-
arly with K and logarithmically in the total number of parameterized
gates MT. Given that recent numerical results suggest that the para-
meters in a deep parameterized quantum circuit only change by a
small amount during training’®*°, Theorem 3 may find application in
studying the generalization behavior of deep QMLMs.

Finally, we consider a more advanced type of variable ansatz
optimization strategy that is also adopted in practice®®*. Instead of
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Fig. 2 | Generalization performance of quantum phase recognition. We
employed the QCNN architecture for quantum phase recognition on ground states
of the generalized cluster Hamiltonian H of Eq. (9). We evaluated the phase
assigned by the QCNN to a point in the /;-/,-plane by sampling 8192 computational
basis measurement outcomes and taking the least frequent outcome as the pre-
dicted phase. Panel (a) visualizes the performance of the QCNN for 16-qubits,
trained with 30 data points, which were labelled according to the analytically
determined phase diagram. Blue crosses denote training data points (not all 30 are
shown). Blue (red) circles represent correctly (incorrectly) classified points. Panel

"training accuracy

0.8 1 0.5 1 05 1 0.5 1
n‘ammg accuracy

(b) shows that, as the training data size increases, the training accuracy quickly
becomes a good predictor for the testing accuracy on 10,000 randomly sampled
points, i.e., the dependence of testing accuracy on training accuracy is approxi-
mately linear with slope increasing with N. The different points in the plot corre-
spond to different parameter settings in the QCNN throughout the optimization.
The dotted gray line shows the baseline accuracy of 25% achieved by random
guessing. Panel (c) shows that the improvement in the slope with growing training
data size is similar for different numbers of qubits, reflecting the at-worst poly-
logarithmic dependence of N on n predicted by our bounds.

fixing the structure of the QMLM, such as the number of para-
meterized gates and how the parameterized gates are interleaved with
the fixed gates, the optimization algorithm could vary the structure,
e.g., by adding or deleting parameterized gates. We assume that for
each number T of parameterized gates, there are Gy different QMLM
architectures.

Theorem 4. (Gate-sharing QMLM with variable structure). Consider a
QMLM with an arbitrary number of parameterized local quantum
channels, where for each 7>0, we have Gy different QMLM archi-
tectures with T parameterized gates. Suppose that after optimizing on
the data, the QMLM has T independently parameterized local quantum
channels, each repeated at most M times. Then, with high probability
over input training data of size N,

gen (@) < 0< \/Tlo%MT)Jr \/Iog,(VGT)) ®)

Thus, even if the QMLM can in principle use exponentially many
parameterized gates, we can control the generalization error in terms
of the number of parameterized gates used in the QMLM after opti-
mization, and the dependence on the number of different archi-
tectures is only logarithmic. This logarithmic dependence is crucial as
even in the cases when Gr grows exponentially with 7, we
have log(Gy)/N € O(T/N).

Numerical results

In this section we present generalization error results obtained by
simulating the following two QML implementations: (1) using a QCNN
to classify states belonging to different quantum phases, and (2)
training a parameterized quantum circuit to compile a quantum
Fourier transform matrix.

We begin with the quantum phase classification application. The
QCNN architecture introduced in* generalizes the model of (classical)
convolutional neural networks with the goal of performing pattern
recognition on quantum data. It is composed of so-called convolu-
tional and pooling layers, which alternate. In a convolutional layer, a
sequence of translationally invariant parameterized unitaries on
neighbouring qubits is applied in parallel, which works as a filter
between feature maps in different layers of the QCNN. Then, in the

pooling layers, a subset of the qubits are measured to reduce the
dimensionality of the state while preserving the relevant features of
the data. Conditioned on the corresponding measurement outcomes,
translationally invariant parameterized 1-qubit unitaries are applied.
The QCNN architecture has been employed for supervised QML tasks
of classification of phases of matter and to devise quantum error
correction schemes*. Moreover, QCNNs have been shown not to
exhibit barren plateaus, making them a generically trainable QML
architecture?”.

The action of a QCNN can be considered as mapping an input
state pi, t an OULPUL State Poue ZiVEN as Pyt = o (Pjy)- Then, given
Pour, ONE measures the expectation value of a task-specific Hermitian
operator.

In our implementation, we employ a QCNN to classify states
belonging to different symmetry protected topological phases. Spe-
cifically, we consider the generalized cluster Hamiltonian

H= 3 (zj —Ji XX 1 — jzxj,lzjxjﬂ), )

where Z; (X;) denote the Pauli z (x) operator acting on qubit i, and where

Ji and J, are tunable coupling coefficients. As proved in®*, and as
schematically shown in Fig. 2, the ground-state phase diagram of the
Hamiltonian of Eq. (9) has four different phases: symmetry-protected
topological (I), ferromagnetic (II), anti-ferromagnetic (Ill), and trivial
(IV). In the Methods section, we provide additional details regarding
the classical simulation of the ground states of H.

By sampling parameters in the (/;, /) plane, we create a training set
{(|¢,b,~>,y,-)}:.\’:1 composed of ground states |¢f;) of H and their associated
labels y;. Here, the labels are in the form of length-two bit strings, i.e.,
yi € {0, 17, where each possible bit string corresponds to a phase that
;) can belong to. The QCNN maps the n-qubit input state |¢;) to a
2-qubit output state. We think of the information about the phase as
being encoded into the output state by which of the 4 computational
basis effect operators is assigned the smallest probability. Namely, we
define the loss function as #(a; [i;).;) : = (VIESNN(1w,) ()l y;)- This

Nature Communications | (2022)13:4919



Article

https://doi.org/10.1038/s41467-022-32550-3

leads to an empirical risk given by

. 1N
Rs(@)= 5 2 i€ 1) Wil (10)

In Fig. 2, we visualize the phase classification performance
achieved by our QCNN, trained according to this loss function, while
additionally taking the number of misclassified points into account.
Moreover, we show how the true risk, or rather the test accuracy as
proxy for it, correlates well with the achieved training accuracy,
already for small training data sizes. This is in agreement with our
theoretical predictions, discussed in more detail in Supplementary
Note 4, which for QCNNs gives a generalization error bound poly-
logarithmic in the number of qubits. We note that refs. 65, 66 observed
similarly favorable training data requirements for a related task of
learning phase diagrams.

Next, we turn our attention to the unitary compiling application.
Compiling is the task of transforming a high-level algorithm into a low-
level code that can be implemented on a device. Unitary compiling is a
paradigmatic task in the NISQ era where a target unitary is compiled
into a gate sequence that complies with NISQ device limitations, e.g.,
hardware-imposed connectivity and shallow depth to mitigate errors.
Unitary compiling is crucial to the quantum computing industry, as it is
essentially always performed prior to running an algorithm on a NISQ
device, and various companies have their own commercial
compilers®”®%, Hence, any ability to accelerate unitary compiling could
have industrial impact.

Here we consider the task of compiling the unitary U of the n-
qubit Quantum Fourier Transform (QFT)*’ into a short-depth para-
meterized quantum circuit Wa). For V(a) we employ the VAns (Vari-
able Ansatz) algorithm®’°, which uses a machine learning protocol to
iteratively grow a parameterized quantum circuit by placing and
removing gates in a way that empirically leads to lower loss function
values. Unlike traditional approaches that train just continuous para-
meters in a fixed structure circuit, VAns also trains discrete para-
meters, e.g., gate placement or type of gate, to explore the architecture
hyperspace. In Supplementary Note 5, we apply our theoretical results
in this compiling scenario.

The training set for compilation is of the form {|(/),->,U|t[1,->};v:1,
consisting of input states |;) and output states obtained through the
action of U. The |¢;) are drawn independently from an underlying data-
generating distribution. In our numerics, we consider three such dis-
tributions: (1) random computational basis states, (2) random (non-
orthogonal) low-entangled states, and (3) Haar random n-qubit states.
Note that states in the first two distributions are easy to prepare on a
quantum computer, whereas states from the last distribution become
costly to prepare as n grows. As the goal is to train V(a) to match the
action of U on the training set, we define the loss function as the
squared trace distance between Uly;) and V(a)y;), ie.,
Uas 1), U1;)) = = IV ($ilU" — V(o) (¢1V(@)[If. This leads to
the empirical risk

5 1Y .
Rs(@)=5 2 IV (@ll" — V@) (@ilV@'llz, b

where || - ||; indicates the trace norm.

Figure 3 shows our numerical results. As predicted by our analy-
tical results, we can, with high success probability, accurately compile
the QFT when training on a data set of size polynomial in the number of
qubits. Our numerical investigation shows a linear scaling of the
training requirements when training on random computational basis
states. This better than the quadratic scaling implied by a direct
application of our theory, which holds for any arbitrary data-
generating distribution. Approximate implementations of QFT with a
reduced number of gates”, combined with our results, could help to

further study this apparent gap theoretically. When training on Haar
random states, our numerics suggest that an even smaller number of
training data points is sufficient for good generalization: Up to n=9
qubits, we generalize well from a constant number of training data
points, independent of the system size.

Even more striking are our results when initializing close to the
solution. In this case, as shown in Fig. 4, we find that two training data
points suffice to obtain accurate generalization, which holds even up
to a problem size of 40 qubits. Our theoretical results in Theorem 3 do
predict reduced training requirements when initializing near the
solution. Hence, the numerics are in agreement with the theory,
although they paint an even more optimistic picture and suggest that
further investigation is needed to understand why the training data
requirements are so low. While the assumption of initialization near
the solution is only viable assuming additional prior knowledge, it
could be justified in certain scenarios. For example, if the unitaries to
be compiled depend on a parameter, e.g., time, and if we have already
compiled the unitary for one parameter setting, we might use this as
initialization for unitaries with a similar parameter.

Discussion

We conclude by discussing the impact of our work on specific appli-
cations, a comparison to prior work, the interpretation of our results
from the perspective of quantum advantage, and some open
questions.

We begin with a discussion of the impact on specific applications.
Quantum phase classification is an exciting application of QML, to
which Ref. 45 has successfully applied QCNNs. However, Ref. 45 only
provided a heuristic explanation for the good generalization perfor-
mance of QCNNs. Here, we have presented a rigorous theory that
encompasses QCNNs and explains their performance, and we have
confirmed it numerically for a fairly complicated phase diagram and a
wide range of system sizes. In particular, our analysis allows us to go
beyond the specific model of QCNNs and extract general principles for
how to ensure good generalization. As generating training data for this
problem asks an experimenter to prepare a variety of states from
different phases of matter, which will require careful tuning of differ-
ent parameters in the underlying Hamiltonian, good generalization
guarantees for small training data sizes are crucial to allow for the
implementation of phase classification through QML in actual physical
experiments.

Several successful protocols for unitary compiling make use of
training data®>*, However, prior work has relied on training data sets
whose size scaled exponentially with the number of qubits. This scaling
is problematic, both because it suggests a similarly bad scaling of the
computational complexity of processing the data and because gen-
erating training data can be expensive in actual physical implementa-
tions. Our generalization bounds provide theoretical guarantees on
the performance that unitary compiling with only polynomial-size
training data can achieve, for the relevant case of efficiently imple-
mentable target unitaries. As we have numerically demonstrated in the
case of the Quantum Fourier Transform, this significant reduction in
training data size makes unitary compiling scalable beyond what pre-
vious approaches could achieve. Moreover, our results provide new
insight into why the VAns algorithm® is successful for unitary com-
piling. We believe that the QML perspective on unitary compiling
advocated for in this work will lead to new and improved ansétze,
which could scale to even larger systems.

Recent methods for variational dynamical simulation rely on
quantum compiling to compile a Trotterized unitary into a structured
ansatz with the form of a diagonalization*®**”>”, This technique allows
for quantum simulations of times longer than an iterated Trotteriza-
tion because parameters in the diagonalization may be changed by
hand to provide longer-time simulations with a fixed depth circuit. We
expect the quantum compiling results presented here to carry over to
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Fig. 3 | Generalization performance of variational unitary compiling. We
employed a variable structure QMLM (as discussed near Theorem 4). Panel (a)
shows the dependence of N;,, the minimum training data size for accurate com-
pilation, on n, the number of qubits. Accurate compilation is defined as achieving
| U— V(a)H% <107° on1out of 8 (blue) or on 7 out of 8 (red) runs. For training data
with random computational basis inputs (solid lines), N ,,;, scales linearly in n. When
training on examples with Haar random inputs (dashed lines), N.,;, is constant up to
system size n=9. In Panel (b), for n=9 qubits, we plot the prediction error of

1/training error

successfully trained (training cost < 1078) runs for 8 training data sets with N=16 to
N =30 random computational basis inputs. Panel (c) shows the dependence of the
testing error on the reciprocal of the training error for different training data sizes,
in the case of 9 qubits. Here, the data consisted of random computational basis
states and the corresponding outputs. As N increases, small training error becomes
a more reliable predictor for small testing error. Each subplot shows 8 different
training runs, trained on different training data sets.
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Fig. 4 | Performance of variational unitary compiling when initializing near the
solution. Each panel shows the results of a single randomly initialized training run,
where we used randomly drawn low-entangled states for training. The testing error
on 20 test states, which we allow to be more strongly entangled than the states used
during training, is plotted versus the reciprocal of the training error for training
data sizes N=1, 2, for different system sizes n. A training data set of size N=11is not
sufficient to guarantee good generalization: Even with decreasing training error,
the testing error remains large. In contrast, assuming favorably initialized training,
N =2 training data points suffice for good generalization, even for up to n=40
qubits.

this application. This will allow these variational quantum simulation
methods to use fewer training resources (either input-output pairs, or
entangling auxiliary systems), yet still achieve good generalization and
scalability.

Discovering quantum error correcting codes can be viewed as an
optimization problem***7*78, Furthermore, it can be thought of as a
machine learning problem, since computing the average fidelity of the
code involves training data (e.g., chosen from a 2-design**). Significant
effort has been made to solve this problem on classical computers’ ",
Such approaches can benefit from our generalization bounds, poten-
tially leading to faster classical discovery of quantum codes. More
recently, it was proposed to use near-term quantum computers to find

such codes****. Again our bounds imply good generalization perfor-
mance with small training data for this application, especially for
QCNNs*, due to their logarithmic number of parameters.

Finally, autoencoders and generative adversarial networks (GANs)
have recently been generalized to the quantum setting***7°%°, Both
employ training data, and hence our generalization bounds provide
quantitative guidance for how much training data to employ in these
applications. Moreover, our results can provide guidance for ansatz
design. While there is no standard ansatz yet for quantum auto-
encoders or quantum GANs, ansitze with a minimal number of para-
meters will likely lead to the best generalization performance.

Next, we give a comparison to previously known results. Some
prior works have studied the generalization capabilities of quantum
models, among them the classical learning-theoretic approaches
of*'"%%; the more geometric perspective of”'%; and the information-
theoretic technique of***. Independently of this work, Ref. 38 also
investigated covering numbers in QMLMs. However our bounds are
stronger, significantly more general, and broader in scope. We give a
detailed comparison of our results to related work in Supplemen-
tary Note 1.

To view our results in the context of the quest for quantum
advantage, it is important to note that we do not prove a quantum
advantage of quantum over classical machine learning. However,
generalization bounds for QMLMs are necessary to understand their
potential for quantum advantage. Namely, QMLMs can outperform
classical methods, assuming both achieve small training error, only in
scenarios in which QMLMs generalize well, but classical ML methods
do not. We therefore consider our results a guide in the search for
quantum advantage of QML: We need to identify a task in which
QMLMs with few trainable gates achieve small training error, but
classical models need substantially higher model complexity to
achieve the same goal. Then, our bounds guarantee that the QMLM
performs well also on unseen data, but we expect the classical model
to generalize poorly due to the high model complexity.

We conclude with some open questions. For QMLMs with expo-
nentially many independently trainable gates, our generalization error
bounds scale exponentially with n, and hence we do not make non-
trivial claims about this regime. However, this does not yet imply that
exponential-size QMLMs have bad generalization behavior. Whether
and under which circumstances this is indeed the case is an interesting
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open question (e.g., see””’” for some initial results). More generally,
one can ask: Under what circumstances will a QMLM, even one of
polynomial size, outperform our general bound. For example, if we
have further prior knowledge about the loss, arising from specific
target applications, it might be possible to use this information to
tighten our generalization bounds. Moreover, as our generalization
bounds are valid for arbitrary data-generating distributions, they may
be overly pessimistic for favorable distributions. Concretely, in our
numerical experiments for unitary compiling, highly entangled states
were more favorable than especially efficiently preparable states from
the perspective of generalization. It may thus be interesting to inves-
tigate distribution-specific tightenings of our results. Finally, it may be
fruitful to combine the generalization bounds for QMLMs studied in
this work and the effect of data encodings in® to yield a better picture
on generalization in quantum machine learning.

Methods

This section gives an overview over our techniques. First, we outline
the proof strategy that leads to the different generalization bounds
stated above. Second, we present more details about our numerical
investigations.

Analytical methods

An established approach to generalization bounds in classical statis-
tical learning theory is to bound a complexity measure for the class
under consideration. Metric entropies, i.e., logarithms of covering
numbers, quantify complexity in exactly the way needed for general-
ization bounds, as one can show using the chaining technique from the
theory of random processes’®”’. Therefore, a high level view of our
proof strategy is: We establish novel metric entropy bounds for
QMLMs and then combine these with known generalization results
from classical learning theory. The strongest form of our general-
ization bounds is the following.

Theorem 5. (Mother theorem). Consider a QMLM with an arbitrary
number of parameterized local quantum channels, where for each
T>0, we have Gy different QMLM architectures with T trainable local
gates. Suppose that after optimizing on the training data, the QMLM
has Tindependently parameterized local quantum channels, where the
£" channel is reused at most M times and is changed by A, during the
optimization. Without loss of generality, assume A;>...>Ar. Then with
high probability over input training data of size N, we have

R @

gen (a*)eo< in_f(K)+ _logl(VGr)),

.
where f(K) : = /%18MD) 2 M.

We give a detailed proof in Supplementary Note 3. There, we also
describe a variant in case the loss function cannot be evaluated exactly,
but only estimated statistically. Here, we present only a sketch of how
to prove Theorem 5.

Before the proof sketch, however, we discuss how Theorem 5
relates to the generalization bounds stated above. In particular, we
demonstrate how to obtain Theorems 1, 2, 3, and 4 as special cases of
Theorem 5.

In the scenario of Theorem 1, the QMLM architecture is fixed in
advance, each trainable map is only used once, and we do not take
properties of the optimization procedure into account. In the language
of Theorem 5, this means: There exists a single 7> 0 with Gr=1and we
have G; = O for all T#T. Also, M=1. And instead of taking the minimum
over K=1, ..., T, we consider the bound for K = T. Plugging this into the
generalization bound of Theorem 5, we recover Theorem 1.

Similarly, Theorem 5 implies Theorems 2, 3, and 4. Namely, if we
take Gr=1and G; =0 for all T=T, and evaluate the bound for K=T, we

recover Theorem 2. Choosing Gr=1and G; =0 for all T#T, the bound
of Theorem 5 becomes that of Theorem 3. Finally, we can obtain
Theorem 4 by bounding the minimum in Theorem 5 in terms of the
expression evaluated at K=T.

Now that we have established that Theorem 5 indeed implies
generalization bounds for all the different scenarios depicted in Fig. 1,
we outline its proof. The first central ingredient to our reasoning are
metric entropy bounds for the class of all n-qubit CPTP maps that a
QMLM as described in Theorem 5 can implement, where the distance
between such maps is measured in terms of the diamond norm. Note:
The trivial metric entropy bound obtained by considering this class of
maps as compact subset of an Euclidean space of dimension expo-
nential in n is not sufficient for our purposes since it scales exponen-
tially in n. Instead, we exploit the layer structure of QMLMs to obtain a
better bound. More precisely, we show: If we fix a QMLM architecture
with T trainable 2-qubit maps and a number of maps 0 < K< T, and we
assume (data-dependent) optimization distances A;>...>Ar, then it
suffices to take (¢/KM)-covering nets for each of the sets of admissible
2-qubit CPTP maps for the first K trainable maps to obtain a
(e+ Z,f:,(,,l MAy)-covering net for the whole QMLM. The cardinality of
a covering net built in this way, crucially, is independent of n, but
depends instead on K, M, and T. In detail, its logarithm can effectively
be bounded as € O(Klog(MT/¢)). This argument directly extends
from the 2-local to the k-local case, as we describe in Supplemen-
tary Note 3.

Now we employ the second core ingredient of our proof strat-
egy. Namely, we combine a known upper bound on the generalization
error in terms of the expected supremum of a certain random pro-
cess with the so-called chaining technique. This leads to a general-
ization error bound in terms of a metric entropy integral. As we need
a non-standard version of this bound, we provide a complete deri-
vation for this strengthened form. This then tells us that, for each
fixed T, M, K, and A;>...>A7, using the covering net constructed
above, we can bound the generalization error as
gen (a*) € O(,/Klog(MT)/N+ X[_, ., MAy), with high probability.

The last step of the proof consists of two applications of the union
bound. The first instance is a union bound over the possible values of
K. This leads to a generalization error bound in which we minimize
over K=0, ..., T. So far, however, the bound still applies only to any
QMLM with fixed architecture. We extend it to variable QMLM archi-
tectures by taking a second union bound over all admissible numbers
of trainable gates T and the corresponding Gr architectures. As this is,
in general, a union bound over countably many events, we have to
ensure that the corresponding failure probabilities are summable.
Thus, we invoke our fixed-architecture generalization error bound for
a success probability that is proportional to (G Tz)fl. In that way, the
union bound over all possible architectures yields the logarithmic
dependence on Gy in the final bound and completes the proof of
Theorem 5.

Numerical methods

This section discusses numerical methods used throughout the paper.
The subsections give details on computational techniques applied to
phase classification of the cluster Hamiltonian in Eq. (9) and Quantum
Fourier Transform compilation.

Phase classification. The training and testing sets consist of ground
states |¢;) of the cluster Hamiltonian in Eq. (9), computed for different
coupling strengths (/;,/,). The states |tp,-> were obtained with the
translation invariant Density Matrix Renormalization Group’’. The
states in the training set (represented by blue crosses in Fig. 2a) are
chosen to be away from phase transition lines, so accurate description
of the ground states is already achieved at small bond dimension .
That value determines the cost of further computation involving the
states |¢;) and we keep it small for efficient simulation.
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We use Matrix Product State techniques® to compute and opti-
mize the empirical risk in Eq. (10). The main part of that calculation is
the simulation of the action of the QCNN £3™™N on a given ground state
|g;). The map 2N consists of alternating convolutional and pooling
layers. In our implementation the layers are translationally invariant
and are represented by parameterized two-qubit gates. The action of a
convolutional layer on an MPS amounts to updating two nearest
neighbor MPS tensors in a way similar to the time-evolving block
decimation algorithm’*. The pooling layer is simulated in two steps.
First, we simulate the action of all two-qubit gates on an MPS. This is
analogous to the action of a convolutional layer, but performed on a
different pair of nearest neighbor MPS tensors. This step is followed by
a measurement of half of the qubits. We use the fact that the MPS can
be written as a unitary tensor network and hence allows for perfect
sampling techniques®. The measurement step results in a reduction of
the system size by a factor of two.

We repeat the application of convolutional and pooling layers
using the MPS as described above until the system size becomes small
enough to allow for an exact description. A few final layers are simu-
lated in a standard way and the empirical risk is given by a two-qubit
measurement according to the label y;, as in Eq. (10). The empirical risk
is optimized with the Simultaneous Perturbation Stochastic Approx-
imation algorithm®®. We grow the number of shots used in pooling
layer measurements as the empirical risk is minimized. This results in a
shot-frugal optimization®’, as one can control the accuracy of the
gradient based on the current optimization landscape.

Unitary compiling. In the Numerical results section, we show that the
task of unitary compilation can be translated into minimization of
the empirical risk Rg(a) defined in Eq. (11). Here, a= (8, k) denotes a
set of parameters that specifies a trainable unitary V(a). The opti-
mization is performed in the space of all shallow circuits. It has dis-
crete and continuous components. The discrete parameters k
control the circuit layout, that is, the placement of all gates used in
the circuit. Those gates are described by the continuous parameters
6. The optimization min Rs(a) is performed with the recently intro-
duced VAns algorithm®7°. The unitary V(a) is initialized with a circuit
that consists of a few randomly placed gates. In subsequent itera-
tions, VAns modifies the structure parameter k according to certain
rules that involve randomly placing a resolution of the identity and
removing gates that do not significantly contribute to the mini-
mization of the empirical risk Rg¢(a). The gFactor algorithm®, mod-
ified to work with a set of pairs of states as opposed to a target
unitary, is used to optimize over continuous parameters 0 for fixed k.
This optimization is performed after each update to the structure
parameter k. In subsequent iterations, VAns makes a probabilistic
decision whether the new set of parameters «’ is kept or rejected.
This decision is based on the change in empirical risk Rg(a’) — R(ar),
an artificial temperature T, and a factor A that sets the penalty for
growing the circuit too quickly. To that end, we employ a simulated
annealing technique, gradually decreasing T and A, and repeat the
iterations described above until Rg(a) reaches a sufficiently
small value.

Let us now discuss the methods used to optimize the empirical
risk when V(a) is initialized close to the solution. Here, we start with a
textbook circuit for performing the QFT and modify it in the following
way. First, the circuit is rewritten such that it consists of two-qubit
gates only. Next, each two-qubit gate u is replaced with u’ =ue'h,
where h is a random Hermitian matrix and & is chosen such that |ju —
u'|| =€ for an initially specified €. The results presented in the Numer-
ical results section are obtained with e=0.1. The perturbation con-
sidered here does not affect the circuit layout and hence the
optimization over continuous parameters @ is sufficient to minimize
the empirical risk Rs(ar). We use qFactor to perform that optimization.

The input states |¢;) in the training set {|z/),4>,UQFT|zp,~>};V=l are

random MPSs of bond dimension xy=2. The QFT is efficiently
simulable” for such input states, which means that Uqer|g;) admits an
efficient MPS description. Indeed, we find that a bond dimension x <20
is sufficient to accurately describe Uqer|i;). In summary, the use of
MPS techniques allows us to construct the training set efficiently. Note
that the states V(a)|¢;) are in general more entangled than Uqgerl¢;),
especially at the beginning of the optimization. Because of that, we
truncate the evolved MPS during the optimization. We find that a
maximal allowed bond dimension of 100 is large enough to perform
stable, successful minimization of the empirical risk with qFactor. The
testing is performed with 20 randomly chosen initial states. We test
with bond dimension y=10 MPSs, so the testing is done with more
strongly entangled states than the training. Additionally, for system
sizes up to 16 qubits, we verify that the trained unitary Vs close (in the
trace norm) to Uger, when training is performed with at least two
states.

Data availability
The data generated and analyzed during the current study are available
from the authors upon request.

Code availability
Further implementation details are available from the authors upon
request.
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