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ABSTRACT Electrocardiograms (ECGs) play a vital role in the clinical diagnosis of heart diseases. An ECG
record of the heart signal over time can be used to discover numerous arrhythmias. Our work is based on
15 different classes from the MIT-BIH arrhythmia dataset. But the MIT-BIH dataset is strongly imbalanced,
which impairs the accuracy of deep learning models. We propose a novel data-augmentation technique
using generative adversarial networks (GANs) to restore the balance of the dataset. Two deep learning
approaches—an end-to-end approach and a two-stage hierarchical approach—based on deep convolutional
neural networks (CNNs) are used to eliminate hand-engineering features by combining feature extraction,
feature reduction, and classification into a single learning method. Results show that augmenting the original
imbalanced dataset with generated heartbeats by using the proposed techniques more effectively improves
the performance of ECG classification than using the same techniques trained only with the original dataset.
Furthermore, we demonstrate that augmenting the heartbeats using GANs outperforms other common data
augmentation techniques. Our experiments with these techniques achieved overall accuracy above 98.0%,
precision above 90.0%, specificity above 97.4%, and sensitivity above 97.7% after the dataset had been
balanced using GANs, results that outperform several other ECG classification methods.

INDEX TERMS Class imbalance, convolution neural networks (CNNs), ECG classification, generative
adversarial networks (GANs).

I. INTRODUCTION

AnECG is a standard tool for measuring the electrical activity
of the heart and for diagnosing cardiac arrhythmias. Using
an ECG involves placing electrodes on the surface of the
body—such as the chest, neck, and arms—in order to detect
electrical changes in the heart. An ECG record primarily
consists of several distinctive wave forms, such as the P wave,
the QRS complex, the T wave, and other wave forms. The
P wave shows atrial contractions; the QRS complex shows
ventricular contractions; the T wave shows the electrical
activity produced as the ventricles are recharged for the next
contraction [1]. Study of these complex waves and the car-
diac activities they represent is vital for diagnosis of various
arrhythmias [2]. It is difficult for a cardiologist to correctly
analyze a large number of ECG records given their com-
plexity and the amount of time required to analyze them [3].
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Yet life-threatening arrhythmias need to be detected early and
accurately [4].

Arrhythmias can be grouped into two main categories,
life-threating and non-life threating. Life-threatening arrhyth-
mias such as tachycardia and ventricular fibrillation cause
heart attacks and sudden death [5], [6]. Non-life-threatening
arrhythmias, which is our interest in this study, require atten-
tion in order to prevent deterioration of the heart muscle [3].
The category of the arrhythmia can be determined by rec-
ognizing the classes of consecutive heartbeats [7]. Manual
beat-by-beat classification can be very time-consuming and
too difficult in many scenarios. It is crucial to automate
ECG analysis so that cardiac disorders can be discovered
and treated as quickly as possible in clinical situations where
speed in providing medical aid is essential.

Medical datasets like the MIT-BIH arrhythmia dataset are
often very limited. They usually have data imbalance prob-
lem; they over-represent normal classes and common diseases
and only sparsely represent rare diseases. Collecting medical
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data is a complex and expensive process that requires the
collaboration of cardiologists and researchers [8]. Imbalances
in the datasets can make training the models—especially
deep learningmodels—technically challenging, and themod-
els will tend to be biased in favor of classes that contain
large number of samples. The classification methods used
in most studies tend not to perform well on minor classes
because their aim is to optimize overall accuracy without
giving appropriate consideration to the relative accuracy of
each class [9]. Yet the cost of misclassifying minor classes
in medical datasets is often much greater than the cost of
misclassifying major classes, since the arrhythmias of high-
risk patients usually fall in the minor classes of arrhythmia
disease. The need for a good data augmentation technique for
medical datasets is thus an urgent one.
One way to overcome the imbalance is to artificially create

synthetic data by modifying the original training set using
such classical data augmentation methods as translation, flip-
ping, and rotation, which have become an essential step in
computer vision tasks [10]. Although these modifications
may result in marginal gains in diversity, they may also dis-
rupt relevant orientation-related features, especially in such
one-dimensional signals as those of an ECG.
The goal of generative models, the most promising models

for data synthesis, is to learn the distribution of the training set
and then to generate new samples from the learned distribu-
tion. In this paper, a specific kind of generative model called a
GenerativeAdversarial Network (GAN), which has proved its
effectiveness in synthesizing high-quality images in several
domains [11], is used to generate synthetic heartbeats and
thereby restore the balance of each class of the MIT-BIH
dataset. The model generates realistic heartbeats that are
very similar to actual heartbeats. Recently, GANs have been
applied to balance a variety of medical imaging datasets,
including generating MRI slices [12], retinal images [13],
data for chest pathology [14], and data for bone lesion pathol-
ogy [15]. To the best of our knowledge, this is the first attempt
to apply the GANs to one-dimensional medical data.
In the last several years, deep learning has advanced

rapidly. Its methods have shown promising results and
remarkable success, providing state-of-the-art performance
in such fields as bioinformatics [16], computer vision [17],
and medical diagnosis [18]. In the literature, several
approaches have been presented for automatic classification
of heartbeats, including support vector machines (SVM) [19],
[20], feed forward neural network (FNN) [21], back propaga-
tion neural network (BPNN) [22], general regression neural
network (GRRN) [23], probabilistic neural network (PNN)
[24], and recently different deep learning approaches have
been utilized, including convolutional neural network (CNN)
[25]–[28] and long short term memory (LSTM) [29], [30].
In this paper, we propose a novel data augmentation

technique based on the combination of real and synthetic
heartbeats using GAN to improve the classification of ECG
heartbeats of 15 different classes from the MIT-BIH arrhyth-
mia dataset. In addition, two approaches based on CNN are

proposed. The first approach (an end-to-end approach) clas-
sifies the heartbeats as one of the 15 classes in a direct way.
The second approach (a two-stage hierarchical approach)
classifies the heartbeats under one of the five main categories
in the first stage, and each heartbeat is classified into one of
the classes that belongs to that category in the second stage.
To show the superiority of the GAN, we compared the results
of the end-to-end approach after the dataset had been bal-
anced using GAN and using other common data augmenta-
tion techniques. The proposed approaches are applied to lead
1 only from theMIT-BIH dataset to reduce the computational
time. The contributions of this study are as follows: 1) the
synthesis of high-quality heartbeats using GAN and 2) design
of two deep-CNN approaches with superior performance
compared with other studies.

The remainder of this paper is organized as follows: The
relatedwork is reviewed in section II. The proposed technique
and methodologies are discussed in section III. The experi-
mental results are presented in section IV. Finally, the con-
clusion and the future work are provided in section V.

II. RELATED WORK

The traditional approach to ECG classification is to develop
an algorithm to extract the important features from the input
signal and then choose an appropriate classifier to be used
in the classification stage. The conventional approaches in
most studies involve preprocessing, feature extraction, fea-
ture reduction, and classification. Many researchers in the
literature have conducted studies on using such an approach
for ECG classification [4], [31]–[44]. In these studies,
the researchers considered different classes and utilized sev-
eral methods in the feature extraction stage, such as indepen-
dent component analysis (ICA), discrete wavelet transform
(DWT), discrete cosine transform (DCT), principal compo-
nent analysis (PCA), Gaussian mixture models (GMMs),
higher order spectra (HOS), and the one-dimensional hex-
adecimal local pattern (1D-HLP). In the classification stage,
they utilized several algorithms, including FNN, PNN, SVM,
and BNN algorithms.

Although the studies described above achieved accept-
able ECG classification performance, they have some disad-
vantages. For instance, the conventional approaches require
developing a feature extractor and then reducing the extracted
features to a set of optimal features that can be fed into an
appropriate classifier. Computer-aided design (CAD) models
developed using the above workflow show low performance
when validated on a separate dataset and often suffer from
overfitting [45]. Deep learning approaches have the capa-
bility of learning the most important features automatically
from the input signals. Hence, the essential steps that are
required in the traditional approaches, namely, feature extrac-
tion, feature reduction, and classification, can be developed
with no need to be explicitly defined in the deep learn-
ing approaches. Recently, studies have applied several deep
learning approaches for ECG classification.
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Zhang et al. [27] proposed a CNN model consisting of
six layers, comprising two convolutional layers, two pooling
layers, and two fully connected layers. The model classi-
fies five classes of the MIT-BIH dataset (Normal, Atrial
Premature Contraction, Ventricular Premature Contraction,
Right and Left Bundle Branch Blocks), and an overall accu-
racy of 97.50% is achieved. In [29], the authors explored
the use of a DWT layer with bidirectional LSTM for ECG
classification of five types of heartbeats obtained from the
MIT-BIH arrhythmia dataset; they achieved an overall accu-
racy of 99.39%.

Acharya et al. [28] proposed a nine-layer CNN to classify
five different categories of the MIT-BIH arrhythmia dataset.
To overcome the imbalance in the number of heartbeats in
the five (N, S, V, F, Q) categories, they generated synthetic
heartbeats by varying the mean and standard deviation of
the Z-score that was calculated from the original data. The
number of heartbeats of the remaining types are increased
to match the number of heartbeats of the N category. The
researchers achieved an overall accuracy of 94.03% using
the augmented data, and the overall accuracy was reduced to
89.07% when the model was trained only with the original
data. The generated heartbeats are used in the training and
testing phases. Tuncer et al. [31] proposed the use of DWT
coupled with the 1D-HLP technique for automated arrhyth-
mia detection. Ten-second segments of 17 ECG classes from
theMIT-BIH dataset were considered and an overall accuracy
of 95.0%was obtained using a 1 nearest neighborhood (1NN)
classifier.

In [46], the researchers utilized 1,000 ECG fragments
from the MIT-BIH arrhythmia dataset from lead 1, where
each fragment was 10 seconds long. A deep one-dimensional
(1D)-CNN consisting of 16 layers was proposed to classify
15 different classes, and an accuracy of 92.51%was achieved,
whereas an accuracy of 91.33% was obtained when they
considered 17 classes. Oh et al. [30] proposed a combination
of CNN and LSTM for diagnosing five classes with variable
length segments from the MIT-BIH arrhythmia dataset. The
architecture consisted of six convolutional and pooling layers,
followed by an LSTM layer and two fully connected layers.
LSTM was used to extract the temporal information from
the feature maps resulting from the convolutional layers.
An accuracy of 98.10% was obtained.

Pławiak and Acharya [47] proposed a deep ensemble
of classifiers for ECG classification based on deep learn-
ing approaches and genetic algorithms; the researchers used
10-second ECG segments from 29 people in the MIT-BIH
arrhythmia dataset. Hence, they did not utilize the whole
dataset, and only 744 segments from 29 out of 48 records
are considered. The achieved overall accuracy for the utilized
segments of the dataset was 95.00%. In [48], the authors
proposed a convolutional autoencoder-LSTM system to auto-
matically recognize five different types of arrhythmia heart-
beats. They utilized the autoencoder to compress a large
amount of ECG signals with aminimum loss and then classify
the compressed signals using LSTM network. Finally, the

classification of the five classes from the MIT-BIH dataset
achieved an accuracy of 99.21%.

Most studies have only considered overall accuracy. Yet,
the overall accuracy as a parameter is not enough for measur-
ing the robustness of the model because it is biased in favor of
classes that contain large numbers of samples, while neglect-
ing precision in the minor classes. Furthermore, the heart-
beats of the minor classes need to be classified precisely
because high-risk patients usually belong to these classes.
In contrast, although [3], [43] considered the precision for
the classes, they utilized data from leads 1 and 2, in addition
to developing a fusion step to improve the results, which
increased the computational time. Most studies also do not
handle the imbalance problem in the MIT-BIH dataset, which
negatively affects the achieved accuracy for classes with few
heartbeats. In this study, we propose a novel approach to
balance the classes of the utilized dataset using GAN, and we
present two deep learning approaches to overcome the hand-
crafted methods of feature extraction and reduction in the
literature. The approaches classify 15 different classes from
theMIT-BIH dataset using data only from lead 1, andmultiple
evaluation methods are considered.

III. METHODOLOGY

The proposed methods for preprocessing, data augmentation,
and classification are discussed in this section. A detailed
description of each method is introduced in the subsections
below.

A. PREPROCESSING

The raw ECG signals are preprocessed to eliminate noise and
improve the classification accuracy. The noise is eliminated
by removing both high and low frequencies from the acquired
ECG signal. A Butterworth bandpass filter with a range
of 0.5–40 Hz is applied to extract the most valuable infor-
mation from the ECG signal [49]. After that, ECG records
are segmented into multiple heartbeats using the R-peak loca-
tions associated with the dataset; each heartbeat contains a P
wave, QRS complex, and T wave.

Fixed segmentation methods are usually applied due to
the difficulty of detecting the beginning and ending of each
heartbeat [3], [4]. Yet, it is not always reliable because such an
assumption cannot consider the variability of the heart rate.
Hence, a dynamic segmentation strategy is used to overcome
the heart rate variability, as proposed in [20]. To be invariant
to the variability of the heart rate, the number of samples
before and after each R peak are calculated according to
the duration between the current and previous R peak (RR
previous interval), as well as the duration between the current
and next R peak (RR next interval). Thereafter, the number
of samples in the larger interval is divided into three thirds;
the first third is considered before the R peak, while the other
two-thirds are considered after the R peak. Finally, the ampli-
tudes of the heartbeats are normalized between 0 and 1; each
heartbeat is resized to have 300 samples to unify the number
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FIGURE 1. Preprocessing stage results (a) raw ECG record (b) filtered ECG record (c) segmented heartbeat.

FIGURE 2. GAN training for the generator and the discriminator networks.

of samples for each heartbeat. The result of the preprocessing
stage is shown in Figure 1.

B. DATA AUGMENTATION USING GAN

GAN consists of two neural networks—a generator and
discriminator—and each network competes against the other.
The generator network learns to map a noise vector to the
distribution of the data it wants to generate; the goal of the
generator is to produce data samples similar to the samples
in the original dataset. In contrast, the discriminator network
receives data samples from either the generated (fake) sam-
ples or the original (real) samples, and it is responsible for
determining whether the received samples are real or fake.
Figure 2 describes the training process of the GAN.
Two main problems arise when the GAN is trained with

samples from all classes. The first problem is as follows: If
the generator network in the GAN is trained to fool the dis-
criminator network by generating realistic heartbeats, it will
focus on the generation of the dominant classes to optimize
the loss function of the network while collapsing away the
other modes of the minor classes; this is known as the mode
collapse problem [11]. However, such a problem may be
partially tackled by using some advanced techniques, as pro-
posed in [50]. The second problem is incurred if the GAN

is trained by using all heartbeats and somehow generates a
diversity of fake samples; in such a case, the labels of the
generated heartbeats cannot be determined precisely because
some classes are highly similar. Hence, the GAN is trained
using the heartbeats of each class independently to generate
synthetic heartbeats to balance the training set for each class.
The training of the GAN is terminated after the loss of the
networks begins to saturate.

Synthetic heartbeats are generated after the segmentation
stage. The generator network is trained on the segmented
beats for each class, except the N class, because this is the
dominant class. The number of samples in the other classes
is increased to match the number of samples in the training
set of the N class. Batch normalization [51] is used in the
generator network to improve the performance and stability
of the network and add diversity to the generated samples.

The generator network consists of four fully connected
layers; it receives a vector of 100 random numbers sampled
from standard uniform distribution as an input and outputs
a heartbeat of a size of 300 × 1. The discriminator network
consists of five fully connected layers; it takes a heartbeat as
an input of size 300×1 and outputs a decision on whether the
heartbeat is real or fake. According to the decision, the param-
eters of the networks will be tuned to minimize the loss of the

VOLUME 8, 2020 35595



A. M. Shaker et al.: Generalization of CNNs for ECG Classification Using GANs

FIGURE 3. Proposed architecture of the GAN: (a) generator network, (b) discriminator network.

FIGURE 4. Samples of real and synthesized heartbeats using GANs: (a) Left Bundle Branch Block (LBBB) Class, (b) Premature Ventricular
Contraction (PVC) Class, (c) Right Bundle Branch Block (RBBB) Class, (d) Ventricular Escape (VE) Class, (e) Aberrated Atrial Premature (AP) Class,
(f) Atrial Escape (AE) Class.

networks according to (1) and (2) using Adam optimizer [52]:
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wherem is the number of samples per minibatch,D is the dis-
criminator network, G is the generator network, x is the real
samples, and z is a noise vector. Figure 3 shows the proposed
architecture of the generator and discriminator networks.
Two post-processing steps are applied after generating the

heartbeats to improve the results. In the first step, Savitzky–
Golay filter [53] is used to smooth the amplitude of the
heartbeats for enhancing their quality. After that, the ampli-
tude is normalized between 0 and 1 as the amplitude of the
real heartbeats. In the second step, random sample consensus
(RANSAC) is used for identifying and removing the outliers
of the generated samples and ensuring that they come from

the same distribution. Figure 4 shows samples for real and
synthetic heartbeats of different classes from the MIT-BIH
dataset.

Although there are slight differences between the synthe-
sized and original heartbeats in Figure 4, this is the intention
and goal of the GAN. In this study, the aim is to generate
heartbeats that have the main features of the original ones,
not to generate identical versions of them. The same idea is
adopted when using any data augmentation technique: The
original samples are modified slightly to obtain diversity in
the training set.

C. CLASSIFICATION STAGE

We propose two approaches based on deep CNNs to classify
15 arrhythmias from the MIT-BIH dataset that are distinct
from other recent classification approaches; no significant
feature extraction of ECG data is needed to achieve strong
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FIGURE 5. Components of the proposed inception module.

TABLE 1. Mapping the MIT-BIH classes to the five main categories.

classification performance. The first approach is an end-to-
end architecture that classifies the heartbeats in a direct way.
The second approach is a two-stage hierarchical process that
determines the category of the heartbeats in the first stage and
classifies the class belonging to that category in the second
stage. The details of each approach are discussed in the next
subsections.

1) END-TO-END APPROACH

In this approach, the model takes the heartbeat as an input
and classifies it as one of the 15 classes in an end-to-end way.
The motivation behind choosing the proposed architecture,
based on our analysis, is inspired from the inception network
[54] for the following reason; In this study, the positions of
the waves (P, QRS, and T wave) are not fixed and the length
of the waves is not same for all heartbeats. So, the proposed
approach calculates the features using multiple kernel sizes
to guarantee that the considered wave features are invari-
ant to the length of each wave. The proposed architecture
consists of three inception modules followed by three fully
connected layers, each inception module consists of multiple
convolutional layers that operate on the same level; each
layer has a number of filters with a specific kernel size,
and padding is applied to unify the output sizes to be able
to concatenate them. The outputs are concatenated and the
size of the concatenated filters is reduced by applying a
max-pooling operation. Figure 5 shows the components of
the proposed inception module, and Figure 6 describes the
proposed architecture of the first approach.

2) TWO-STAGE HIERARCHICAL APPROACH

According to ANSI/AAMI EC57: 1998 standard, the 15
classes of the MIT-BIH dataset are mapped into five main

FIGURE 6. Proposed architecture of the end-to-end approach.

categories as shown in Table 1. The classification is done
based on two stages in this approach. In the first stage,
the heartbeats are classified into one of the five main cate-
gories. Subsequently, each heartbeat in the second stage is
classified into one of the classes that belongs to that category.
The proposed approach is shown in Figure 7.

The architecture of each CNN in Figure 7 is similar to the
architecture in Figure 6 except for the number of fully con-
nected layers and the number of neurons in each layer. Cat-
egory F has only one class, so no classification network is
needed for it in stage 2. Only the correctly classified heart-
beats in stage 1 will be passed to the second stage.

The data augmentation process is slightly different in this
approach. It is simple in the end-to-end approach because
each class will contain 9,660 samples as the number of heart-
beats in the Normal Class, but in this approach, the data aug-
mentation is done across two stages. In the first stage, GAN is
applied to the classes of categories S, V, F, and Q to match the
number of heartbeats in category N; after augmentation, each
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FIGURE 7. Proposed architecture of the two-stage hierarchical approach.

category will have a training set containing 15,904 heartbeats.
In the second stage, each category is balanced using GAN
separately based on the major class in each category. For
instance, the major class in the first category is the Normal
Class, with 9,660 heartbeats. Based on this, LBBB, RBBB,
NE, and AE are balanced to have a training set containing
9,660 heartbeats for each class.

IV. EXPERIMENTAL RESULTS

A. DATASET

The MIT-BIH dataset [55] is the most popular dataset for
arrhythmias, and it is used for arrhythmia detection in most
studies. It contains 48 records of individuals of different
genders and ages; each record is a 30-minute-long recording
of heartbeat signals, with a sampling frequency of 360 Hz.
The heartbeats and R-peak locations have been annotated by
experts and associated with the dataset; these annotations and
locations have been utilized as the ground truth in the training
and evaluation phases. Only ECG data from lead 1 has been
considered. According to ANSI/AAMI EC57: 1998 standard
[56], only 44 records can be utilized because there are four
paced records. Hence, 15 arrhythmias are considered in this
study.
In this study, the beats of utilized records from lead 1only

were divided into training and testing sets. For comparison’s

sake, the data division in [3] and [43] has been followed. The
percentages of training and testing sets were not the same for
all classes because the numbers of beats for the classes were
not equally distributed. The training set consisted of 13% of
the total beats from the Normal Class, which contains tens of
thousands of beats; 40% of the total beats from the classes
with large number of beats; and 50% of the total beats from
the classes with a small number of beats. The division of the
beats is described in Table 2.

B. EVALUATION METRICS

The following metrics have been utilized to evaluate the
performance of the proposed methods: (1) precision, (2) sen-
sitivity (recall), (3) specificity, and (4) overall accuracy. The
metrics were calculated based on the normalized confusion
matrices using the true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) values. The equations
of the metrics are as follows:

• Precision =
TP

TP+FP
(3)

• Sensetivity =
TP

TP+FN
(4)

• Specificity =
TN

TN+FP
(5)

• Overall Acc =
TP+TN

TP+FP+TN+FN
(6)
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TABLE 2. Training and testing percentages utilized in the experiments.

C. RESULTS OF THE END-TO-END APPROACH

In this approach, the training set is selected randomly for
each class according to the data division in Table 2, and the
other beats are used in the testing set. There is no duplication
between the training and testing sets. The generated heart-
beats by the GAN were used to increase the training set for
the classes (except the Normal Class). The final training set
after data augmentation had 144,900 beats, with each class
having 9,660 training beats. Finally, Adam optimizer [52]
was utilized to tune the parameters, and the network weights
were initialized with random values from standard normal
distribution. The proposed approach was applied only to lead
1 from the MIT-BIH arrhythmias dataset, and 15 arrhythmia
classes were considered.
The proposedmodel in Figure 6 was trained using the same

techniques and hyperparameters as the original imbalanced
dataset and the augmented dataset with GAN to observe
the effect of balancing the dataset. The generated heartbeats
were utilized only in the training phase, and the testing set
contained unseen real heartbeats. The confusionmatrix of this
approach is shown in Table 3.
The precision, sensitivity, and specificity for each class

before and after data augmentation are shown in Table 4.
Although increasing the number of training samples
decreased the precision slightly for some classes, such as
APC, AP, and VF, the GAN had a great effect on the minor
classes and significantly increased the precision for these
classes, such as AE, UN, and NE. It is worth mentioning
that the dangerous and rare diseases usually fall in the minor
classes of arrhythmia disease. However, UN segments contain
distortions in one or more of the three main waves (P, QRS,
and T). So, UN segments can’t be recognized as a specific
heart disease.

Generating synthetic heartbeats using GAN and adding
them to the training sets achieved better results. After data
augmentation, the precision increased by 8.64%, achiev-
ing 90.0%, and the specificity increased by 0.76%, achiev-
ing 99.23%; the overall accuracy increased by 0.5%,
achieving 98.3%. The effect of the GAN does not appear
clearly on the overall accuracy because it is biased to the
major classes, which already contain large numbers of sam-
ples and can be recognized easily; the effect has been shown
on the precision of minor classes, which need to be balanced
because they contain only tens of samples.

D. RESULTS OF THE BASELINE DATA AUGMENTATION

TECHNIQUES IN THE END-TO-END APPROACH

To illustrate the efficiency of the GAN, we compared our
results after data augmentation in the end-to-end approach
against other common data augmentation techniques, such as
random oversampling, the synthetic minority oversampling
technique (SMOTE), and adaptive synthetic (ADASYN)
sampling. Random oversampling randomly replicates the
samples of the minor classes to match the number of samples
in the dominant class. However, it increases the likelihood of
overfitting. SMOTE [57] generates synthetic data based on
the similarities of the feature space that exist in the samples
of the minor classes. It randomly selects one of the neigh-
bors of each sample in the minor classes and generates new
samples by calculating linear interpolations for the samples.
In contrast, He et al. [58] proposed another technique called
ADASYN to generate synthetic samples based on the density
distributions of the training data. Moreover, we trained and
evaluated the proposed model with the original unbalanced
dataset using the weighted loss strategy. Table 5 shows the
results of the end-to-end approach using ten folds for each
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TABLE 3. Confusion matrix of the end-to-end approach.

TABLE 4. Coefficients of classifying 15 ECG classes before and after data augmentation for the end-to-end approach. DS1 is the original set and DS2 is
the balanced set.

technique compared with the results of the GAN. It demon-
strates the efficiency of the GAN compared to the other
common data augmentation techniques.

E. RESULTS OF THE TWO-STAGE HIERARCHICAL

APPROACH

In this approach, the heartbeats are classified into one of the
five main categories in the first stage, whereas in the second
stage, the heartbeats that were correctly classified in the first

stage are classified into the classes belonging to that category;
the overall accuracy is measured based on the misclassifica-
tions in the two stages.

The proposed model in Figure 7 was trained with the same
techniques and hyperparameters using the original imbal-
anced dataset and the augmented dataset using GAN to see
the effect of balancing the dataset in this approach. The
confusion matrix for the first stage is shown in Table 6,
whereas the results of the first stage before and after data
augmentation are shown in Table 7. The effect of the GAN is
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TABLE 5. Comparison of the classification results in the end-to-end approach using different techniques.

TABLE 6. Confusion matrix for the five main categories in the two-stage hierarchical approach (stage 1).

TABLE 7. Coefficients of classifying 15 ECG classes before and after data augmentation for the two-stage hierarchical approach (stage 1). DS1 is the
original set and DS2 is the balanced set.

clear from the precision of minor categories, such as F and Q
categories because these categories had few samples before
data augmentation. We also observed that the GAN has no
effect on N and V categories because they are the dominant
categories.
The confusion matrices for the categories—except cate-

gory F because it contains only one class—in the second
stage are shown in Figure 8, whereas the results of the second
stage before and after data augmentation using the same
techniques and hyperparameters are shown in Table 8. The
achieved overall accuracy after data augmentation across
the two stages is 98.0%, while the average precision, sen-
sitivity, and specificity for the classes in each category are
93.95%, 97.71%, and 97.41%, respectively. In this approach,
the GAN increased the precision significantly by 8.65% and
increased the overall accuracy by 1.45%. The precision is
slightly higher in this approach than it is in the end-to-end

approach. Moreover, the main category is also known, not
only the disease class. In contrast, the sensitivity and speci-
ficity in this approach are reduced by nearly 2% compared
with the end-to-end approach. It is also observed that the
GAN has more effect in stage 2 than stage 1 because stage
2 contains the minor classes, whereas stage 1 contains the
categories. For instance, the precision of AE class increased
in stage 2 after data augmentation from 20% to 87.5%.

As mentioned in section 2, not all studies consider the
precision or provide a confusion matrix for the considered
classes. The comparison between our work and other studies
that consider precision in addition to the overall accuracy is
given in Table 9. Most studies consider only a few classes
with utterly different beats, resulting in high overall accu-
racy and precision. However, the average precision decreases
when more classes are considered. In contrast, in this study,
the proposed approaches using only data from lead 1 achieved
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TABLE 8. Coefficients of classifying 15 ECG classes before and after data augmentation for the two-stage hierarchical approach (stage 2). DS1 is the
original set, and DS2 is the balanced set.

TABLE 9. Comparison of our work with other results.

better results than other studies did, proving the robustness of
the proposed approach. It is worth mentioning that other stud-
ies, such as [3] and [43], achieved their average precision by
using data from leads 1 and 2, as well as developing a fusion
step to make an accurate final decision, which dramatically
increased the computational time.
GAN can generate heartbeats that are similar to real ones

and significantly improve the results compared with the orig-
inal data and the other data augmentation techniques. The
advantages of the GAN can be summarized as follows:

1) It is an unsupervised method; GAN does not require the
data to be labeled and can be trained using unlabeled
data. However, as mentioned in this study, we trained
the GAN on the classes independently to be able to
precisely determine the label of each generated sample;

2) It can generate highly realistic heartbeats that are indis-
tinguishable from real ones;

3) It has the ability to learn the distribution of the data,
even if it is complicated; and

4) It can even be trained using a small number of samples.
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FIGURE 8. Confusion matrices for the classes in two-stage hierarchical approach (stage 2): (a) category N, (b) category S, (c) category V, (d) category Q.

However, GAN also has some limitations, which can be
summarized as follows:

1) The generated heartbeats are not as smooth as real ones;
a post-processing step using a smoothing filter needs to
be applied to enhance the quality of the heartbeats; and

2) It occasionally generates distortion samples. To
increase the precision of the results, outlier removal
should be utilized to remove these outliers before using
the generated samples.

V. CONCLUSION AND FUTURE WORK

The dynamic heartbeat segmentation technique was utilized
because it is invariant for the heart rate variability after fil-
tering the input signal to reduce noise. Thereafter, a novel
data augmentation technique was proposed for ECG data
using GAN to solve the imbalance problem in the MIT-BIH
arrhythmia dataset. Two deep learning approaches were used
to classify different heartbeats into 15 classes of theMIT-BIH
dataset. The end-to-end approach classifies the heartbeats in
a direct way, whereas the two-stage hierarchical approach
recognizes the category in the first stage and determines the
exact class that falls in that category in the second stage.
Adding synthetic heartbeats has impacted the minor

classes and increased their precision significantly. An overall
accuracy of 98.30% and precision of 90.0% are achieved
by the first approach. The second approach has achieved an
overall accuracy of 98.00% and precision of 93.95%, which
means that the deep CNNs succeeded in learning the most
important features automatically, without any handcrafted
features. The results are superior and have been achieved
using only the data of lead 1, unlike other existing studies,
which increase the computation significantly by utilizing data
from two leads and adding a fusion step to increase the
overall accuracy and average precision if considered. More-
over, we show that balancing the dataset by augmenting the

heartbeats using GAN achieved better results than augment-
ing using other common techniques.

The resources used in the experiments comprised a 1x
Tesla K80 GPU with 2,496 CUDA cores, and 12 GB of
GDDR5 VRAM. The training times were 47 minutes in
the end-to-end approach and 61 minutes in the two-stage
approach, while the testing times for classifying one heart-
beat were 0.104 milliseconds in the end-to-end approach and
0.262 milliseconds in the two-stage approach. This means
that classifying one 30-minute record of a patient, such as
record number 100, will take only 0.235 seconds in the end-
to-end approach and 0.590 seconds in the two-stage approach,
which proves that both approaches are highly efficient and
can be implemented in real-time monitoring systems.

The work in this study can be used in two clinical appli-
cations. The first usage is to deploy the models in real-time
lightweight wearable devices, as proposed in [59], using an
application program interface (API). The models can also be
deployed in real-time monitoring using ECG devices in the
hospitals. Our future work will develop different variants of
the GANs, apply different classification architectures, utilize
different sampling rates, and deploy the proposed models in
real-time monitoring and classification systems.
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