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Generalization of Equation of Collective Submanifold

—— A Theory of Large Amplitude Collective Motion
and Its Coupling with Intrinsic Degrees of Freedom ——
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A theory is proposed with the aim of describing large amplitude collective motion and its coupling with
intrinsic degrees of freedom. A canonical transformation is investigated in the full time-dependent
Hartree-Fock theory, i.e, in the classical image of boson expansion theory. With the aid of the transfor-
mation, the whole system is separated into collective and intrinsic degrees of freedom. Under the
condition of the unique separation, two types of equations of collective submanifold, which are canonically
invariant, are obtained. One is of the same form as that of the conventional equation of collective
submanifold. A principle of the specification of coordinate system is discussed.

§1. Introduction

One of the most fundamental problems in nuclear structure theory is to construct
theory, with the aid of which not only collective motion but also its coupling with intrinsic
degrees of freedom is described. If we restrict ourselves only to collective motion, there
exists a theory, which may be called theory of collective submanifold. A main business
in this theory is to solve the equation of collective submanifold. One of the present
authors (A.K.), together with Marumori, Maskawa and Sakata, proposed a concrete
method for solving the equation.” In spite'of this fact, it has been widely believed that the
equation cannot be solved uniquely, for example, as was stressed by Mukherjee and Pal.?
Recently, the present authors, together with lida, showed that the discussion concerning
the non-uniqueness is based on a certain misunderstanding of the equation of collective
submanifold and the solution exists uniquely.® In this sense, the theory of collective
submanifold is self-contained in the present form and a powerful method for the descrip-
tion of collective motion. _

However, if we include intrinsic degrees of freedom in the description, the situation
becomes different. In this case, the simplest approach may be the random phase approx-
imation (RPA). The RPA theory gives us the equation of collective submanifold in small
amplitude limit. Further, the degrees of freedom orthogonal to the collective one, which
we will call generally intrinsic degrees of freedom, are introduced in a natural way. In
RPA, fluctuations around the equilibrium point given by the static Hartree-Fock
(-Bogoliubov) method are taken into account in terms of linear effects. Therefore, RPA is
not applicable to large amplitude collective motion, in which non-linear effects of the
fluctuations are expected to be large. With the aim of making the basic idea of RPA
applicable to the collective motion with non-linear effects, boson expansion (BE) theory
has been developed. The typical example is the Holstein-Primakoff type representation.
The BE theory is a kind of quantum canonical theory constructed by boson operators or
their equivalent coordinate and momentum operators. As one of theoretical interests, we
can see that the c-number replacement of these operators leads us to full time-dependent
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Generalization of Equation of Collective Submanifold 753

Hartree:Bogoliubov or Hartree-Fock (TDHF) theory. This fact was first pointed out by
Marshalek and Holzwarth® and, on the basis of this fact, one of the present authors (M.Y.)
“and others made various analysis for the BE theory.”

On the other hand, by combining a Slater determinant with a certain kind of relations
which the present authors have called canonicity condition, the full TDHF theory can be
formulated in terms of canonical variables. An interesting point of this formulation is as
follows: If the Poisson brackets of the canonical variables are replaced with the com-
mutators, this classical theory becomes the Holstein-Primakoff type BE theory. This
investigation was initiated by the present authors‘” and the process is just the inverse of
Marshalek and Holzwarth’s idea.¥ The canon1c1ty condition was. orlgmally introduced
in Ref.1) and it enables us to formulate the full TDHF theory in the canonical form.
However, the TDHF theory leading us to the Holstein-Primakoff type BE theory is not
suitable for the adiabatic treatment of collective motion, i.e., the ATDHF approach.
Recently, the present authors also used a Slater determinant and a canonicity condition,
the forms of which are different from the case of the Holstein-Primakoff BE theory.” As
a result, another form of the full TDHF theory was obtained in the canonical form. - This
can be expected to be suitable for the ATDHF approach, because the time-reversal
property of the original fermion system can be treated properly, However, we have to
point out that any form of the full TDHF theory we have given contains a defect: There
does not exist any scheme in the theory, with the aid of which we can select collective

.degrees of freedom. Therefore, as a natural consequence, this theory does not contain
also a scheme which determines intrinsic degrees of freedom. For this reason, the BE
theory has been regarded as not so powerful method as expected at the beginning.

In this paper, we will plan a revival of the BE theory in the framework of classical
mechanics. The main aim is to demonstrate that, under a certain device, the BE theory
is powerful for the study of collective motion and its coupling with intrinsic degrees of

freedom. With the use of boson-coherent state, a classical image of the BE theory is -

obtained, i.e., the full TDHF theory in the canonical form. For simplicity, in this paper,
we deal with the case in which only one degree of freedom is attributed to collective
motion and the others to intrinsic ones. We imagine the following case: The collective
motion is of the large amplitude and the fluctuations of the intrinsic motions are small.
Under this imagination, we construct a canonical transformation expressed in terms of
power series expansion for all degrees of freedom except a certain one. Clearly, the
certain one corresponds to the collective degree of freedom. This transformation can
separate the whole system into the collective and the intrinsic degrees of freedom. It may
be self-evident that the separation should be uniquely performed. ' This requirement gives
us a set of differential equations, the forms of which are completely identical with the
conventional equations of collective submanifold.®’ In addition, we obtain another set of
differential equations, with the use of which coupling between the collective and the
intrinsic degrees of freedom can be described in the first order. ‘This is just a generaliza-
tion of the conventional equation of collective submanifold. We call the former and the
latter as the first and the second equations of collective submanifold. One: of the most
important properties of these equations is that they are canonically invariant, i.e. the
forms are .invariant under any canonical transformation for the collective variables.
This fact was first recongnized by -the present authors in the case of the first equation.”
Since the collective submanifold does not depend on the choice of its coordinate system,
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754 ' M. Yamamura and A. Kuriyama

the invariance is quite natural. However, in order to express the Hamiltonian in a
concrete form, it is necessary to fix a certain coordinate system. This fact gives us
various possibilities for expressing the Hamiltonian ‘in terms of- the collective and the
intrinsic variables. Then, if we succeed in solving the equation of collective submanifold
under a certain coordinate system, the collective motion and its coupling with the intrinsic
degrees of freedom can be descrlbed in the full TDHF theory, i.e, in the classical image
of the BE theory.

In §§: 2 and 3, a possible form of canonical transformation is investigated in terms of
power series expansion. In §4, we will obtain the equations of collective submanifold
under the condition of unique separation of the degrees of freedom into the collective and
the intrinsic ones. Section 5 will be devoted to proving the canonical invariance.
Finally, in §6, we will discuss specification of coordmate system Wlth some concluding
remarks.

§2. Classical image of many-fermion syStem

Let us consider a many-fermion system which is mapped into a boson space spanned
by the boson operators B, and B,*(r=1, 2, -, N). A typical example can be found in the
Holstein-Primakoff type BE theory. Another one ‘has been presented by the present
authors with the aim of applymg to the ATDHF approach.,” In these cases, B-(B.*) i is
constructed by replacing fermlon -pair or particle-hole annihilation operator with boson
It is well known that a coherent state |c> defined in Eq. (2-1) gives us a classical image
of many-fermion system in terms of canonical form. The 1mage is the so- called full
TDHF theory. The coherent state |c> is defined by

le>=exp[iU]-exp[iU10>,  (BA0>=0) (2-1)
, .
U:.Wo_—z“gl(Q‘roPro_QT()pro)y
Wo= Wo(Qloplo‘.v"(INoPNo), » ) (2-1a)
ﬁzgl(QrPrO_Qroﬁr).
Here, Q- and P; are given, by .
Q-=(B*+B,)/v2, Pr=i(B,—B.,)/V2.  (2-1b)

The factor exp[z Ul is a phase, which we will give the meamng, later. Clearly, Q- and R

satisfy v .
<c,|Q,|c>= Q°, <(dPlo=P°. (2-2)

The relations (2-2) tell us that @, and P,° are the classical images of the operators Q-
and P;, respectively. Therefore, if Q,° and P,° can be regarded -as dynamical variables
in classical mechanics, they are canonical. With the use of @,° and P,°, we can construct
a canonical form of full TDHF theory. As was mentioned in §1, this fact was first pointed
out by Marshalek and Holzwarth.? -However, the canonical form constructed by the
variables @,° and P,° is generally not suitable for our present aim, because it is not
expressed explicitly in terms of collective and intrinsic variables. Then, we have to
investigate a canonical transformation of @, and P,° to the variables suitable for our
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Generalization of Equation of Collective Submanifold 755

present aim. The phase factor exp[iU] enables us to find the transformation. The
symbols ¢,° and p,°(r=1, 2, -, N') denote canonical variables obtalned from Q,° and P,°
by a canonical transformatlon

Let us find the transformation from (Q,%, P;°) to (¢.°, p,°). For this aim, we
introduce the following set of the relations, which we have called canonicity condition:

<Clza/GQro|C>=pro/2 , } (2.3)
<Cl_ia/aj)rolc>24ro/2 .
The straightforward calculation of Eqgs. (2-3) gives us
& p00Qs" oWt _
g aq GQTO b, (2'33)
$p 29Qs° W _,
&0 7 opsS apsS

As is well known i in analytical dynamics, the relation (2-3a) supports that ¢.° and p,° (»
=1, 2, -, N') are certainly canonical if Q,° and P,° (= 1,2, -+, N) are canonical. In the
case of many-boson system, we can start directly from the relatiOn (2-3a). In order to
stress the parallel relation between the original fermion and the boson system, we started
from the condition (2-3). In the case of the Slater determinant, the canonicity condition
(2-3) is essential for obtaining a classical form of the full TDHF theory as a classical
image of the BE theory.” If W is specified in one form for the varlables @ 0910 gn’pn°,
one type of the canonical transformation is fixed.

Our final aim is to solve Eqgs. (2:-3a), ie., to obtain Q.° and P;° as functions of
@:"p1°-qn°pn°. In order to get a possible method for the solution, first, we will rewrite
Egs. (2-3a) to slightly different forms. For rewriting, we consider the following
canonical transformation from (g.°, p,°) to (g, p+):

{410241, a {CINOZCH‘QN,

: 2-4
pO=pe; (I=1,2, + N=1)  lps=rtpy. 24)

Here, @ and r are arbitrary real numbers and, for a moment, they play a role of
parameters. Then, one-step canonical transformation from (Q-°, P.°) to (g, p-) can be
given by the following relations:

oaQs - W(arr)
2l‘l)s aQr aQT

oaQs . aw(an)_
EP s opr or

(2-5)

Here, W™ is a function of gip:*-gnpn defined by

W(wr): W(an)(qlpl...quN)
=Wqipr - qn-1Dn- 1@ V‘anm+d8)+ mgN (2-6)
Let us suppose that we have the solutions of Egs. (2-3a) in the followmg forms:

Q=0 H@:°D:% an’pn°), }

2:7
P°=2 (q:.°p:% - qx’pn). ( )
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756 - M. Yamamura and A. Kuriyama

On the other hand, let us denote the solutions of Egs. (2:5) as

Q=0 (qupr-qnpn), . }

2-8
P =2, “(qip1+qupw). ( )

~ The arguments of the functions (Q,, ;) and (Q /", @) are connected with each
other through the relations (2:4). Therefore, we have

QAaqiprvguapvr1a+avn+pn)=40 r(mt)(QIpl'"QN—le—IQNpN), } (2-9)
P au-1bnv-1@+ g+ pa)= g’r(mt)(QIDI'"QN—le—l,QNpN). ‘
By putting g~ and p~ equal to zero, we get the following relations:
O (giprgu-1bn-ram)=0 r(a”)((lli)l“"QN—lﬁ&_-100 ), } (2-10)
P A @riprav-rpn—r1ar) =P (qip1* gn-1x-100).

The relations (2-10) tell us two important facts. First, if we regard a and r as
dynamical variables, QA qiprar) and PAq:pr-an) are the solutions of Egs. (2-3a)
under the correspondence

‘ {Qt°=llz', {(INOZG’-,

2-11
p*=pr; (I=1,2,--, N—1)" pl=r. ( )

Cléarly, a and 71 are canonical. Second, by putting ¢~ and p~ equal to zero in the
solutions of Eqgs. (2-5), we can obtain the solutions of Eqs.(2-3a) under the correspondence
(2-11). Thus, Q,° and P;° are expressed as

Q"= Q (q1pr"an-1Dx-1aT)
=0, “(g1p1***qn-1D~-100),

P =P q1p1- an-1Dn-127)
=P, " (g1 gn-10n-100).

(2-12)

We can see that the problem is reduced to solving Eqs. (2:5).
§3. Canonical transformation to collective and intrinsic variables

Let us start from solving Eqgs. (2:5).  We will give explicit forms of Q,“%
(@11 *+qwpw) and L “(g1p1--gupn) shown in Egs. (2-8) in terms of power series expan-
sion for ¢- and p(»=1, 2, -, N):

QA =Q.(an)+ Q, an)+ Q- P an )+, (3-1a)

PP =Parx )+ P ar)+ PP (an )+ . ' ‘ (3-1b).
Further, we expand W@ in the form | |

Wen=W(ar)+ WP ax)+ WP(an )+ . (3:1c)

Here, Q-(ar), P-(ar) and W (ar) denote the zero-th order terms and the indices (1), (2),
etc. mean linear, quadratic, etc. for ¢- and p. The coefficients of the expansions may be
functions of the parameters @ and 7. In this paper, we will show the results calculated
explicitly up to the quadratic order. For a moment, we will omit the symbol (ar)
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Generalization of Egquation of Collective Submanifold 757

appearing in the expansions (3-1). . :
Substituting the expansions (3-1) into Egs. (2:5), we pick up the zero-th order terms
from both the sides:

N QMWW

PR TR e }
Yo 3QsY  aww _

s=1Ps apr apr _0.

Since Ps does not depend on ¢, and p- and W is linear for them, W is uniquely given
as

(3-2)

W(l)(aﬂ)ngrQr(l) - (3'3)

The linear parts of Egs. (2+5) become

o) ' @ @
iv}(Ps aQs } f)s(l)aézs )_ oW =pr,
s=1 aQT 341- 34r (3.4)
@ o)) @
§<Ps 0Qs + P, 0Qs )_ oW =0.
§=1 apr . apr apr
The above equations are rewritten as
N ( )aQs(l) aW(z) _ :
SEIPSI aqT GQr —pr, (3.5)
3 p0QY  W® _ |
§=1 s apr apr ’
where W@ is defined by
W(ar)=31P,Q, "+ W, ~ (3-6)
Eliminating W® from Eqs.‘(3-5), we have
2( Q" PV 9Q,Y aPr“»’)_
T\ 0gs 0D ope dgs /%
Q.Y P _ 9Q:M P\ _ o ! )
(-0 =0, 3-7)
Q" aP,Y  9Q,® P,V _
(P OO )=o.
Solution of Egs. (3:7) is given as follows:
’ N
: Qr(l)(aﬂ):sz_:l(ArsKIs‘!‘ Crsps),
v ‘ (3-8)

N
Pr(l)(d/ﬂ'):sgl(BTSCIs",‘Drsps).

In the 2N -dimensional vector form, it is expressed as

[pol=sli} =[5 2} @52

The 2N X2N matrix S is symplectic: -
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758 , M.- Yamamura and A. Kuriyvama .

sys=r, 7= | . (39)

Here, the symbol T denotes the operation of transpose; 0 and 1 in J . are the N X N null

and the N X N unit matrix, respectively. Interms of the N X N matrices 4, B, C and D,
the relation (3-9a) can be expressed as

A"D-B’C=1, D"A-C'B=1, | | (3-9b)
A?B—BTAZO , DV‘TC—C?DZO .
The inverse relations are as follows:

SJST™=7J, o (3-10a)

ADT—CB"=1, DAT™—-BC™=1, }
-1
AC*—CA™=0, DBT—BD'=0. (3-10b)
By the use of Egs. (3+5) with the solution (3-8), W® is obtained in the form
W@’(cm):%zr:(Q,“’Pr‘”—qrpr). : (3-11)

Our next task is to obtain @,® and P,¥. The quadratic pérts of Egs. (2+5) are

J aQs(s)n (1)aQs(z)L (z)aQs(l))_ ow®
sz=:1<P ag. s 0q- +Pe ar .

b

(3-12)
N 9Qs® | o 0,0Qs? | o aQs“’)_ oW®
sgl(Ps o, T R A TS b, 0
The above equation can be rewritten as ‘
%(Ps(l) a§3(2) f Ps(Z) ags(l)>_ ag"_/(s) :O
$§=1 qdr qr dr ’ .
: s 3-13
iv: <P 0.0Q:? L p@ QW >_ OW® o ( )
§=1 s 31)7 s 31)1 apr ’
W (an)=3Pr0, "+ W®. ‘ (3-14)
Eliminating W® from Egs. (3-13), we have - ’
2( aQr(z) aPr(l) 3Qr(z) apr(l) I aQr(l) aP,‘Z’ aQr(l) aPr(z)):
7\ 0gs  Ob: op: - 0gs 0qs b op: . 0gs ! !
aQr(z) apr(l) aQr(z) aPr(l) . aQr(l) aPT(z) 3Qr(l) aPr(z) _ ‘-
21( ogs.  0q: dq: dqs = dgs  0q: og: - 0gs ) =0, (3-15)
0Q,® P, 9Q.® P/ | 3Q,Y 9P?  3Q.,P P, @\ _
2\ s b b be T dbe b b dbe )0
Equations (3-15) lead us to the relations |
@ @ @ @ @ @
K7 Ul e Ul e ] 16)

Here, ¢.* and p,® are defined in the 2N-dimensional vector form:
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Generalization of Equation of Collective Submanifold 759
Qo a1
[P(Z)] = S[p(z)]' (3 ° 17)

The matrix S is the same as that gi\}en in Eqgs. (3-8). The solution of Eqgs. (3:16) is
generally obtained by the use of function @: '

0 . 00
@_ @__ 00 .
aro="p, s br oar (3-18)
Since ¢, and p.® are quadratic, @ should be cubic:
N , v
o :LrstZil(A rstqrdsq:+3Brs qrqsh: +3C‘r,stq_rpspt +DrseprDshs). (3-19)

Here, Ars:, Brs,:, Cr,st and D»s: have the following symmetry properties:

Arst:Arts:Astr:Asrt:Atrs:Atsr ,

Brs,t:Bsr,t s Cr,st: Cr,ts , (3'20)
Drst:Drts:Dstr:Dsrt:Dtrs:.Dtsr. ‘

Then, substituting @ given in Eq. (3-19) into Egs. (3-18), we get

N
QT(Z)=%s‘tz=-1(Bts,er4s‘+ZCt,Sthps+Dtsrptp3)’

Lx : (3-21)
pr(” = 7‘”2:1(14 rstdsds+ 2Brs,t£]sﬁf + Cr,stp sht )
Therefore, @,? and P-® are given in the following forms:
N
Qr(z)( an ) =%s§1 [g (A rrBst,rr— CrrArst )Qth

+ 2;(14 rr’ C:s,tr’ - Crr'Br’s,t )dspt

+ ;(A rr'Dstr’ - Crr' Cr',si )P spi],
> (3-22)

N .
Pr(z)( an ) - %le:l [g (Brr’Bst,r’_ DA r’st)QS‘Qt
+ 2; (Brrf Csir—DrrBrs: )CIsP t
+ ; (Brr’Dstr’ - .D rr’ Cr’,st )P spt]-

The above is a formal solution of Egs. (2:5) calculated up to the quadratic order.

The expressions (3-1) mean the Tayler expansion of O “® and @ ,“™ for qip.* - qndn
around ¢g=p=0. As can be seen in Egs. (2:9), 0-“® and ?,“® are functions of
@11 gn-1pn-1 and @ +gw, 7+pn. Therefore, the derivatives of Q" and £, related
with g~ and p~ can be replaced with those for @ and 7, respectively. This means that
certain parts of the coefficients in the expansions (3-1) are replaced with the derivatives
for @ and 7. The replacements are explicitly given as follows:

Q- _op, _ 09, _ 0P, | .
Am="54" Bmw=T5,% Cw="5.% Dm="5", (3-23)
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760 - M. Yamamura and A. Kurivama

SN AnBroe— Crila)=4r

’ Et(BﬂBNs,t_DrtAstN):%s_

Zt(ATtCN,ts CrtBNts)_ (i;s

SH(BrCria— DB )=2Drs

b

24 (3-24)
Z(ArtcstN CrtBst,N)_Vrs,
Zt(BrtCs,tN_DrtBst,N)z 9B s
Crs :
E(ArtDNts CrtCt sN)—_”_,
DTS
E(BrtDNts DﬂCt SN)_ aﬂ_ H J
The inverse relations of Eqgs. (3:24) are
Aves _( proA 3A AT GB)
BNst—<BTaC AT&D) ‘
’ , (3-25a)
=(DT dA _cr9B. GB)
tS
Cus :(D,ac CT3D> |
Bst,N:(BT 0A _pr9B GB)
Ce m=<BT oC _ 419D aD)
(3:25b)
=(DT 0A CT oB )
tS
Dsth(DT oC _crdD GD)

With the aid of the relations (3+23), the (N, N )-elements in the matrix relations (3- 9b) are
reduced to

3Q:r oP. _ 3Q, oP,\ .
(%2 or aav)"l' (3-26)
Also, the (N, I)-elements are as follows:
Z(Drl aQT - Crl aPT)ZO , 2<Drl aQ Crl aPr>:0 , :
T oa ot or '/ (3-27)

Z(Bnaa% — 4,9 )=, zr:(B,laa?[’—Arl%f[’);o,r
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Generalization of Equation of Collective Submanifold 761

where / runs from 1 to N —L The (m,,n)-elements are not related with 0Q./da, etc;

(ATD_BTC)mniam;z, (DTA_’CTB)mﬁ:é\mn, }
(ATB_BTA)mn?O, : (DTC'_CTD)ngO.

Am, n=1, 2, -, N—1)

(3-28)

Afterward, we will see that the above three relations (3-26), (3-27) and (3-28) are basic
in our treatment. ‘

Thus, in the framework of the expansions up tothe quadratic order, the solutions of
Eqs. (2-3a) are formally given by

Q= Qar)+ @Y arx)+ §. P ar), } (3-29)
P,* =Pr(ar)+ P/ (an)+ Pr®(an),
—~ N-— .
Qr(l)(aﬁ): El(ArZQL+ Cnl)z), ' v .
} (3-29a)
Prm(a/il')_ P (Brl(Il+Drlpl)
ér(z)(aﬂ ):%:gl [g(A rsan,s_ CrsAsmn )QmCIn
+ 2?(14 rsCm,ns - CrsBsm,n )Qmpn
+ 2 (A rstns - CrsCs,mn )pmpn],
_ 1n S ¢ (3:29b)
Pr(z)(dﬂ')__ [E(Brsans DrsAsmn)Qm(In
+ ng(BrsCm,ns —DrsBsun )(Impn
+ g (Brs.Dmns - DrsCs,mn )pmpn]

Needless to say, we obtained the above results by putting gv=p~=0 in Egs. (3-8) and
(3-22). It should be noted that at the present stage the parameters @ and n are regarded
as dynamical variables. The function W° is given as '

Wo= W (ax)+ W ax)+ W ar), | (3-30)
W ar)= glPr(mr )Q Y ar), ‘ ’ ' (3-30a)
W (ar)= 3 Prlam) @2 (am)+1( 2 G- an) P an) - S aw).  (3:30b)

The equations for W(ar) will be shown explicitly in Eqgs. (6-5). As was already
mentioned, our system is treated with the use of the canonical variables (ar) and (g:p::
[=1,2, -, N—1). In this treatment, one degree of freedom described by @ and 7 is clearly
discriminated from the others, because the expansion in terms of @ and 7 is not performed.
Therefore, the canonical transformation (3-29) is applicable to the system in which one
degree of freedom is of large amplitude and the remaining are of small ones. In this
sense, we can expect that the variables ¢ and 7 are for collective motion and intrinsic
degrees of freedom are described by the variables ¢: and p. (I=1, 2, -, N—1).
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762 M. Yamamura and A. Kuriyama

§4 Unique separation of the whole system into collective
and intrinsic degrees of freedom

We showed that many-fermion system is treated classically in terms of two types of
the degrees of freedom. The separation into the two gives us the expectation that the
variables @ and 7 are for collective motion and the others can be related with the intrinsic
degrees of freedom. However, it should be performed uniquely. If it depends on the
adopted coordinate system, the concept of the collective and the intrinsic degrees of
freedom becomes meaningless or the principle of which coordinate system should be
adopted must be given. In this section, we will give the conditions for the unique
separation and show that they lead us to a generahzatlon of equation of collective
submanifold.

Let us investigate the problem above in the framework of the Hamiltonian approx-
imated up to the quadratic order for ¢; and p. (I= 1,2, -, N—1). This approximation

is consistent with the expansions of Q,°, P;° and W° shown in Egs. (3:29) and (3-30) and -

it may be valid if the intrinsic motions are of the small amplitudes. However, there does
not exist any restriction in the amplitude of the collective degrees of freedom. In this
sense, the approximation is applicable to the large amplitude collective motion. The
Hamiltonian H° is a function of Q,* and P,° (r=1, 2, .-, N )

H°=H(Q°, P )=H"(Q+ QY+ Q®, p+ PV p®@), (4-1)

First, we expand H® in terms of ¢; and p, (/=1, 2, -, N—1) in the following form:

H'=H+ A+ B4 g® o (4-2)
H=H%Q, P), | - @3
A9=3 (2. g0+ 8. po), | (4-42)
Ao=3(2. g I po), | (4-4b)
H(Z)Z_TSN1< agigg Qr(1>és<1>+a%l?}é_s.ﬁru)ﬁs(n :

250 g 0B) | (:5)

Our startlng point is the followmg requ1rement H®Y and H® should vanish for any values
of ¢: and p; (=1, 2, ---, N—1), that is,

=1

A®= 2( S0 QO+ ag - B)=0. (4-6b)
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Generalization of Equation of Collective Submanifold 763

Let two coordinate systems (ax, ¢: p.) and (a'x’, ¢."p."), which obey the conditions (4-6a)
and (4-6b), exist. We can see from the condltlons (4 6) that both the coordinate systems
should be connected as

@'l [f(ax)]  [higher than the quadratic
7 ]
T g(ar)l Lfor g and p
[q:]: S[q] +[h1gher than the quadratlc] ( 4'. 7b)
P P for ¢ and p
Here, f(ar) and g(ar) are any functions of @ and 7 which obey
9of 99 9f dg_ .8
oa or o aa/—l' (4-8)
The symbol s denotes 2(N —1)X 2(N'—1) matrix with the properties
Tre— 0s _ 0s _ .
s'Js=7J, aa,—aﬂ_—O. (4-9)

The terms, which are higher than the quadratic for ¢ and p, do not give any change in the
Hamiltonian H° in the quadratic order (H°=H+H®). Therefore, in our present
approximation, we are not necessary to take into account the higher than the quadratic
terms:

[Z]=[§EZZ;] | - (4-10a)
[Z:]= s[ﬂ. ) | (4-10b)

The properties (4-8) and (4:9) tell us that the transformations (4:10) are canonical. The
both degrees of freedom are independently transformed.  This means that the separation
is uniquely performed. In this sense, the requirement shown in Egs. (4+6) is the condition
for the unique separation. It should be noted that the condition is valid in the framework
of the quadratic approximation.

Now, let us investigate the condition (4-6a). The term H™ given in Eq. (4+4a) can
be written as '

H‘l)-ﬁ:[z:(An gg +B oL gg) L+2(cn gg +D. 05 )5, (4-11)

I=1L7r=1

Here, we used Eqgs. (3:29a). Then, the condition (4-6a) gives us

oH OH
T:l(A” 30, +B"aP,) 0,

f:(cn gg +Dn gg) 0.

=1

(I=1,2, -, N—1) (4-12)
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764 M. Yamamura and A. Kuriyama

The (I, N)-elements (/=1, 2, -, N—1) in the matrices (3-9b) are explicitly given by

N
Z[ArlDrN'i‘Brl(_CrN)]:O, C ;
N » (4-13a)
EI[ATLBTN+BTL(_A1N)]:-O ,
. N ’
El[CrLDrN""Drl(_CrN)]:O ,
N . (4-13b)
2 [CrLBrN+DrL(—ArN)]:O . .

Therefore combining Egs. (4-12) with Eqgs. (4-13), we obtain the followmg linear combi-

natlons

AaDrN—A,,Bng%,

_AaCrN‘F/]nArN:g% .

(4-14)

Here, A+ and Az are, at the present stage any functlon of a and z. Noticing the relations
(3:23), we have

9Pr_, OP._ oH
“or " oda 0Qr’ (4-15)
Qr aQr . aH :
Aa 87[ +An’ - aPT .

The above is just well-known equation of collective submanifold. In this way, we could
prepare Eqgs. (4 15) and (3-26) for determining Q- and P, as functions of @ and 7. Later,
we will give equations to determine linear dependence for the variables ¢; and 9, i.e., @,

and P,%. In this sense, we call the set of Egs. (4-15) the first equation of collective
submanifold.

Next, we will investigate the condltlon (4-6b). Substituting dH/9Q, and 6H/oP,
given in Eqgs. (4-15) into Eq. (4-4b), we have

HO=14" z(ap . -8 pm)

e z(an o %P - Qrm). (4-16)

1

The above H® is quadratic for g;'and p; (=1, 2, ---, N —1) and the condition (4-6b) leads
us to the relations » '
/la.an,N_/LrANmn:O , »
AaCm,nN—/leNm,n:O , ‘ ] : . (4'17)
/laDmnN—/lnCN,mn:() .

Substituting Avmn etc. given by Eqgs. (3-25) into Egs. (4-17), we can get
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Generalization of Equation of Collective Submanifold 765

L e R (B i o

4-18
0A 0A oB oB ( )

:_BT<,1a.W—An'W>fAT</1a'—ﬁ—/in'—£>]mn:0 ,

[~ B7(Ae-9E— 295 )+ A(40- 22— 309D ) ] =0

(m, n=1,2, -, N—1)

Thus, we could prepare Egs. (4-18) and (3+27) in order to determine A, Br, Cr and D~
for [=1, 2, -=-, N—1. If we determine these quantities as functions of @ and 7, @,* and
P/ can be fixed. We called the set of Eqs. (4-15) the first equation of collective
submanifold. In a similar meaning, we call the set of Egs. (4-18) the second equation of
collective submanifold. We should note that we have no equations for Aimn etc.
However, as far as the Hamiltonian in the quadratic approximation (H°=H+ H®) is
concerned, it is not necessary to determine A:»» etc. Thus, we could generalize equation
of collective submanifold which has been widely investigated. With the aid of the
generalization, we can treat coupling between collective and intrinsic degrees of freedom
in the first order.

§5. Canonieal invariance of equations of collective submanifold

In §4, we have prepared the basic equations for determining Q», Pr, An, B, Cr and
Dy (1=1, 2, ==+, N—1). Then, our problem is reduced to solving the equations. In this
section, we will discuss some general properties, especially, canonical invariance of the
equations of collective submanifold, which will help us to solve the equations.

First, we note that A, and A, in Eqgs. (4-15) and (4-18) can be expressed as

oH

_ _oH
T da’

T om

-/Ia /11[ (5'1)

This can be proved with the help of Eqgs. (4:3) and (4:15) with Eq. (3:26). = Then, the first
equation, together with Eq. (3-26), can be rewritten as -

oP;
(aH ﬁ)] oa _0H
oa’ or oP: Q- "’
or o '
90, (5-2)
(o, ol de o
oa’ or oP; oP;’

or
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766 M. Yamamura and A. Kuriyama

N aQr aQr aa/ — : .
g( da " ar )f op, | Tt | (5-3)
on
Here, J is the 2X2 matrix given by
| 0 1 ~
7=(_] o) (5-4)

Since the transformation (4-10a) is canonical, the following 2 X2 matrix is symplectic:

aa', aa,
s=| & 1 svs=s. (55)
da’ o’
Then, we have
] o1
ag =S 8;1/ o | -~ (5°6)

o’ o

With the use of the relation (5-6) with Eqs. (5-5), we can prove that Eqs. (5-2) and (5+3)
are invariant under the transformation (4:10a). Therefore, we can see an important fact:
In the framework of Egs. (5-2) and (5-3), we cannot specify. the collective coordinate.
Hence, we cannot solve Egs. (5-2) and (5-3).  Some additional conditions are necessary.
This fact has been already stressed by the present authors.”

Our next task is to prove canonical invariance of the second equatlons (4-18), together
with Eqgs. (3:27). This case is rather tedious. First, we introduce the 2N X2(N—1)
matrix S defined in the vector form of the linear combinations (3:29a):

K R R I
[ 5o =s[s] sl o) | (5-7)
The above relations (5-7) should not be confused with Eqs (3-8a). The properties of S

are as follows;

~ DT —(CT ~ ~ — .
S‘1=[_BT jT], $§.5=1, §-$'=r. (5-8)

Clearly, S is the 2(N — 1)>< 2N matrix. The symbol I" denotes the 2N X 2N idempotent
matrix, which satisfies

r:=r, TrlI'l=2(N-1). (5-9)

The element is given as
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Generalization of Equation of Collective Subwanifold 767

(K L o . .
P—[M KT]’ (L™= L, M*==M) (5-10)
) ,
s _[0Qr 0Qr oa .
Krs—ars ( aa 87[ >] aPs 5 (5 108.)
on
0Qs
_ _[(0Q: 3Q- oa , .
Lrs= ( da orn )J Qs |’ ' (5-10b)
) or
oPs
__(aPy 3P,\,| Oa .
' or ‘

In the same way as in the previous case, we can prove that F is canonically ihvariant:
r'=r.  (5e1D)
With the use of the matrix S, Egs. (4-18) can be rewritten as .
S-tA=0, (5-12)

where A is given by
GA_, 8A , 3 , o
A: Aa'% /]7[ aa /1a 871’ /17: aa (5-12)
3B, 0B D ., oD | el

Acor A e A or T on

The matrix A is of the form 2N X2(N —1). In the same way as in the previous case, A
can be proved to be canonically invariant:

AN=A. (5-13)

Under the above preparation, we can prove that if S™'-A=0, then S'*+A’=0 in the
following procedure: :

SN =8 N=8"T-A=5"'85"A
=518x 514 | (5-14)

Next, we consider Egs. (3-27). These can be expressed as

S A0,=0, ' (5-15)

9 0Q
| oa orm
Ao= aP  oP

, : (5-15a)

da or
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768 : M. Yamamura and A. Kuriyama

where Ao is 2N X2 matrix. This matrix satisfies
Ad=A,. (5-16)
Then, we can prove that if S'-A1,=0, then S$"'- /Ay =0 in the following way:

§,_1'Ao,:§/_1P"Ao,=§/_1F'Ao
=§185 A,
—§Sx§ A (5:17)

Thus, we could prove that Egs. (3-27) are canonically invariant under the transformation
(4-10a).

The transformation (4-10b) is also interesting. Clearly, Eqs. (5-2) and (5:3) are
invariant, because they have no connection with the transformation (4-10b). Then, let us
investigate Eqgs. (5-12) and (5-15). With the use of the matrix S in the transformation
(4-10b), the relation (5-7) can be given by

(@) e

Therefore, we have
S"t=s-S7. | - (5:19)
The matrix A given in Eq. (5-12a) is transformed as
| A=At (5-20)
With the use of Egs. (5:19) and (5-20), we have |
§7 A" =sx S AxsT=0. (5-21)
The matrix Ao given in Eq. (5-15a) is invariant:
A=A o (5-22)
.Therefore, we have .
$" Ay =s XS Ng=0.. | | (5-23)

‘The relations (5-21) and (5-23) tell us that Egs. (5-12) and (5-15) are invariant under the
transformation (4-10b). Therefore, in the framework of Egs. (5-12) and (5-15), we
cannot specify intrinsic coordinate system, even if collective coordinate system is fixed.
This means that some additional conditions may be also necessary.

Finally, we will give an important remark concerning Egs. (3-28) Wthh up to the
present stage, we have not made contact with: A possible solution of Egs. (4-18) satisfies

Egs. (3-28). Summlng the first equation and the transposed of the fourth in Eqgs. (4-18),
we can obtain

OH 3 _0H 9\iprs_ rrmy —n .
(aa ar on aa)(DTA -C B)nn=0. (5-24)
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Generalization of Equation of Collective Submanifold 769

General solution of the above partial differential equation is a function of @ and r through
arbitrary function of H. Therefore, as a possible solution, we can choose (DA—C™B)nmn
=0mn. The other cases are also treated in the way similar to the above case.

§6. Specification of coordinate system

In the previous section, we have shown that the equations of collective submanifold
are canonically invariant. This fact is quite natural, because the collective submanifold
does not depend on the choice of its coordinate system. - However, it is necessary to fix the
coordinate systeni in one form in order to express the Hamiltonian in a concrete form.
The main aim of this section is to discuss this problem.

First, we note H given in Eq. (4-3). This is a function of only ¢ and n through
Q-(ar) and P,(ar). Therefore, we can call H the collective Hamiltonian and, hereafter,
we denote it as Hcon.' Our important task is to obtain Heon concretely. Practically, we
have to obtain it successively from the lower order to the higher in the form of the power
series expansion. Needless to say, we have to stop the expansion at a finite order. As
for the expansion, we know the following two forms:

Hoow=1%/ 2My+ Kt/ 2+ knan+ 3 3} '™, (6°1)
Hen=V(a)+ 1%/ 2M(2)+ B har" . (6-2)

Clearly, the expression (6-1) is based on the Taylor expansion for the two variables @ and
7. The expression (6-2) is written down as the Taylor expansion for only 7. Therefore,
the coeficients depend on @. In principle, there exists third possibility, i.e., the expansion
in terms of @.- However, physically, the third is not so interesting as the other two cases
and we will not discuss this one. In the above expansions, we assumed that Heon is
stationary at the point @=7=0. Let us investigate the structures of the expansions (6-1)
and (6-2) from the viewpoint of canonical transformation. As was already mentioned,
we have to stop the expansion at a finite power. Therefore, it is undesirable that the
power, at which the expansion stops, changes if we view from another coordinate system.
The expansion (6:1) does not change the power of @ and # (a'z™ ") under the symplectic
transformatlon

7

[Z]=[Z ;][i] (ad—bc=1) (63

where a, b, ¢ and d are constants. On the other hand, the expansion (6-2) does not
change the power of 7 (7”) under the point transformation:

a’'=f(a), n=nr %, - (6;4)

where f(@) is an arbitrary function of . From the above argumient, it may be interesting
to find methods, which are suitable for the two forms above, for solving the equations of
collective submanifold.

. Under the above preparation, let us investigate the first equation. The equation is
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770 M. Yamamura and A. Kurivama

canonically invariant and, then, some additional conditions are necessary in order to fix
the collective coordinate system. With the aim of finding the conditions, we introduce the

following relations:

T oa da T

Q. oW _
EPT aﬂ_ 87[ _0.

(6-5)

The above relations come from the zero-th order of Eqgs. (2-3a) for ¢; and p, (=1, 2, ---,
N—1). Of course, we used the correspondence (2-11). It is interesting to see that the
relations (6-5) are reduced to Eq. (3-26) if W is eliminated. However, the inverse does
not hold. This means that once W is fixed in one form, the resultant form is not always
invariant for any canonical transformation. Therefore, we can fix a certain collective

coordinate system by choosing a proper form of W a priori. Let W be of the followmg
form: : ; i

W=i(SQ.Pr—ar). | (6-6)

Then, thé relations (6-5) are reduced to
(P2 Lr)=y,
o022,

We can prove that the relations (6- 7) are invariant under the symplectlc transformation
(6+3). Therefore, if we obtain Heon in the form (6-1), we should start from the relations
(6-7). However, there still exists one ambiguity; the choice of the constants a, b, ¢ and
d (the three are free) in the transformation (6:3). In order to fix the ambiguity, we give
the additional condition for the Hamiltonian (6+1):

(6:7)

My=1, Kn= Qu, fn=0. (6°8)

Here, Qv is a certain real number given later. Next, we consider the case .
W=0. (6-9)

In this case, the relations (6:5) become

aQr an J— .
ZPT 20 = 2P -=0. | (6-10)

The above relations are still invariant under the point transformation (6-4). Therefore,
if we obtain Heon given in Eq. (6-2), the condition (6+9) should be adopted. Here, there
exists an ambiguity; the choice of f(@) in the point transformation (6+4). In order to fix
the ambiguity, we give the following additional condition in the Hamiltonian (6-2):

M(a)=1. ' Co (6-11)

Thus, for the first equation of collective submanifold, we could prepare the conditions
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Generalization of Equation of Collective Submanifold 771

(6-7) and (6-8) for the symplectic transformation and the conditions (6+10) and (6-11) for
the point transformation. Both are suitable for Hcon given by Eqgs. (6-1) and (6:2),
respectively.

As was already discussed, the second equation of collective submanifold is invariant
under the symplectic transformation (4-10b) in addition to the same canonical invariance
as that for the first equation. Therefore, even if the collective coordinate system is fixed,
there still exists ambiguity for the intrinsic coordinate system. In order to fix the
coordinate system, let us consider H® given in Eq. (4-5). With the use of Eqgs. (3-29a),
H® can be written down as

N-— .
H(Z):%mgl[umn(aﬂ' )pmpn+ Umn(a'ﬂ' )QmCIn+2Wmn(a’7T )(Im.bn]. (6'12)

. This can be decomposed into

H(Z):I{intr+Hcoupl, (6’13)
N—-1
}Lntr:%mgil[umn(()())bmﬁn‘l‘ 0mn(00)4m(1n+2wmn(00)4mpm], (6‘ 133)

N~-1
Hcoum:%mnzzl[{umn(aﬂ')— umn(oo)}pmpn

+ {?)mn(a’”)_ vmn(OO)}Qan+2{u)mn(a’7[)_Wmn(OO)}qmpn]. : (6‘13b)

-~ The above Hinr is invariant under the symplecﬁc transformation (4:10b). Therefore,
there exists one ambiguity: The 2(N —1)2+ (N —1) parameters are free. Then, we set up
the following conditions for fixing the intrinsic coordinate system:

umn(oo)zamn, Umn(OO):Qnamn, Wmn(OO)ZO (6'14)
(m, n=1,2, -, N—1)

Therefore, Hinir can be expressed as.
1 N—-1
H}ntrzfgl(pn.z‘i‘gnan). (6'15)

Here, £, are certain real numbers, which will be given later. The reason why we used
the indices, intr and coupl, may be self-evident. Thus, with the use of the conditions
(6-14), we can solve the second equation. )

The equations of collective submanifold are partial differential equations. There-
fore, for solving them, the boundary conditions are necessary. As for the conditions, we
consider the small amplitude limit. We adopt the following Hamiltonian approximated
in the bilinear form of @,° and P,

"N
H °:%r§1( UrsP P+ Vis@:°Qs0). (6-16)

On the other hand, Heon may be given by
Hcou=7l'2/2+.QNa'2/2. ) (6‘17)
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Then, the first equation can be written as

..QNG"% "‘(’&_2 Vrst s
’ (6-18)
099 . 0Qr _ _
na o +r- Ja —g,UrsPs.

The above equation is reduced to the following, together with Egs. (6-7) and (6-10):
«QNﬂbr:zs: Vrs¢s ,

br=3Ureds, - (6:19)
S, =1, o (6-20)

Here, ¢- and ¢, are given by
Q- =¢ra, Pr=¢rr. (6-21)

It should be noted that Eqgs. (6-7) and (6-10) are reduced to the common relation (6-20).
Equation (6-19) is nothing but the equation of RPA and Eq. (6-20) is the normalization
condition for the amplitudes. Clearly, if Qx is positive, it is the square of the frequency.
In our treatment, £ is not necessarily positive. We pick up a solution from those of
Eq. (6-19), which we denote as Q~. = This is the boundary condition for the first equation.
Then, we can understand that £~ given in Eqs. (6 -8).is nothing but the solution of RPA.
In the case of the point transformation, V(a) is reduced to Qva?®/2 for the small .

Next, we will investigate the second equation. The boundary condition of the first is
a solution of the following RPA equation which is copied from Eq. (6-19):

Q.= zvrs(bs,
} (6-22)

_g Ursws .

The above equation has N independent solutions, which we discriminate by indices #
(n:l, 2,--:, N—1, N)suchas @;". Theindex N corresponds to the boundary condition
for the first equation. From Eq. (6-22), we can get

Z@f(n)wr(m)___(). (n:/:m) k : . (623)

With the use of Egs. (6-21), the relations (3-27) are reduced to

2D71¢r zDrl@r(N)_O ECrl‘ﬁr—ECﬂwr( )_ s
} (6-24)

ZBrl¢r ZBrt@r(N)_O, ZArl¢r EAerr( )"'0

(I1=1,2,-, N—1)

From the comparison of Eq. (6-23) with Eqgs. (6-24), we have
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Arlzmr(”, BrL:Crlz(), Drlzwr(l)- ) ' ) (6'25)
(I=1,2, -, N—1)

Clearly, we should adopt the solution of Eq. (6-22) as £, appearing in Eqs. (6-14). Since
Awn etc. in the RPA limit do not depend on @ and z, they satisfy the second equation
identically. Thus, we could prepare the boundary condition. . Judging from the principle
of our approximation, £, (z+ N) may be positive. Further, we should not forget the
conditions mentioned in the final part of §5.

Finally, we will give some concluding remarks. In this paper, we developed a
possible method, with the help of which we can describe large amplitude collective motion
and its coupling with intrinsic degrees of freedom. The essence is to solve two kinds of
equations of collective submanifold. After solving the equations, we can obtain the
Hamiltonian expressed in terms of the collective and the intrinsic variables. The other
any physical quantity X° as a function of Q,° and P,° (X°=X"°(Q°, P°)) can be expressed
as

X°=X+X0, - (6-26)
X=X%Q, P), ' (6-26a)

X(D-E[E(%f AntSBu)at B2 Cot B, )] (6o26b)

It should be noted that the higher order than the linear for ¢; and p. loses its meaning
under the present approximation. In this paper, we treated the case of one collective
degree of freedom and, further, the coupling between the collective and the intrinsic
degrees of freedom in the first order. The generalization may be straightforward. The
present theory aimed at the description of many-fermion system. However, as is clear

from the treatment, we can describe the cases of many-boson system and the system of

classical particles with the use of the present theory.
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