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A theory is proposed with the aim of describing large amplitude collective motion and its coupling with 
intrinsic degrees of freedom. A canonical transformation is investigated in the full time·dependent 
Hartree·Fock theory, i.e., in the classical image of boson expansion theory. With the aid of the transfor· 
mation, the whole system is separated into collective and intrinsic degrees of freedom. Under the 
condition of the unique separation, two types of equations of collective submanifold, which are canonically 
invariant, are obtained. One is of the same form as that of the conventional equation of collective 
submanifold. A principle of the specification of coordinate system is discussed. 

§ 1. Introduction 

One of the most fundamental problems in nuclear structure theory is to construct 

theory, with the aid of which not only collective motion but also its coupling with intrinsic 

degrees of freedom is described. If we restrict ourselves only to collective motion, there 

exists a theory, which may be called theory of collective submanifold. A main business 

in this theory is to solve the equation of collective submanifold. One of the present 

authors (A.K.), together with Marumori, Maskawa and Sakata, proposed a concrete 

method for solving the equation. 1
) In spite' of this fact, it has been widely believed that the 

equation cannot be solved uniquely, for example, as was stressed by Mukherjee and Pa1.2
) 

Recently, the present authors, together with !ida, showed that the discussion concerning 

the non-uniqueness is based on a certain misunderstanding of the equation of collective 

suhmanifold and the solution exists uniquely.3) In this sense, the theory of collective 

submanifold is self-contained in the present foim and a powerful method for the descrip­

tion of collective motion. 

However, if we include intrinsic degrees of freedom in the description, the situation 

becomes different. In this case, the simplest approach may be the random phase approx­

imation (RPA). The RPA theory gives us the equation of collective submanifold in small 

amplitude limit. Further, the degrees of freedom orthogonal to the collective one, which 

we will call generally intrinsic degrees of freedom, are introduced in a natural way. In 

RPA, fluctuations around the equilibrium point given by the static Hartree-Fock 

(-Bogoliubov ) method are taken into account in terms of linear effects. Therefore, RP A is 

not applicable to large amplitude collective motion, in which non-linear effects of the 

fluctuations are expected to be large. With the aim of making the basic idea of RP A 

applicable to the collective motion with non-linear effects, boson expansion (BE) theory 

has been developed. The typical example is the Holstein-Primakoff type representation. 

The BE theory is a kind of quantum canonical theory constructed by boson operators or 

their equivalent coordinate and momentum operators. As one of theoretical interests, we 

can see that the c-number replacement of these operators leads us to full time-dependent 
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Generalization of Equation of Collective Submani/old 753 

Hartree~Bogoliubov or Hartree-Fock (TDHF) theory. This fact was first pointed out by 

Marshalek and Holzwarth4
) and, on the basis of this fact, one of the present authors (M.YJ 

and others made various analysis for the BE theory.5) 

On the other hand, by combining a Slater determinant with a certain kind of relations 

which the present authors have called canonicity condition, the full TDHF theory can be 

formulated in terms of canonical variables. An interesting point of this formulation is as 

follows: If the Poisson brackets of the canonical variables are replaced with the com­

mutators, this classical theory becomes the HolsteincPrimakofftype BE theory. This 

investigation was initiated by the present authors6) and the process is just the inverse of 

Marshalek and Holzwarth's idea. 4
) The canonicity condition was originally introduced 

in Ref. 1 ) and it enables us to formulate the full TDHF theory in the canonical form. 

However, the TDHF theory leading us to the Holstein-Primakoff type BE theory is not 

suitable for the adiabatic treatment of collective motion, i.e., the ATDHF approach. 

Recently, the present authors also used a Slater determinant and a canonicity condition, 

the forms of which are different from the case of the Holstein-Primakoff BE theory.7) As 

a result, another form of the full TDHF theory was obtained in the canonical form .. This 

can be expected to be suitable for the A TDHF approach, because the time-reversal 

property of the original fermion system can be treated properly. However, we have to 

point out that any form of the full TDHF theory we have given contains a defect: There 

does not exist any scheme in the theory, with the aid of which we can select collective 

degrees of freedom. Therefore, as a natural consequence, this theory does not contain 

also a scheme which determines intrinsic degrees of freedom. For this reason, the BE 

theory has been regarded as not so powerful method as expected at the beginning. 

In this paper, we will plan a revival of the BE theory in the framework of classical 

mechanics. The main aim is to demonstrate that, under a certain device, the BE theory 

is powerful for the study of collective motion and its coupling with intrinsic degrees of 

freedom. With the use of boson-coherent state, a classical image of the BE theory is 

obtained, i.e., the full TDHF theory in the canonical form. For simplicity, in this paper, 

we deal with the case in which only one degree of freedom is attributed to collective 

motion and the others to intrinsic ones. We imagine the following case: The collective 

motion is of the large amplitude and the fluctuations of the intrinsic motions are small. 

Under this imagination, we construct a canonical transformation expressed in terms of 

power series expansion for all degrees of freedom except a certain one. Clearly, the 

certain one corresponds to the collective degree of freedom. This transformation can 

separate the whole system into the collective and the intrinsic degrees of freedom. It may 

be self-evident that the separation should be uniquely performed. This requirement gives 

us a set of differential equations, the forms of which are completely identical with the 

conventional equations of collective submanifold.8
) In addition, we obtain another set of 

differential equations, with the use of which coupling between the collective and the 

intrinsic degrees of freedom can be described in the first order. This is just a generaliza­

tion of the conventional· equation of collective submanifold. We call the former and the 

latter as the first and the second equations of collective submanifold. One of the most 

important properties of these equations is that they are canonically invariant, i.e., the 

forms are invariant under any canonical transformation for the collective variables. 

This fact was first recongnized by the present authors in the case of the first equation.9
) 

Since the collective submanifold does not depend on the choice of its coordinate system, 
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754 M. Yamamura and A. Kuriyama 

the invariance is quite natural. However, in order to express the Hamiltonian in a 

concrete form, it is nece~sary to fix a certain coordinate system. This fact gives us 

various possibilities for expressing the Hamiltonian in terms of the collective and the 

intrinsic variables. Then, if we succeed in solving the equation of collective submanifold 

under a certain coordinate system, the collective motion and its coupling with the intrinsic 

degrees of freedom can be described in the full TDHF theory, i.e., in the classical image 

ofthe BE theory; 

In § § 2 and 3, a possible form of canonical transformation is investigated in terms of 

power series expansion. In §4, we will obtain the equations of collective submanifold 

under the condition· of unique separation of the degrees of freedom into the collective and 

the intrinsic ones. Section 5 will be devoted to proving the canonical invariance. 

Finally, in §6;we will discuss specification of coordinate system with some concluding 

remarks. 

§ 2_ Classical image of many-fermion system 

Let us consider a many-fermion system which is mapped into a boson space spanned 

by the boson operators Br and B/(r=l, 2, ... , N). A typical example can be found in the 

Holstein-Primakoff type BE theory. Another one has been presented by the present 

authors with the aim of applying to the ATDHF approach.7l In these cases, Br(Br*) is 

constructed by replacing fermion-pair or particle-hole annihilation operator with boson. 

It is well known that a coherent state Ie> defined in Eq. (2-1) gives us a classical image 

of many-fermion system in terms of canonical form. The image is the so-called full 

TDHF theory. The coherent state Ie> is defined by 

Ie> =exp[iU] -exp[iU]IO>, ( BrIO>=O) (2-1) 

U=.WO- ~~l(Qrop/-qrOPrO), } 

W O= WO(qlOPlO···qNOPNO), 
_ N _ _ 

U = ~ (QrPro- Qro Pr). 

(2-1a) 

r=l 

Here, Qr and Pr are given by 

(2-1b) 

The factor exp[iU] is a phase, which we will give the meaning, later. Clearly, Qr and ~Pr 

satisfy 

(2-2) 

The relations (2-2) tell us that Qro and Pro are the .classical images of the operators Qr 

and Pr,respectively. Therefore, if Qro and Pro can be regarded as dynamical variables 

in classical mechanics, they are canonical. With the use of Qro and Pro, we can construct 

a canonical form of full TDHF theory. As was mentioned in §l, this fact was first pointed 

out by Marshalek and Holzwarth.4
) However, the canonical form constructed by the 

variables Qro and Pro is generally not suitable for our present aim, because it is not 

expressed explicitly in terms of collective and intrinsic variables. Then, we have to 

investigate a canonical transformation of Qro and Pro to the variables suitable for our 
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Generalization of Equation of Collective Submani/old 755 

present aim. The phase factor exp[iU] enables us to find the transformation. The 

symbols .qro and PrO(r=l, 2, "', N) denote canonical variables obtained from Qro and Pro 

by a canonical transformation. 

Let us find the transformation from (Qro, PrO) to (qrO, PrO). For this aim, we 

introduce the following set of the relations, which we have called canonicity condition: 

<clia/aq/Ic>=Pro/2, 

<cl-ia/apr°Ic>=qro/2. 
} 

The straightforward calculation of Eqs. (2·3) gives us 

} 

(2·3) 

(2·3a) 

As is well known in analytical dynamics, the relation (2·3a) supports that qrO and Pro (r 

=1,2, "', N) are certainly canonical if Qro and Pro (r=l, 2, "', N) are canonical. In the 

case of many-boson system, we can start directly from the relation (2·3a). In order to 

stress the parallel relation between the original fermion and the boson system, we started 

from the condition (2·3). In the case of the Slater determinant, the canonicity condition 

(2·3) is essential for obtaining a classical form of the full TDHF theory as a classical 

image of the BE theory.6) If WO is specified in one form for the variables qlOPlO"'qNOPNO, 

one type of the canonical transformation is fixed. 

Our final aim is to solve Eqs. (2·3a), i.e., to obtain Qro and Pro as functions of 

qlOPlO···qNOPNO. In order to get a possible method Jor the solution, first, we will rewrite 

Eqs. (2·3a) to slightly different forms. For rewriting, we consider the following 

canonical transformation from (qrO, PrO) to (qr, Pr): 

{
qNO=a+qN, 

PNO=7f+PN. 
(2·4) 

Here, a and 7f are arbitrary real numbers and, for a moment, they play a role of 

parameters. Then, one-step canonical transformation from (Qro, PrO) to (qr, Pr) can be 

given by the following relations: 

o. } 
Here, wiatt) is a function of qlPl"'qNPN defined by 

Let us suppose that we have the solutions of Eqs. (2·3a) in the following forms: 

QrO= Q r(qlOPlo'''qNOPNO), 

Pro = fP r(qlOPlo···qNOPNO). 
} 

(2·5) 

(2·6) 

(2·7) 
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756 M. Yamamura and A. Kuriyama 

On the other hand, let us denote the solutions of Eqs. (2-5) as 

QrO= Q r(il1r)(qlPl···qNPN), 

Pro=:;; p /alr)(qlPl···qNPN). 
} (2-8) 

The arguments of the functions (Q r, P r)and (Q r(aTr), P /aTr» are connected with each 

other through the relations (2-4). Therefore, we have 

Q r(qlPl···qN-lPN-l a+qN Jr+ PN )=~ /aTr)(qlPl···qN_lPN_lqNPN), } 

P r(qlPl···qN-lPN-l a+qN Jr+ PN)= P /aTr)(qlPl"··qN_lPN_lqNPN). 

By putting qN and PN equal to zero, we get the following relations: 

Q r(qlPl···qN-lPN-laJr)= Q r(aTr)(qlPl···qN_lPN_lOO), } 

P r(qlPl···qN-lPN-laJr)= P /aTr)(qlPl···qN_lPN_lOO). 

(2-9) 

(2-10) 

The relations (2-10) tell us two important facts. First, if we regard a and Jr as 

dynamical variables, Qr(qlPl···aJr) and Pr(qlPl···aJr) are the solutions of Eqs. (2-3a) 

under the correspondence 

(2-n) 

Clearly, a and Jr are canonical. Second, by putting qN and PN equal to zero in the 

solutions of Eqs. (2-5), we can obtain the solutions of Eqs.(2-3a) under the correspondence 

(2-n). Thus, Qro and Pro are expressed as 

QrO= QrO(qlPl···qN-lPN-laJr) 

= Q /aTr)(qlPl···qN_lPN_lOO), 

Pro = PrO(qlPl···qN-lPN-laJr) 

= P r(aTr)(qlPl···qN_lPN_lOO). 

} 
We can see that the problem is reduced to solving Eqs. (2-5). 

§ 3_ Canonical transformation to collective and intrinsic variables 

(2-12) 

Let us start from solving Eqs. (2 -5). We will give explicit forms of Q /aTr) 

(qIPl···qNPN) and p/aTr)(qlPl···qNPN) shown in Eqs. (2-8) in terms of power series expan­

sion for qr and Pr(r=l, 2, ... , N): 

Q r(aTr)=Qr(aJr)+ Qr(l)(aJr)+ Qr(2)(aJr)+ ... , 

P r(aTr) = Pr(aJr )+ P/I)(aJr)+ p/2)(aJr )+ ... . 

Further, we expand w(aTr) in the form 

(3-1a) 

(3-1b) 

(3-1c) 

Here, Qr(aJr), Pr(aJr) and W(aJr) denote the zero~th order terms and the indices (1), (2), 

etc. mean linear, quadratic, etc. for qr andPr. The coefficients of the expansions may be 

functions of the parameters a and Jr. In this paper, we will show the results calculated 

explicitly up to the quadratic order. For a moment, we will omit the symbol (a7l') 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/7

1
/4

/7
5
2
/1

8
5
9
6
5
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Generalization of Equation of Collective Submani/old 757 

appearing in the expansions (3-1). 

Substituting the expansions (3-1) into Eqs. (2-5), we pick up the zero-th order terms 

from both the sides: 

N aQ (1) aW(1) 
~ Ps--s-----=O , 
S=l aqr aqr 

N aQs(1) aW(1)_ 
~Ps-a'P -~-O. 
8=1 r ujJr 

} (3-2) 

Since Ps does not depend on qr and Pr and W(l) is linear for them, W(1) is uniquely given 

as 

(3-3) 

The linear parts of Eqs. (2-5) become 

N ( aQ. s(2) (1) aQ/l») aW(2) _ } 
~ Ps- a-+ Ps -a- --::.'1--Pr, 
S=l qr qr clqr 

N (aQs(2) (1) aQs(1) )_ aW(2) _ 
~1 Ps aPr + Ps aPr aPr -0. 

(3-4) 

The above equations are rewritten as 

N aQ (1) aW(2) 
~ P

s
(l) __ S _____ = Pr , 

S~l aqr aqr 

N. 1 aQs(l) aW(2)_ 
~Ps()-a'P --alP -0, 
S=l r r 

} (3-5) 

where W(2) is defined by 

W(2)(aJr)=~PrQ/2)+ W(2). (3-6) 
r 

Eliminating W(2) from Eqs. (3-5), we have 

( 
aQr(1) ap/1) . aQ/1) aPr(1»)_ 

~ ------------- -8st 
r aqs apt Opt aqs ' 

~(aQr(1) ap/1) _ aQr(1) aPr(l»)=o 

r aqs aqt aqt aqs ' 
(3-7) 

~(aQr(l) apr(1) _ aQr(1) ap/1»)=o 
raps apt apt Ops . 

Solution of Eqs. (3-7) is given as follows: 

N 

Qr(1)(aJr) = ~1 (Arsqs+ CrsPs), } 

p/1)(aJr)= ~ (Brsqs+ DrsPs). 
S=l . 

(3-8) 

In the 2N -dimensional vector form, it is expressed as 

[~:::] = S[;J. S=[~ ~]. (3-8a) 

The 2N x 2N matrix S is symplectic: 
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758 M. Yamamura and A. Kuriyama 

(3·9a) 

Here, the symbol T denotes the operation of transpose; 0 and 1 in ] are the N x N null 

and the N x N unit matrix, respectively. In terms of the N x N matrices A, B, C and D, 

the relation (3'9a) can be expressed as 

A TD-BTC=l, 

ATB-BTA=O, 

The inverse relations are as follows: 

DTA-CTB=l, } 

DTC-CTD=O. 

5]5 T =] , 

ADT -CBT=l, 

ACT -CAT=O, 

DAT -BCT=l, } 

DBT_BDT=O. 

By the use of Eqs. (3'5) with the solution (3'8), W(2) is obtained in the form 

W(2)(aJr)= ~ ~(Q/I)P/I'-qrPr). 

(3'9b) 

(3·10a) 

(3'10b) 

(3'11) 

Our next task is to obtain Q/2) and Pr(2). The quadratic parts of Eqs. (2'5) are 

N ( :lQ (3) :lQ (2) :lQ (1») :lW(3) 2: Ps_V_s_+ Ps(1)_V_s_+ Ps(2)_V_S_ -_V_-=O, ) 
S=I Oqr Oqr Oqr Oqr 

N ( :lQ (3) :lQ (2) :lQ (1») :lW(3) 2: Ps_V_s_+ Ps (I)_V_S_+ Ps (3)_V_S_ -_V--=O. 
S=I OPr apr OPr OPr 

(3'12) 

The above equation can be rewritten as 

N ( :lQ (2) :lQ (1») :lW-(3) 2: Ps(I)_V_S -+ Ps (2)_V_S - __ V __ = 0, ) 
S=I Oqr Oqr Oqr 

N ( :'iQ (2) :lQ (1») :lW-(3) 2: Ps(1)_V_S_+Ps(2)_V_S_ -_V--=O 
S=I OPr OPr OPr ' 

(3'13) 

W(3)(aJr)= 2:PrOr(3)+ W(3) . (3'14) 
r 

Eliminating W(3) from Eqs. (3'13), we have 

2:( oQr(2) OPr(1) _ oQr(2) op/I) + oQ/I) op/2) _ oQr(1) oPr(2»)=O 

r Oqs OPt OPt oqs Oqs OPt OPt Oqs. ' 

2:( oQr(2) OP/I~ _ oQr(2) opr(1) + oQr(1) OPr(2) _ oQ/I) oPr(2»)=o 

r oqs Oqt Oqt Oqs oqsOqt Oqt oqs ' 
(3·15) 

2:( oQ/2) oP/I) _ oQ/2) OPr(1) + oQ/I) op/2) _ oQr(1) oP/2»)=o 

r oPs OPt OPt oPs oPs OPt OPt oPs . 

Equations (3 '15) lead us to the relations 

(3'16) 

Here, qr(2) and Pr(2) are defined in the 2N -dimensional vector form: 
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Generalization of Equation of Collective Submani/old 759 

(3·17) 

The matrix S is the same as that given in Eqs. (3·8). The solution of Eqs. (3·16) is 

generally obtained by the use of function ([J: 

P 
(2) __ a([J 

r - aqr. 

Since qr(2) and p/2) are quadratic, ([J should be cubic: 

1 N . 

([J =-6 L: (Arstqrqsqt+3Brs,tqrqsPt+3Cr,stqrPsPt+ DrstPrPsPt). 
rst~l 

Here, Arst, Brs,t, Cr,st and Drst have the following symmetry properties: 

Arst:Arts=Astr=A:t=Atrs=Atsr, ) 

Brs,t - Bsr,t , Cr,st - Cr,ts , 

Drst = Drts = D str= Dsrt = D trs = Dtsr. 

Then, substituting ([J given in Eq. (3·19) into Eqs. (3·18), we get 

qr(2)= ~ S~l (Bts,rqtqs+2Ct,srQtPs + DtsrPtPs), ) 

Pr(2)= - ~ S~l (Arstqsqt+2B~s,tqsPt+ Cr,stPsPt). 

Therefore, Qr(2) and Pr(2) are given in the following forms: 

Q/2)(a7()= ~ S~l [~(Arr'Bst,r'- Crr,Ar'st)qsqt 

+2L:(Arr,Cs,tr'- Crr,Br's,t )qsPt 
r' 

+ L:(Arr,Dstr'- Crr,Cr',st)PsPt], 
r' 

(3·18) 

(3·19) 

(3·20) 

(3·21) 

(3·22) 

The above is a formal solution of Eqs. (2·5) calculated up to the quadratic order. 

The expressions (3·1) mean the Tayler expansion of Q r(a1r) and P r(a1r) for qlPl···qNPN 

around q=P=O. As can be seen in Eqs. (2·9), Q/a1r) and P r(a1r) are functions of 

qlPl···qN-lPN-l and a+qN, 7(+ PN. Therefore, the derivatives of Q r(a1r) and P r(a1r) related 

with qN and pI>( can be replaced with those for a and 7(, respectively. This means that 

certain parts of the coefficients in the expansions (3·1) are replaced with the derivatives 

for a and 7(. The replacements are explicitly given as follows: 

(3·23) 
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760 M. Yamamura and A. Kuriyama 

~(ArtBNs.t-CrtAstN)= o:;s , 

~(BrtBNS.t- DrtAstN)= o~;s , 

~(ArtCN.ts-CrtBNt.s)= o~;s , 

~(BrtCN.ts-DrtBNt.s)= °f;s , 

~(ArtCs.tN-CrtBst,N)= o:;s , 

~(BrtCs.tN- DrtBst.N)= o~;s , 

~(ArtDNts-CrtCt.8N)= °f;s , 

"2.(BrtDNts - DrtCt.SN)= Ofrs • 
t uK 

The inverse relations of Eqs. (3' 24) are 

A =(BT oA _AT oB) 
Nst . oa oa st' 

B =(BT oC _AT oD) 
Ns.t oa oa st 

=(DT oA -CT oB) 
oa oa ts' 

C _(DTOC CToD) 
N.st - oa - oa st' 

(3'24) 

(3'25a) 

(3'25b) 

With the aid of the relations (3'23), the (N, N)-elements in the matrix relations (3'9b) are 

reduced to 

"2.( OQr OPr _ OQr oPr)=l 
r oaoK oKoa . 

Also, the (N, n-elements are as follows: 

~(Drl °o~r - Crl 0:;)=0, } 

"(B OQr A oPr)-o 
~ rr-[fi[- rl OK - , 

(3'26) 

(3'27) 
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Generalization of Equation of Collective Submanifold 761 

where I runs from 1 to N -1. The (m, n)-elements are not related with aQr/aa, etc.; 

(A TD-BTC)mn=8mn, 

(ATB-BTA)mn=O, 

(D
T
A-C

T
B)mn=8mn, } 

(DTC-CTD)mn=O. 

(m n=l 2 ... N-1) , ", 

(3-28) 

Afterward, we will see that the above three relations (3-26), (3-27) and (3-28) are basic 

in our treatment. 

Thus, in the framework of the expansions up to the quadratic order, the solutions Of 

Eqs. (2-3a) are formally given by 

Qro= Qr(a7C)+ Qr(1)(a7C)+ Qr(2)(a7C), } 

Pro = Pr(a7C)+ p/1)(a7C)+ p/2)(a7C), 

_ . N-l 

Q/l)(a7C)=.~l (Arlql+.CrlPl)' .} 

N-l 
Pr(1)(a7C)= 1: (Brlql+DrlPl), 

l=l 

- 1 N-l 
Qr(2)(a7C )=2 m~L [~(ArsBmn,s- CrsAsmn )qmqn 

+ 21: (A rsCm,ns - CrsBsm,n )qmPn 
s 

+ 1:(ArsDmns- CrsCs,mn)PmPn]' 
s 

- 1 N-l 
Pr(2)(a7C )=2 m~l [~(BrsBmn,s- DrsAsmn)qmqn 

+21:{BrsCm,ns- DrsBsm,n)qmPn 
s 

(3-29) 

(3-29a) 

(3-29b) 

Needless to say, we obtained the above results by putting qN= PN=O in Eqs. (3-8) and 

(3-22). It should be noted that at the present stage the parameters a and 7C are regarded 

as dynamical variables. The function WO is given as 

(3-30) 

(3-30a) 

(3-30b) 

The equations for W (a7C) will be shown explicitly in Eqs. (6 -5). As was already 

mentioned, our system is treated with the use of the canonical variables (a7C) and (qlPl: 

1=1, 2, "', N -1). In this treatment, one degree of freedom described by a and 7C is clearly 

discriminated from the others, because the expansion in terms of a and 7C is not performed. 

Therefore, the canonical transformation (3-29) is applicable to the system in which one 

degree of freedom is of large amplitude and the remaining are of small ones. In this 

sense, we can expect that the variables a and 7C are for collective motion and intrinsic 

degrees of freedom are described by the variables ql and Pl ([=1, 2, "', N-1). 
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762 M. Yamamura and A. Kuriyama 

§ 4. Unique separation of the whole system into collective 

and intrinsic degrees of freedom 

We showed that many-fermion system is treated classically in terms of two types of 

the degrees of freedom. The separation into the two gives us the expectation that the 

variables a and 7( are for collective motion and the others can be related with the intrinsic 

degrees of freedom. However, it should be performed uniquely. If it depends on the 

adopted coordinate system, the concept of the collective and the intrinsic degrees of 

freedom becomes meaningless or the principle of which coordinate system should be 

adopted must be given. In this section, we will give the contlitions for the unique 

separation and show that they lead us to a generalization of equation of collective 

submanifold. 

Let us investigate the problem above in the framework of the Hamiltonian approx­

imated up to the quadratic order for ql and PI (1=1, 2, ... , N-l). This approximation 

is consistent with the expansions of Qro, P~o and WO shown in Eqs. (3·29) and (3·30) and· 

it may be valid if the intrinsic motions are of the small amplitudes. However, there does 

not exist any restriction in the amplitude of the collective degrees of freedom. In this 

sense, the approximation is applicable to the large amplitude collective motion. The 

Hamiltonian HO is a function of Qro and Pro (r=l, 2, ... , N): 

(4·1) 

First, we expand HO in terms of ql and PI (1=1, 2, ... , N -1) in the following form: 

+2. 02 H . Q- (l)p- (1») 
OQrOPs r s . 

(4·2) 

(4·3) 

(4·4a) 

(4·4b) 

(4·5) 

Our starting point is the following requirement: fj(1) and fj(2) should vanish for any values 

of ql and PI (1=1, 2, ... , N -1), that is, 

(4·6a) 

(4·6b) 
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Generalization of Equation of Collective Submani/old 763 

Let two coordinate systems (a7C, ql PI) and (a' 7C', q/ p/), which obey the conditions (4·6a) 

and (4·6b), exist. We can see from the conditions (4·6) that both the coordinate systems 

should be connected as 

[
a:] = [f(a7C)] + [higher than the qUadratic], 

7C g(a7C) for q and P 
(4·7a) 

[q:] = s[q] + [higher than the quadratic]. 
p p for q and p 

(4·7b) 

Here, f(a7C) and g(a7C) are any functions of a and 7C which obey 

af. ag _ af .k=1 
aa a7C a7C aa . (4·8) 

The symbol s denotes 2(N -1) x 2(N -1) matrix with the properties 

k=k=O 
aa a7C . (4·9) 

The terms, which are higher than the quadratic for q and p, do not give any change in the 

Hamiltonian HO in the quadratic order (Ho=H + H(2». Therefore, in our present 

approximation, we are not necessary to take into account the higher than the quadratic 

terms: 

[
a'] = [f(a7C )], 
7C' g(a7C) 

(4·10a) 

(4·10b) 

The properties (4·8) and (4·9) tell us that the transformations (4 ·10) are canonical. The 

both degrees of freedom are independently transformed. This means that the separation 

is uniquely performed. In this sense, the requirement shown in Eqs. (4·6) is the condition 

for the unique separation. It should be noted that the condition is valid in the framework 

of the quadratic approximation. 

Now, let. us investigate the condition (4·6a). The term fi(1) given in Eq~ (4·4a) can 

be written as 

- N-1[ N (aH aH ) N (aH aH)] H(l)=L: L: Ar1aQ +Brla,D ·ql+L: Cr1aQ +Drla,D ·Pl. 
1=1 r=l r Tr r=l r Tr 

(4·11) 

Here, we used Eqs. (3·29a). Then, the condition (4·6a) gives us 

U=I, 2, ... , N-1) (4·12) 
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764 M. Yamamura and A. Kuriyama 

The ([, N)-elements ([=1, 2, "',N -1) in the matrices (3·9b) are explicitly given by 

~l [CrlDrN+ Drl( - CrN )]=0, } 

2: [CrJ3rN+ Drl( - ArN )]=0. 
r=l 

(4·13a) 

(4·13b) 

Therefore, combining Eqs. (4 ·12) with Eqs. (4 ·13), we obtain the following linear combi­

nations: 

aH } AaDrN-A1CBrN = aQr ' 

aH 
-AaCrN+A 1CA rN= aPr' 

(4'14) 

Here, Aa and A1C are, at the present stage, any function of a and J[. Noticing the relations 

(3·23), we have 

A aPr -A aPr = aH } 
a aJ[ 1C aa aQ r ' 

-A aQr +A aQr = aH 
a aJ[ 1C aa aPr' 

(4'15) 

The above is just well-known equation of collective submanifold. In this way, we could 

prepare Eqs. (4 ·15) and (3·26) for determining Q rand P r as functions of a and J[. Later, 

we will give equations to determine linear dependence for the variables ql and Pl, i.e., Qr(l) 

and Pr(1). In this sense, we call the set of Eqs. (4·15) the first equation of collective 

submanifold. 

Next, we will investigate the condition (4·6b). Substituting aH/aQr and aH/apr 

given in Eqs. (4·15) into Eq. (4·4b), we have 

(4·16) 

The above fj(2) is quadratic for ql and Pl ([=1, 2, '~', N -1) and the condition (4·6b) leads 

us to the relations 

AaBmn.N-A1CA Nmn =O, } 

AaCm.nN-A1CBNm.n:O, 

AaDmnN-A 1CCN.mn-O. 

Substituting ANmn etc. given by Eqs. (3·25) into Eqs. (4·17), we can get 

(4·17) 
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Generalization of Equation of Collective Submani/old 765 

(4·18) 

(m, n:=l, 2, ... , N-1) 

. Thus, we could prepare Eqs. (4-18) and (3-27) in order to determine A rl , Brl, Crl and Drl 

for 1=1, 2, ... , N -1. If we determine these quantities as functions of a and 7C, Qr(l) and 

~Pr(l) can be fixed. We called the set of Eqs. (4-15) the first equation of collective 

submanifold. In a similar meaning, we call the set of Eqs. (4 -18) the second equation of 

collective submanifold. We should note that we have no equations for A lmn etc. 

However, as far as the Hamiltonian in the quadratic approximation (Ho=H + H(2» is 

concerned, it is not necessary to dete~ine A lmn etc. Thus, we could generalize equation 

of collective submanifold which has been widely investigated. With the aid of the 

generalization, we can treat coupling between collective and intrinsic degrees of freedom 

in the first order. 

§ 5_ Canonical invariance of equations of collective submanifold 

In §4, we have prepared the basic equations for determining Qr, Pr, A rl , Brl, Crl and 

Drl (t = 1, 2, .•. , N -1). Then, our problem is reduced to solving the equations. In this 

section, we will discuss some general properties, especially, canonical invariance of the 

equations of collective submanifold, which will help us to solve the equations. 

First, we note that /la and /I", in Eqs. (4-15) and (4-18) can be expressed as 

(5-1) 

This can be proved with the help of Eqs. (4-3) and (4-15) with Eq. (3-26). Then, the first 

equation, together with Eq. (3-26), can be rewritten as 

(5-2) 
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766 M. Yamamura and A. Kuriyama 

[

aPr 1 f ( aQr, aQr)J 7f(1 
r=l aa. ax aPr 

ax 

=1. (5-3) 

Here, J is the 2 x 2 matrix given by 

J=( 0 1 ). 
-1 0 

(5-4) 

Since the transformation (4-10a) is canonical, the following 2X2 matrix is symplectic: 

(5-5) 

Then, we have 

(5-6) 

With the use of the relation (5-6) with Eqs. (5-5), we can prove that Eqs. (5-2) and (5-3) 

are invariant under the transformation (4-10a). Therefore, we can see an important fact: 

In the framework of Eqs.(5-2) and (5-3), we cannot specify the collective coordinate. 

Hence, we cannot solve Eqs. (5-2) and (5-3). Some additional conditions are necessary. 

This fact has been already stressed by the present authors.9) 

Our next task is to prove canonical invariance of the second equations (4 -18), together 

with Eqs. (3- 27). This case is rather tedious. First, we introduce the 2N x 2(N-1) 

matrix 5 defined in the vector form of the linear combinations (3-29a): 

[
Q(l)] _[q] 
p(l) =S p , (5-7) 

The above relations (5-7) should not be confused with Eqs. (3-8a). The properties of 5 
are as follows: 

(5-8) 

Clearly, 5-1 is the 2(N -1) x 2N matrix. The symbol r denotes the 2N x 2N idempotent 

matrix, which satisfies 

r 2=r, Tr[r] = 2(N -1). (5-9) 

The element is given as 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/7

1
/4

/7
5
2
/1

8
5
9
6
5
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Generalization of Equation of Collective Submanijold 767 

(5·10) 

(5·10a) 

[ 

aQs 1 
L = _( aQr aQr)f aa 

rs aa a7C aQs' 
ai[ 

(5'10b) 

(5'10c) 

In: the same way as in the previous case, we can prove that r is canonically invariant: 

r'=r. 

With the use of the matrix 5- 1
, Eqs. (4'18) can be rewritten as 

5- 1 ·A=0, 

where A is given by 

r 

it . aA - it . aA 
a a7C "aa 

A= aB aB 
it ·--it .-

a a7C "aa 

it . ac -it . ac 1 
a a7C "aa 

aD aD·· 
it ·--it .-

a a7C "aa 

(5·11) 

(5'12) 

(5'12a) 

The matrix A is of the form 2N x 2(N -1). In the same way as in the previous case, A 

can be proved to be canonically invariant: 

A'=A. (5·13) 

Under the above preparation, we can prove that if 5-1 ·A=0, then 5H ·A'=0 in the 

following procedure: 

5'-1. A' = 5'-1 r' ·A' = 5'-1 r· A = 5'-155-1. A 

(5'14) 

Next, we consider Eqs. (3·27). These can be expressed as 

(5'15) 

[ 

aQ aQ 1 aa a7C 
Ao= ap ap , 

aa a7C 

(5'15a) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/7

1
/4

/7
5
2
/1

8
5
9
6
5
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



768 M. Yamamura and A. Kuriyama 

where Ao is 2N x 2 matrix. This matrix satisfies 

Ao'=Ao. (5·16) 

Then, we can prove that if 5-1·Ao=0, then 5'-1·Ao'=0 in the following way: 

5'-1. Ao' = 5'-1 r'· Ao' = 5'-1 r· Ao 

= 5'-155-1. Ao 

=5'-15x 5- 1 ·Ao. (5·17) 

Thus, we could prove that Eqs. (3·27) are canonically invariant under the transformation 

(4·10a). 

The transformation (4·10b) is also interesting. Clearly, Eqs. (5·2) and (5·3) are 

invariant; because they have no connection with the trans:formation (4 . lOb ). Then, let us 

investigate Eqs. (5·12) and (5·15). With the use of the matrix 5 in the transformation 

(4·10b), the relation (5·7) can be given by 

(5·18) 

Therefore, we have 

(5·19) 

The matrix A given in Eq. (5·12a) is transformed as 

A"=A·s-1. (5·20) 

With the use of Eqs. (5·19) and (5·20), we have 

5"-1. A" = s X 5- 1
• A X S-l=O. (5·21) 

The matrix Ao given in Eq. (5·15a) is invariant: 

Ao"=Ao. (5·22) 

Therefore, we have 

5"-1. Ao" = s x 5-1A o=0 . (5·23) 

The relations (5·21) and (5·23) tell us that Eqs. (5·12) and (5·15) are invariant under the 

transformation (4·10b). Therefore, in the framework of Eqs. (5·12) and (5·15), we 

cannot specify intrinsic coordinate system, even if collective coordinate system is fixed. 

This means that some additional conditions may be also necessary. 

Finally, we will give an important remark concerning Eqs. (3·28) which, up to the 

present stage, we have not made contact with: A possible solution of Eqs. (4·18) satisfies 

Eqs. (3·28). Summing the first equation and the transposed of the fourth in Eqs. (4·18), 

we can obtain 

(5·24) 
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Generalization ,of Equation of Collective Subrnani/old 769 

General solution of the above partial differential equation is a function of a and J[ through 

arbitrary function of H. Therefore, as a possible solution, we can choose (DTA - CTB)mn 

= (j mn. The other cases are also treated in the way similar to the above case. 

§ 6_ Specification of coordinate system 

In the previous section, we have shown that the equations of collective submanifold 

are canonically invariant. This fact is quite natural, because the collective submanifold 

does not depend on the choice of its coordinate system. However, it is necessary to fix the 

coordinate system in one form in order to express the Hamiltonian in a concrete form. 

The ,main aim of this section is to discuss this problem. 

First, we note H given in Eq. (4-3). This is a function of only a and J[ through 

Qr(aJ[) and Pr(aJ[). Therefore, we can call H the collective Hamiltonian and, hereafter, 

we denote it as Heol!.' Our important task is to obtain Heol! concretely. Practically, we 

have to obtain it successively from the lower order to the higher in the form 'of the power 

series expansion. Needless to say, we have to stop the expansion at a finite order. As 

for the expansion, we know the following two forms: 

00 n 

H eol!=J[2/2MN+KNa 2/2+kNaJ[+ ~ ~hnlalJ[n-l, 
n=3l=O 

(6-1) 

00 

Heol!= V(a)+J[2/2M(a)+ ~ hnJ[n. (6·2) 
n=3 

Clearly, the expression (6-1) is based on the Taylor expansion for the two variables a and 

J[. The expression (6 -2) is written down as the Taylor expansion for only J[. Therefore, 

the coeficients depend on a. In principle, there exists third possibility, i.e., the expansion 

in terms of a. However, physically, the third is not so interesting as the other two cases 

and we will not discuss this one. In the above expansions, we assumed that Heol! is 

stationary at the point a = J[ = 0, Let us investigate the structures of the expansions (6 -1) 

and (6 -2) from the viewpoint of canonical transformation. As was already mentioned, 

we have to stop the expansion at a finite power. Therefore, it is undesirable that the 

power, at which the expansion stops, changes if we view from another coordinate system. 

The expansion (6-1) does not change the power of a and J[ (alJ[n-l) under the symplectic 

transformation: 

(ad-bc=1) (6-3) 

where a, b, C and d are constants. On the other hand, the expansion (6·2) does not 

change the power of J[ (J[n) under the point transformation: 

a'= f(a), ,_ / df(a) 
J[ -J[ da' (6·4) 

where f( a ) is an arbitrary function of a. From the above argument, it may be interesting 

to find methods, which are suitable for the two forms above, for solving the equations of 

collective submanifold. 

Under the above preparation, let us investigate the first equation. The equation is 
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770 M. Yamamura and A. Kuriyama 

canonically invariant and, then, some additional conditions are necessary in order to fix 

the collective coordinate system. With the aim of finding the conditions, we introduce the 

following relations: 

(6°5) 

The above relations come from the zero-th order of Eqs. (2 0 3a) for ql and Pl (1=1, 2, ... , 

N -1). Of course, we used the correspondence (2°11). It is interesting to see that the 

relations (6°5) are reduced to Eq. (3°26) if W is eliminated. However, the inverse does 

not hold. This means that once W is fixed in one form, the resultant form is not always 

invariant for any canonical transformation. Therefore, we can fix a certain collective 

coordinate system by choosing a proper form of. W a priori. Let W be of the following 

form: 

(6°6) 

Then, the relations (6°5) are reduced to 

",(p aQr _ Q aPr)= ) 
~ raa raa 7[, 

~(Qr a: -Pr a~r )=a. 

(6 0 7) 

We can prove that the relations (6 0 7) are invariant under the symplectic tran~formation 

(6°3). Therefore, if we obtain Hcoll in the " form (6 0 1), we should start from the relations 

(6 0 7). However, there still exists one ambiguity; the choice of the constants a, b, C and 

d (the three are free) in the transformation (6°3). In order to fix the ambiguity, we give 

the additional condition for the Hamiltonian (6 0 1): 

(6 0 S) 

Here, Q N is a certain real number given later. Next, we consider the case 

W=o. (6°9) 

In this case, the relations (6 ° 5) become 

L:Pr aa
Qr 

=0 . 
r 7[ 

(6°10) 

The above relations are still invariant under the point transformation (6°4). Therefore, 

if we obtain Hcoll given in Eq. (6°2), the condition (6°9) should be adopted. Here, there 

exists an ambiguity; the choice of /(a) in the point transformation (6°4). In order to fix 

the ambiguity, we give the following additional condition in the Hamiltonian (6°2): 

M(a)=l. (6°11) 

Thus, for the first equation of collective submanifold, we could prepare the conditions 
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Generalization of Equation of Collective Submani/old 771 

(6 -7) and (6 -8) for the symplectic transformation and the conditions (6 -10) and (6 -11) for 

the point transformation. Both are suitable for Hcon given by Eqs. (6 -1) and (6 -2), 

respectively. 

As was already discussed, the second equation of collective submanifold is invariant 

under the symplectic transformation (4 -lOb) in addition to the same canonical invariance 

as that for the first equation. Therefore, even if the collective coordinate system is fixed, 

there still exists ambiguity for the intrinsic coordinate system. In order to fix the 

coordinate system, let us consider H(2) given in Eq. (4-5). With the use of Eqs. (3-29a), 

H(2) can be written down as 

(6-12) 

. This can be decomposed into 

H(2) = H1ntr + HcouPI , (6-13) 

(6-13a) 

The above H1ntr is invariant under the symplectic transformation (4 -lOb). Therefore, 

there exists one ambiguity: The 2(N _1)2+ (N -1) parameters are free. Then, we set up 

the following conditions for fixing the intrinsic coordinate system: 

(6-14) 

(m, n=l, 2, '--, N-1) 

Therefore, H intr can be expressed as 

(6-15) 

Here, Q n are certain real numbers, which will be given later. The reason why we used 

the indices, intr and coupl, may be self-evident. Thus, with the use of the conditions 

(6-14), we can solve the second equation. 

The equations of collective submanifold are partial differential equations. There­

fore, for solving them, the boundary conditions are necessary. As for the conditions, we 

consider the small amplitude limit. We adopt the following Hamiltonian approximated 

in the bilinear form of Q r ° and Pro: 

HO= ~r~1 (UrsPropso+ VrsQroQsO). 

On the other hand, Hcon may be given by 

Hcon=J[2/2+QNa2/2. 

(6-16) 

(6-17) 
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772 M. Yamamura and A. Kuriyama 

Then, the first equation can be written as 

QNa· a: -Jr. a:: =~ VrsQs, .} 

-QNa· a~r +Jr.aa~r =~UrsPs. 
(6·18) 

The above equation is reduced to the following, together with Eqs. (6·7) and (6·10): 

} (6·19) 

(6·20) 

Here, ¢r and ¢r are given by 

(6·21) 

It should be noted that Eqs. (6·7) and (6·10) are reduced to the common relation (6·20). 

Equation (6·19) is nothing but the equation of RPA and Eq. (6·20) is the normalization 

condition for the amplitudes. Clearly, if Q N is positive, it is the square of the frequency. 

In our treatment, QN is not necessarily positive. We pick up a solution from those of 

Eq. (6·19), which we denote as QN. This is the boundary condition for the first equation. 

Then, we can understand that QN given in Eqs. (6·8) is nothing but the solution of RPA. 

In the case of the point transformation, V (a) is reduced to QNa
2

/ 2 fo~ the small a. 

N ext, we will investigate the second equation. The boundary condition of the first is 

a solution of the following RPA equation which is copied from Eq. (6 ·19): 

Qlp"r=~Vrs([)s, } 

([)r= "'E Urs lp" s . 
s 

(6·22) 

The above equ.ation has N independent solutions, which we discriminate by indices n 

(n=l, 2, ... , N -1, N) such as ([)r(n). The index N corresponds to the boundary condition 

for the first equation. From Eq. (6·22), we can get 

"'E ([)/n) lp" rim) = 0 . (n=F-m) (6·23) 
r 

With the use of Eqs. (6·21), the relations (3·27) are reduced to 

"'ECrl¢r="'ECrllp"/N)=O, } 
r r 

"'EBrl¢r= "'EBrl([)r(N)=O, "'EArl¢r= "'EAr1lp" /N)= 0 . 
r r r r 

(6·24) 

(1=1 2 ... N-1) , , , 

From the comparison of Eq. (6·23) with Eqs. (6·24), we have 
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(6'25) 

(1=1 2 ... N-1) , , , 

Clearly, we should adopt the solution of Eq. (6~22) as .Qn appearing in Eqs. (6'14). Since 

Art etc. in the RPA limit do riot depend on a and 1[, they satisfy the second equation 

identically. Thus, we could prepare the boundary condition. Judging from the principle 

of our approximation, .Q n (n *- N) may be positive. Further, we should not forget the 

conditions mentioned in the final part of §5. 

Finally, we will give some concluding remarks. In this paper, we developed a 

possible method, with the help of which we can describe large amplitude collective motion 

and its coupling with intrinsic degrees of freedom. The essence is to solve two kinds of 

equations of collective submanifold. After solving the equations, we can obtain the 

Hamiltonian expressed in terms of the collective and the intrinsic variables. The other 

any physical quantity XO as a function of Qro and Pro (Xo=XO( QO, PO)) can be expressed 

as 

XO=X+x(l) , (6'26) 

(6'26a) 

(6'26b) 

It should be noted that the higher order than the linear for qt and Pt loses its meaning 

under the present approximation. In this paper, we treated the case of one collective 

degree of freedom and, further, the coupling between the collective and the intrinsic 

degrees of freedom in the first order. The generalization may be straightforward. The 

present theory aimed at the description of many-fermion system. However, as is clear 

from the treatment, we can describe the cases of many-boson system and the system of 
classical particles with the use of the present theory. 

Acknowledgements 

This work has been performed as a part of the Annual Research Project for "Time­

Dependent Self-Consistent Field Method and Quantization" organized by the Research 

Institute for Fundamental Physics, Kyoto in 1983. The authors would like to express 

their thanks to Dr. S. !ida and other members of this project. 

References 

1) T. Marumori, T. Maskawa, F. Sakata and A. Kuriyama, Prog. Theor. Phys. 64 (1980), 1294. 
2) A. K. Mukherjee and M. K. Pal, Phys. Lett. IOOB (1981),457. 
3) M. Yamamura, A. Kuriyama and S. !ida, Prog. Theor. Phys. 71 (1984), 109. 
4) E. R. Marshalek and G. Holzwarth, Nucl. Phys. Al9I (1972), 438. 
5) ]. B. Blaizot and E. R. Marshalek, Nuc!. Phys. A309 (1978), 422, 453. 

M. Yamamura and S. Nishiyama, Prog. Theor. Phys. 56 (1976), 124. 
H. Fukutome, M. Yamamura and S, Nishiyama, Prog. Theor. Phys. 57 (1977), 1554. 

6) A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 66 (1981), 2130. 
M. Yamamura and A. Kuriyama, Prog. Theor. Phys. 66 (1981), 2147. 
A. Kuriyama, Prog. Theor. Phys. Supp!. Nos. 74 & 75 (1983), 66. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/7

1
/4

/7
5
2
/1

8
5
9
6
5
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



774 M. Yamamura and A. Kuriyama 

M. Yamamura, Prog. Theor. Phys. Suppl. Nos. 74 & 75 (1983), 271. 
7) A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 69 (1983), 681. 

A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 71 (1984), No.5. 
8) F. Sakata, T. Marumori, Y. Hashimoto and T. Vne, Prog. Theor. Phys. 70 (1983), 424. 

]. da Providencia and J. N. Urbano, Proceedings of 1982 INS International Symposium on Dynamics of 

Nuclear Collective Motion (INS, 1982, July 6~1O), p. 361. 
A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 71 (1984), 122. 

9) A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 70 (1983), 1675. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/7

1
/4

/7
5
2
/1

8
5
9
6
5
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


