
GENERALIZATION OF EXPONENTIALLY WEIGHTED RLS ALGRORITHM 
BASED ON A STATE-SPACE MODEL 

Byungjin Chun, Beomsup Kim and Yong Hoon Lee 

Dept. of Electrical Engineering 
Korea Advanced Institute of Science and Technology 

373-1 Kusong-dong, Yusong-gu, Taejon, 305-701, Korea 

ABSTRACT 2. THE G-RLS ALGORITHM 

We develop a generalized RLS (G-RLS) algorithm described 
by a state-space model through some modification of the 
procedure for Kalman filter derivation. It is shown that the 
G-RLS algorithm reduces to the conventional RLS when 
the state transition matrix is an identity matrix, and that 
the G-RLS algorithm without exponential weighting and 
Kalman filtering become identical when the state model is 
an unforced dynamical model. The G-RLS algorithm does 
not require model statistics, and can be implemented once 
the forgetting factor is chosen. The performances of the G- 
RLS and Kalman filtering are compared through computer 
simulation. Specifically, they are applied to the derivation 
of variable loop gains of a digital phase-locked loop (DPLL). 
The results indicate that the G-RLS algorithm can act like 
the Kalman filter if its forgetting factor is properly chosen. 

1. INTRODUCTION 

It has been recognized that the RLS algorithm can be 
viewed as a special case of Kalman filtering. In [l] [a]  [ 3 ] ,  
it is shown that a Kalman filter described by a random- 
walk state model, whose state transition matrix equals the 
identity matrix, reduces to the exponentially weighted RLS 
algorithm when the process noise correlation matrix is prop- 
erly given in terms of the forgetting factor, the Kalman gain 
and the estimation error covariance matrix. More recently, 
in [4], the RLS algorithm and its variants are derived in a 
unified manner from Kalman filtering described by an un- 
forced dynamical state model whose state transition matrix 
is equal to a constant multiple of the identity matrix (see 
also [5]). Based on these results, some extensions of the RLS 
algorithm exhibiting better tracking performance than the 
conventional one are introduced in [5] [6 ] .  

The objective of this paper is to develop another ex- 
tension of the RLS algorithm by exploiting Kalman filter 
theory. The proposed algorithm, which will be referred to 
as the generalized RLS (G-RLS) algorithm, is based on a 
general state model whose transition matrix is not a con- 
stant multiple of the identity matrix. This algorithm is 
developed through some modification of the procedure for 
the Kalman filter derivation in [7], and can be implemented 
without the knowledge of model statistics. It will be shown 
through computer simulation that the G-RLS can act like 
the Kalman filter if its forgetting factor is properly chosen. 
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The G-RLS algorithm is based on the least squares (LS) 
estimation theory. In what follows, this algorithm is derived 
after briefly reviewing the LS theory. 

2.1. The LS Estimation Theory 

Consider the following measurement equation: 

y = H x + n  (1)  

where y is an N-dimensional measurement vector; x is an 
M-dimensional parameter vector to be estimated ( N  2 M ) ;  
H is a known N-by-M matrix of full rank; and n is an 
N-dimensional noise vector with zero mean and covariance 
matrix R. In LS estimation, the problem is to find an 
estimate X of the parameter x as a linear combination of 
the measurements y so that the estimate x minimizes the 
following cost function: 

J ( X )  = (y - Hk)'W(y - Hk) ( 2 )  

where W is an N-by-N weight matrix, and T denotes trans- 
pose. The solution to this problem is given by 

j ,  = ( H ~ w H ) - ~ H ' w ~ .  (3)  

This estimate is unbiased [SI, and its error covariance matrix 
is expressed as 

E[(x  - X)(X - X)'] = (H*WH)-' 
. H ~ w R w H ( H ~ w H ) - ~ . ( ~ )  

When the weight matrix W is set equal to the inverse of 
the noise covariance matrix R, the estimate in (3) becomes 
the minimum variance estimator, which plays a fundamen- 
tal role in Kalman filter derivation [7]. Another important 
special case of the estimate in ( 3 )  is derived by setting W 
to the following diagonal matrix: 

w = d i a g ( 1 ,  A, x2, . ' .  , P - 1 )  (5) 

where 0 < X 5 1 and X k  (0 5 k 5 N - 1) represents the 
(k + 1)-th diagonal element. In this case, the cost function 
in ( 2 )  becomes 
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where y k  is the (N-k)-th element of y and h; is the ( N - k ) -  
th row of H. This cost function leads to the exponentially 
weighted RLS algorithm with the forgetting factor A. In the 
sequel, the G-RLS algorithm is derived by replacing a noise 
covariance matrix that appears in Kalman filter derivation 
with a diagonal weight matrix which is an extension of the 
one in (5). 

2.2. Derivation of the G-RLS Algorithm 

We now consider a state-space model described by the fol- 
lowing pair of equations: 

where k is a nonnegative integer; A k  is a known M-by- 
M state transition matrix; x k  is the M-dimensional state 
(or parameter) vector; W k  is an M-dimensional process 
noise vector; y k  is the measurement; h k  is a known M -  
dimensional vector; and Vk is white noise with zero mean 
and variance 0:. These equations can be combined to yield 
an equation that has the same form as (1). To be specific, 
we express Y k - i ,  0 5 i 5 k, in terms of x k .  Form ( 7 ) ,  x k - a  

is written as 

k-1 a k - m  

m = l  

where 

P--1 

(9) 

r=q 

is the backward transition matrix relating the states xP and 
xq. Using (9) in ( 8 ) ,  we get 

m=l 

If we define the (k + 1)-by-M matrix 

(13) 
m = l  

then the set of measurements { y k ,  Y k - 1  ,.. . , yo} is expressed 
as 

Y k  = H k X k  + n k  (14) 

Table 1: Summary of the Kalman filter. 

Initial conditions: 

Prediction: 
a,,-, = x o ,  Pol-1 = Po 

k = 1 , 2 , 3 ,  . . . 
a k l k - 1  = A k - i x k - i l k - i  

P k l k - 1  = A k - - 1 P k - I l k - i A ; - i  + Qk-1  
k = 0 , 1 , 2 ,  . . . 

x k l k  = a k J k - i  + K k ( Y k  - h ; a k ] k - i )  

P k l k  = (I - K k h ; ) P k l k - i  

Kk = h ~ p ~ ~ k - 1 h k i - n ~  

Filtering: 

pk k - l h k  

Notations: 
xplq is the estimate of the state xp given the 

P,lq is the covariance matrix of the error vector 
input data up to time q. 

where y k  = [ y k ,  y k - I , " ' ,  ?&IT, I l k  = u k  + V k  and v k  = 
[ V k , V k - l , . . . , v O ]  T .  Since (14) has the sameform as (1) and 
n k  has zero mean, the state vector x k  can be estimated by 
using (3). Specifically, 

k k  = ( H : W k H k ) - l H ; W k Y k  (15) 

where w k  is a (k+l)-by-(k+1) weight matrix. The Kalman 
filter can be derived from this equation. Suppose for the 
time being that the weight matrix w k  in (15) is set equal 
to the inverse of the noise covariance matrix E [ n k n F ] ,  and 
that the following assumptions on the noise sequences in 
(7) and (8) are satisfied: 

{ w k }  is a white noise with zero mean and E [ W k W T ]  = 

The initial state vector xo is random with mean XO 

The random variables { w k ,  V k ,  (XO - XO)} are uncor- 

Then, (15) leads to the Kalman filter, which is summarized 
in Table 1 for later use. 

Q k f i k i  where 6 k (  = 0 for k # and 6 k k  = 1. 

and covariance matrix P O .  

related. 

The G-RLS algorithm is also derived from (15). Let the 
weight matrix w k  be: 

2 k 

m=l m=l 

When A1 = A2 = . . .  = Ak = A, this weight matrix is 
identical to the one in (5). We rewrite (15) and introduce 
some relations 

X k l k  = ( H z W k H k ) - l H ; W k Y k  

= P k l k H f W k Y k  (17) 

where x k  in (15) is denoted by k k l k  emphasizing that the in- 
put data up to time k are given, and P k l k  = ( H : W k H k ) - ' .  
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The matrix P k l k  is not a covariance matrix, unlike the case 
of Kalman filteiing. 

consider 

Table 2: Summary of the G-RLS algorithm. To derive a recursive version of the estimate in (17), we 
Initialize the algorithm by setting 

and W k l k - l  is a weight matrix. A reasonable choice of the 
weight W k l k - l  for the one-step prediction is: 

W k l k - 1  = X k W k - 1  (21) Equations (22), (23), (25), (27) and (28) constitute the G- 
RLS algorithm, as summarized in Table 2. This algorithm 
is initiated by setting kol-l = 0 and Pol-1 = p-'I for p a 
small positive constant, as in the case of conventional RLS 
filtering [5]. When the state model in (7) is a random walk 
model having A k  = I and Xk = X for all k ,  

With this weight matrix, every input including the most 
recent one yk-1  can be properly weighted for one-step pre- 
diction. Our goal is to express Xklk in terms of k q - 1  and 
x k - ] l k - 1 .  Using (21) in (2O), P k l k - l  is written as 

Now from (22) and (17), it is straightforward to show that 
x k l k - 1  in (19) reduces to 

e k l k - 1  = A k - 1 k k - 1 1 k - i .  ( 2 3 )  

The recursion formulas for P k l k  and x q k  are derived by 
exploiting the following relations: 

and yk = [yk,  
as 

The matrix P k p  in (17) is expressed 

and the G-RLS algorithm reduces to the conventional RLS 
algorithm. 

Comparison of Table 1 and 2 clearly indicates that the 
G-RLS algorithm resembles Kalman filtering. The two al- 
gorithms become identical, with the exception of initial con- 
ditions, if the statistics Q k  and .: that  appear in Kalman 
filtering are set to 0 and 1, respectively and Xk = 1 for ev- 
ery k .  Therefore, the G-RLS algorithm without exponential 
weighting corresponds to the Kalman filter described by an 
unforced (or deterministic) state model expressed as 

k k + 1  = A k k k .  (31) 

The relation between the two algorithm may be summarized 
as follows: given the state model in (7) and (8), the G-RLS 
algorithm approximates the Kalman filter by employing a 

P k l k  = ( H Z I k - - 1 W k l l c - i H k l k - i  4- h k h ? ) - '  

P k , k - - l h k h T P k l k - - l  

h c P k l k - - l h k  + 1 (25) proper weight sequence {Ak} .  
=z P k l k - 1  - 

where the first equality follows from (24) and the second 
follows from the matrix inversion lemma ( A  + BCD)-I = 
A-' - A-lB(DA-lB + C-l)-lDA-l. Now the desired 
estimate k k l k  becomes 

and after some calculation it reduces to 

3. APPLICATION TO DPLL DESIGN 

Consider the 2nd-order adaptive DPLL model shown in 
Fig. 1. Assuming a zero-crossing DPLL as in [9], the input 
to this model is the timing offset between the positive going 
zero-crossings of the incoming signal and those of a locally 
generated sine wave. To be specific, let l/To and 1/T1 de- 
note the clock rates of the receiver and the transmitter, re- 
spectively. The timing offset crk a t  the k-th ( k  = 0, 1 , 2 , .  . .) 
zero-crossing point can be expressed as 
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Figure 1: The 2nd-order DPLL 

where t o  is the initial timing offset. The input a; to the 
DPLL, corrupted by noise, is expressed as 

where uk is zero-mean white noise with variance u2. In 
[9], the variable gain sequences KO,k and K l , k  are obtained 
based on the following state-space model. 

L A  

hT = [l 01. Note that P k  is constant for all k. The optimal 
gain I<O,k and K l , k  minimizing the trace of the prediction 
error covariance matrix P k + l l k  are given by the Kalman 
gain vector Kk = [I<o,k Ic - l ,k ]T ,  which is obtained by solv- 
ing the Kalman filtering equations in Table 1. Application 
of the G-RLS algorithm to this problem yields a sub-optimal 
solution. In what follows, the performance of the G-RLS al- 
gorithm is compared with those of Kalman filtering through 
computer simulation. 

The input to the DPLL is generated under the assump- 
tion that the initial phase a0 and the initial phase change PO 
have uniform density in [-To/2, To/2]  and [-T0/10, To/lO], 
respectively. For these initial statistics, Pol-1 required for 

Kalman filtering is 
L 

covariance matrix Q is set to and the 

measurement noise variance uz = l O - ’ T ? .  For the G-RLS 
algorithm, these model statistics are ignored and its for- 
getting factor is experimentally chosen through simulation. 
Here, X is set at  0.96. 

The variable loop gain sequences obtained through the 
G-RLS and Kalman filtering algorithm are depicted in Fig. 
2,  and the corresponding prediction error variances evalu- 
ated experimentally through 1000 simulation runs are shown 
in Fig. 3. It is shown that the G-RLS algorithm almost acts 
like the Kalman filter; the former can be a useful alterna- 
tive to the latter in practical applications in which model 
statistics are not precisely known. 
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Figure 2: The variable loop gain sequences. 
10” , 

t 
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Figure 3: The empirical prediction error variances (normal- 
ized to T i ) .  
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