
Generalization of Pattern-growth Methods for
Sequential Pattern Mining with Gap Constraints

Cláudia Antunes and Arlindo L. Oliveira

Department of Information Systems and Computer Science
Instituto Superior Técnico / INESC-ID

R. Alves Redol 9
1000 Lisboa, Portugal

claudia.antunes@dei.ist.utl.pt
aml@inesc-id.pt

Abstract. The problem of sequential pattern mining is one of the several that
has deserved particular attention on the general area of data mining. Despite
the important developments in the last years, the best algorithm in the area
(PrefixSpan) does not deal with gap constraints and consequently doesn't allow
for the introduction of background knowledge into the process. In this paper
we present the generalization of the PrefixSpan algorithm to deal with gap
constraints, using a new method to generate projected databases. Studies on
performance and scalability were conducted in synthetic and real-life datasets,
and the respective results are presented.

1 Introduction

With the rapid increase of stored data in digital form, the interest in the discovery of
hidden information has exploded in the last decade. One approximation to the prob-
lem of discovery of hidden information is based on finding frequent associations
between elements in sets, also called basket analysis. One important special case
arises when this approach is applied to the treatment of sequential data. The sequen-
tial nature of the problem is relevant when the data to be mined is naturally embed-
ded in a one dimensional space, i.e., when one of the relevant pieces of information
can be viewed as one ordered set of elements. This variable can be time or some
other dimension, as is common in other areas, like bioinformatics. We define se-
quential pattern mining as the process of discovering all sub-sequences that appear
frequently on a given sequence database and have minimum support threshold. One
challenge resides in performing this search in and efficient way.

In this paper, we present a generalization of the PrefixSpan algorithm to deal with
gap constraints. A gap constraint imposes a limit on the separation of two consecu-
tive elements of an identified sequence. This type of constraints is critical for the
applicability of these methods to a number of problems, especially those with long
sequences and small alphabets. The method we propose is based on the introduction
of a new method to generate projected databases that efficiently stores the subse-
quences of all occurrences of each frequent element.

The paper is organized as follows: section 2 exposes the sequential pattern mining
problem and its main application areas. Section 3 formalizes the sequential pattern
mining problem and describes the specific problems addressed. Section 4 analyzes
existing algorithms, paying particular attention to their behavior when dealing with
gap constraints. Section 5 represents the main contribution of this work and presents
a generalization of the PrefixSpan algorithm to deal with gap constraints. Section 6
describes the experimental results obtained with artificial and real-life data. Finally,
section 7 draws the most relevant conclusions and points out guidelines for future
research.

2 Sequential Pattern Mining

The problem of sequential pattern mining has deserved particular attention inside the
general area of data mining. Algorithms for this problem are relevant when the data
to be mined has some sequential nature, i.e., when each piece of data is an ordered
set of elements, like events in the case of temporal information, or amino-acid se-
quences for problems in bioinformatics.

One particularly important problem in the area of sequential pattern mining is the
problem of discovering all subsequences that appear on a given sequence database
and have minimum support threshold. The difficulty is in figuring out what se-
quences to try and then efficiently finding out which of those are frequent [7].

One of the obvious applications of these techniques is in modeling the behavior of
some entity, along time. For instance, using a database with transactions performed
by customers at any instant, it is desirable to predict what would be the customer’s
next transaction, based on his past transactions. This type of concerns is one of the
main goals of temporal data mining. Examples of these tasks are easily found on a
number of areas, like the prediction of financial time series, patients’ health monitor-
ing and marketing, to cite only a few. With the increase of stored data in several
domains and with the advances in the data mining area, the range of sequential pat-
tern mining applications has enlarged significantly. Today, in engineering problems
and scientific research sequential data appears, for example, in data resulting from
monitoring sensor networks or spatial missions [4]. In healthcare, despite this type of
data being a reality for decades (for example in data originated by complex data
acquisition systems like ECGs or EECs), more than ever, medical staff is interested
in systems able to help on medical research and on patients monitoring [6]. In busi-
nesses and finance, applications on the analysis of product sales, client behaviors or
inventory consumptions are essential for today’s business planning ([1], [3]). A sur-
vey of applications and methods used in temporal data mining has been presented
recently [2].

Another relevant application of sequential pattern mining is in bioinformatics,
where different characteristics of proteins and other biologically significant struc-
tures are to be inferred from mapped DNA sequences. Some important applications
in this domain are on molecular sequence analysis, protein structure prediction, gene
mapping, modeling of biochemical pathways and drug design [8].

3 Problem Definition

Several algorithms have been proposed to deal with the problem of sequential pattern
mining, but they don't always share the same set of assumptions, which makes it
difficult to compare them. In order to compare the performance of the two most sig-
nificant approaches proposed to date, we present the basic notions needed to clearly
define the problem of sequential pattern mining.

Definition 1. A sequence is an ordered list of elements called items. A sequence is
maximal if it is not contained in any other sequence.

The number of elements in a sequence s is called the length of the sequence and is
denoted by |s|. A sequence with length k is called a k-sequence. The i th element in the
sequence is represented by si. The empty sequence is denoted by <>. The result of the
concatenation of two sequences x and y is a new sequence s denoted by s=xy.

Definition 2. A sequence a=<a1a2... an> is contained in another sequence b=<b1b2...
bm>, or a is a subsequence of b, if there exist integers 1

�
i1<i2<…<in

�
m such that

a1=bi1, a2=bi2, …, an=bin.

A subsequence s' of s is denoted by s'⊆s, and by s'⊂s if s' is a proper subsequence
of s, i.e. if s' is a subsequence of s but is not equal to s.

When considering the existence of gap constraints, such as the use of a sliding
window or some time constraints (as proposed by Srikant [7]), the notion of subse-
quence suffers some changes. In general, we can view this relaxation as an approxi-
mation to the original measure.

Definition 3. A sequence a=<a1a2... an> is a δ-distance subsequence of b=<b1b2...
bm> if there exist integers i1<i2<…<in such that a1=bi1, a2=bi2, …, an=bin. and ik–ik-

1
� δ. Sequence a=<a1a2... an> is a contiguous subsequence of b=<b1b2... bm> if a is a

1-distance subsequence of b, i.e., the elements of a can be mapped to a contiguous
segment of b.

Note that a contiguous subsequence is a particular case of δ-distance subsequence
(δ=1) and is equivalent to the original notion of subsequence. A δ-distance subse-
quence s' of s is denoted by s' ⊆ δ s. A contiguous subsequence s' of s is denoted by
s'∠s.

Definition 4. Given a database D of sequences and a user-specified minimum
support threshold σ, a sequence is said to be frequent if it is contained in at least σ
sequences in the database. A sequential pattern is a maximal sequence that is
frequent.

Given a database D of sequences and a user-specified minimum support threshold
σ, the problem of mining sequential patterns is to find all of the sequential patterns.

Note that beside the database and the minimum support threshold, the user may
supply the δ, i.e. the maximum gap allowed between two consecutive elements in a
sequence.

4 Existing Algorithms

4.1 Apriori-based Methods

The first approach to sequential pattern mining was the AprioriAll algorithm [1].
This algorithm follows the candidate generation and test philosophy, and looks for
all patterns without considering the existence of gap constraints. It considers a se-
quence frequent if all of its elements are present (in the given order), on a sufficient
number of sequences in the database.

AprioriAll (DB, mi n_sup) {
 L1 = { f r equent 1- sequences } ;
 i nt k=2;
 whi l e (Lk- 1 ≠ ∅) {
 Ck = candi dat eGener at i on(Lk- 1, k) ;
 Ck = candi dat ePr uni ng(Ck, k) ;
 Lk = suppor t BasedPr uni ng(Ck) ;
 k � k+1
 }
 r et ur n Maxi mal Sequences i n ∪k Lk

}
candidateGeneration (Lk- 1, k) {
 Ck = ∅;
 f or each a∈Lk- 1
 f or each b∈Lk- 1
 i f (∀ n, 1 � n � k- 2: an=bn)
 Ck � Ck ∪ { a1…ak- 2ak- 1bk- 1,
 a1…ak- 2bk- 1ak- 1}
 r et ur n Ck;
}

Fig. 1. AprioriAll algorithm and its candidate generation method

The candidate generation in this case works by joining two frequent k-1-sequences
when their maximal prefixes are equal. Each pair of such sequences originates two
k-candidates, as illustrated in figure 1.

The great advantage of AprioriAll resides on its iterative nature and the use of the
anti-monotonicity property. Using the frequent k-1-sequences, it generates the k-
candidates, thus reducing the number of sequences to be searched in the database in
comparison with exhaustive search. It also performs an additional reduction on the

number of candidates, by removing all the candidates that have some non-frequent k-
1-subsequences, as shown in figure 2.

These reductions on the number of candidates are possible since the support of a
sequence obeys the anti-monotonic property, which says that a k-sequence can't be
frequent unless all of its k-1-subsequences are frequent.

candidatePruning (Lk- 1, Ck, k) {
 f or each s∈Ck
 i f (∃ s ' ⊂ s ∧ | s ' | =k- 1 ∧ s ' ∉Lk- 1)
 Ck � Ck \ { s}
 r et ur n Ck;
}

Fig. 2. Candidate pruning based on anti-monotonic property

Naturally, the most expensive task is the support-based pruning, since it counts
the support of each candidate on the full database. AprioriAll achieves best perform-
ance when the minimum support threshold is high and there are few frequent differ-
ent 1-sequences, 2-sequences and so on. This leads to maximal pruning and reduces
the number of support counts.

However when gap constraints are used, the AprioriAll algorithm cannot be ap-
plied directly. To illustrate this limitation, consider for example the data in Table 1
and a minimum support threshold of 40%, which means, in this case, that a pattern
has to occur at least twice in the database. Additionally, assume that the gap con-
straint is equal to 1, which means that only contiguous sequences are allowed.

Table 1. Database example

Database

fgfgfg
acjcde
ababa
achcde

noqrst

The first step of AprioriAll will find a, c, d and e as frequent 1-patterns and ac,

cd and de as frequent 2-patterns. However, the process will finish without discover-
ing cde, since there are no 3-candidates. This is due to limitations in the candidate-
generation method, which isn't able to generate all candidates. In fact, while the
candidate generation process is complete when there are no gap constraints, it be-
comes incomplete when gap constraints are imposed.

Although to our knowledge, this property has never been stated clearly, it eventu-

ally led to the definition of a new method for candidate generation that does not
suffer from this limitation.

candidateGeneration (Lk-1, k) {
 Ck = ∅;
 for each a∈Lk-1
 for each b∈Lk-1
 if (∀1 � n � k-2: an+1=bn)
 Ck � Ck ∪ {a1…ak-1bk-1}
 return Ck;
}

Fig. 3. Candidate generation in GSP method

The GSP algorithm [7] is an evolution of AprioriAll, allowing for the incorpora-
tion of gap constraints. The key difference between these two methods resides on the
candidate generation procedure. The GSP algorithm creates a new candidate when-
ever the prefix of a sequence is equal to the suffix of another one, as illustrated on
figure 3.

candidatePruning (Lk-1, Ck, k, gap) {
 if (gap≠1)
 for each s∈Ck
 if (∃ s' ⊂ s ∧ |s'|=k-1 ∧ s'∉Lk-1)
 Ck � Ck \ {s}
 else
 for each s∈Ck
 if (∃ s' ∠ s ∧ |s'|=k-1 ∧ s'∉Lk-1)
 Ck � Ck \ {s}
 return Ck;
}

Fig. 4. Candidate pruning in GSP method

The changes in the generation method imply changes in the candidate pruning
process. If gaps are not allowed only candidates with some non-frequent contiguous
subsequence need to be pruned. When gaps are allowed a sequence is pruned if it
contains a non-frequent subsequence. Figure 4 shows the pseudo-code for candidate
pruning method.

4.2 Pattern-growth Methods

Pattern-growth methods are a more recent approach to deal with sequential data
mining problems. The key idea is to avoid the candidate generation step altogether,
and to focus the search on a restricted portion of the initial database.

PrefixSpan (DB, min_sup) {
 return MaximalSequences in run(<>,0, DB)
}

run (α, length, DB) {
 f_list = createsFrequentItemList(DB);
 for each b∈f_list {
 α' � αb;
 L � L ∪ α'
 L � L∪run(α',length+1,createProjectedDB
(α',DB))
 }
 return L
}

createProjectedDB (α, DB) {
 for each s∈DB
 if (α ⊆ s) {
 β � s.postfix (α, 1)
 α-projDB � α-projDB ∪ {β}
 }
 return α-projDB;
}

Fig. 5. PrefixSpan algorithm and the creation of projected databases method

PrefixSpan [5] is the most promising of the pattern-growth methods and is based
on recursively constructing the patterns, as shown in figure 5. Its great advantage is
the use of projected databases. An α-projected database is the set of subsequences in
the database, that are suffixes of the sequences that have prefix α. In each step, the
algorithm looks for the frequent sequences with prefix α, in the correspondent pro-
jected database. In this way the search space is reduced in each step, allowing for
better performances in the presence of small support thresholds.

Again, the PrefixSpan algorithm performs perfectly without gap constraints but is
not able to deal with these restrictions. To illustrate that limitation, consider again
the data in Table 1 and the conditions used before (minimum support threshold of
40% and a gap constraint equal to 1). It will find a, c, d and e, which will constitute
f_list. Then it will call recursively the main procedure with α=a and an α-projected
database equal to {cjcde, baba, chcde}. Next it will recursively proceed with α=ac
and an α-projected database equal to {jcde, hcde}, which finishes this branch. Simi-
larly for element c: run is called with α=c and an α-projected database equal to
{jcde, hcde}. Since there is no frequent element at distance 1, the search stops and
cde is not discovered. This happens because the α-projected database only maintains
the suffix after the first occurrence of the last element of α.

5 Generalized PrefixSpan

In this section we show how PrefixSpan can be generalized to handle gap con-
straints, an important issue since gap constraints are important in many domains of
application and PrefixSpan is the most efficient algorithm known for sequential
pattern mining, especially in the situation of low support thresholds.

The generalization we propose for PrefixSpan (GenPrefixSpan) in order to be able
to deal with gap constraints, is based on the redefinition of the method used to con-
struct the projected database. Instead of looking only for the first occurrence of the
element, every element's occurrence is considered. For example, in the previous
example, the creation of the c-projected database would give as result {jcde, de,
hcde, de} instead of {jcde, hcde} as before.

It is important to note that, including all suffixes after the element's occurrence
changes the database and may change the number of times that each pattern appears.
For instance, for the same example the a-projected database would be {cjcde, baba,
ba, chcde}. In order to deal with this issue, associating an id to each original se-
quence in the database and guaranteeing that each sequence counts at most once for
the support of each element is enough to keep an accurate count on the number of
appearances of a given sequence.

initProjDB (α, DB, gap) {
 for each s∈DB {
 i � 1;
 repeat {
 i � s.nextOccurrence(α, i+1);
 β � s.postfix(α, i)
 α-projDB � α-projDB ∪ {β}
 } until i + gap > |s|
 }
 return α-projDB;
}

Fig. 6. The new method to create projected databases

Figure 6 illustrates the new method we propose to create projected databases. This
new approach is only needed in the first recursion level, since after this isolated step
the database will contain all of the sequences starting with each frequent element.

So the generalized PrefixSpan will consist of two main steps: the discovery and
creation of each frequent element projected database and the usual recursion, as
shown in figure 7.

GenPrefixSpan (DB, min_sup, gap) {
 f_list = createsFrequentItemList(DB);
 for each b∈f_list {
 L � L ∪ b
 L � L ∪ run (b, 1,
 initProjDB (b,DB, gap))
 }
 return MaximalSequences in L
}

Fig. 7. Generalized PrefixSpan main method

Note that when there is no gap constraint, the creation of projected databases is
similar to the correspondent procedure defined in original PrefixSpan, since it only
generates the projection relative to the first occurrence of α. In this manner, the
performance of GenPrefixSpan and PrefixSpan are similar in the absence of gap
constraints.

6 Comparison

In this section we present a comparative study between apriori-based and pattern-
growth approaches with and without the presence of gap constraints. In order to do
that, we use the AprioriAll, GSP and PrefixSpan algorithms in the absence of gap
constraints, and the GSP and GenPrefixSpan algorithms in the presence of these
restrictions.

All experiments were performed on a Pentium II with 300 MHz and 256MB of
RAM. The sequences were generated and maintained in main memory during the
algorithms processing.

All algorithms were implemented using an object-oriented approach allowing for
the sharing of the basic methods used by the different algorithms and making all
speed comparisons meaningful.

6.1 Experiences with Artificially Generated Data

To perform this study, we used a synthetic data set generator, based on a Zipf
distribution, similar to others used on similar studies ([1], [5]). As parameters, this
data generator receives the number of sequences, the average length of each
sequence, the number of distinct items (or sequence elements) and a Zipf parameter
that governs the probability of each item occurrence in the data set. The length of
each sequence is chosen from a Poisson distribution with mean equal to the input
parameter correspondent to the average length of each sequence (10 was the chosen
value for the average sequence length).

The study is divided in two major sections: the scalability and the performance
studies. Table 2 lists the parameters of the performed studies.

Table 2. Comparative studies performed

Study DB
size

Support Gap Alphabet
Size

 Scalability  33% 0 5

Variable Support 10000  0 5

Variable Gap 10000 33%  5

P
er

fo
rm

an
ce

Variable Alphabet 10000 33% 0 

Scalability Study. As it is shown in figure 8, the scalability of PrefixSpan when
adapted to use gap constraints suffers some degradation, having a behavior similar to
that of apriori-based algorithms. This leaves open the question of whether it is
possible to generalize projection based methods, such as PrefixSpan, in a way that
implies minimal impact, when compared with the situation where no gap constraints
are used.

Scalability Study (without gap constraints)

0

10

20

30

40

50

1000 5000 10000 25000 50000

DB

T
im

e
(s

)

AprioriAll GSP PrefixSpan

Scalability Study (with gap constraints)

0

5

10

15

1000 5000 10000 25000 50000

DB

T
im

e
(s

)

GSP GenPrefixSpan

Fig. 8. Performance vs. database size

Note that the worst case to GenPrefixSpan (with gap constraints) is encountered
when the database is composed of a significant number of sequences with the same
element repeated several times. In this case, the projected database for each different
element may be much bigger than the original database, violating the assumption
that the size of projected database cannot exceed that of the original one, as is the
case of the original version of PrefixSpan [5].

Performance with Variable Support. In terms of performance (figure 9), when the
minimum support threshold varies, the behavior of PrefixSpan is similar with or
without the use of gap constraints, with the same pattern of growth. This means that
the advantages of PrefixSpan over apriori-based methods are still present in the
situation of low value support thresholds.

Performance vs Support (w ithout gap)

0

1000

2000

3000

4000

5000

0.75 0.5 0.4 0.33 0.25 0.1 0.03 0.01

Support (%)

T
im

e
(s

)

AprioriAll GSP Pref ixSpan

Perform ance vs Support (with gap)

0
20
40
60
80

100
120

0.75 0.5 0.4 0.33 0.25 0.1 0.03 0.01

Support (%)

T
im

e
(s

)

GSP GenPrefixSpan

Fig. 9. Performance vs. minimum support threshold

Performance with Variable Gap Constraints

Performance vs Gap

0
5

10
15

20
25
30

0 1 3 5 7
Gap

T
im

e
(s

)

GSP GenPrefixSpan

Fig. 10. Performance vs. gap value

As expected (fig. 10), when the gap constraint is relaxed, the performance de-
creases as in apriori-based algorithms, since the number of patterns to discover in-
creases. Note that the difference between both methods increases with the relaxation
of gap constraints. With this relaxation the probability to encounter frequent ele-
ments in the allowed gap is greater and consequently the search for the patterns is
less time consuming.

Performance with Variable Alphabet Size.

Performance vs Alphabet (w ithout gap)

0

2

4

6

8

10

5 10 25 50 100 500
Alphabet Size

T
im

e
(s

)

AprioriAll GSP PrefixSpan

Performance vs Alphabet (w ith gap)

0

2

4

6

8

10

5 10 25 50 100 500
Alphabet Size

T
im

e
(s

)

GSP GenPref ixSpan

Fig. 11. Performance vs. alphabet size

The impact of the alphabet size on the performance of the methods did not lead to
any clear conclusions. The PrefixSpan method seems to be better than apriori-based
methods over all ranges of the alphabet size, but the results are inconclusive and the
observed evolution is not easily explainable. It is worth noting that the change in
alphabet size has a significant and non-trivial impact on the type and number of
patterns present in the database, as is shown in figure 11.

6.2 Experiences with Real-World Data

To perform this study, we used the WWW server access logs from the web site of
a discussion forum. The objective was to identify common patterns of access, in
order to optimize the layout of the web site and, in the future, to identify and flag
abnormal behaviors. The dataset is composed of about 7000 sequences, where each
sequence represents the pages visited by one user when he enters the forum.

Perform ance vs Support (w ithout gap)

0

5

10

15

0.75 0.5 0.4 0.33 0.25 0.1

Support (%)

T
im

e
(s

)

AprioriAll GSP PrefixSpan

Performance vs Support (w ith gap)

0

2

4

6

8

0.75 0.5 0.4 0.33 0.25 0.1

Support (%)

T
im

e
(s

)

GSP GenPrefixSpan

Fig. 12. Performance vs. minimum support threshold

In general, the results achieved with the real-life datasets (figure 12 and 13) con-
firm the results obtained with the synthetic dataset, despite the significantly different
statistics of the problems. For this reason, we believe the results presented are rele-
vant and applicable to a large range of actual problems.

Performance vs Gap

0
1
2
3

4
5
6

1 3 5 7
Gap

T
im

e
(s

)

GSP GenPrefixSpan

Fig. 13. Performance study with variable gap

7 Conclusions

In this paper we have presented the generalization of the PrefixSpan algorithm to
deal with gap constraints. In order to achieve that goal, we have proposed a new
method to generate projected databases that store the subsequences of all occurrences
of each frequent element.

The modified PrefixSpan method keeps its performance advantages relatively to
apriori-based algorithms in the more difficult situation of low support thresholds,
although its relative advantage over these methods is reduced when compared with
the high support thresholds situation.

The generalization of projection based methods to gap constrained sequential pat-
tern problems is very important in many applications, since apriori-based methods
are inapplicable in many problems where low support thresholds are used. In fact,
the imposition of a gap restriction is critical for the applicability of these methods in
areas like bioinformatics, which exhibit limited size alphabets and very long se-
quences. We are actively working in applying this methodology to the problem of
motif finding in bioinformatics sequences, an area that can benefit very much from
more sophisticated methods for sequential pattern analysis.

REFERENCES

1. Agrawal, R. and R. Srikant, "Mining sequential patterns", in Proc. Int'l Conf. Data Engi-
neering (1995), 3-14

2. Antunes, C. and A. Oliveira, "Temporal data mining: an overview" in Proc. Workshop on
Temporal Data Mining (KDD'01) (2001), 1-13

3. Fama, E., "Efficient Capital Markets: a review of theory and empirical work". Journal of
Finance (1970) 383-417

4. Grossman, R. and C. Kamath et all, Data Mining for Scientific and Engineering Applica-
tions. Kluwer Academic Publishers (1998)

5. Pei, J, J. Han et all "PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected
Pattern Growth" in Proc. Int'l Conf. Data Engineering (ICDE 01) (2001)

6. Shahar, Y. and M.A. Musen, "Knowledge-Based Temporal Abstraction in Clinical Do-
mains" in Artificial Intelligence in Medicine 8, (1996) 267-298

7. Srikant, R. and R. Agrawal, "Mining Sequential Patterns: Generalizations and Performance
Improvements" in Proc. Int'l Conf. Extending Database Technology (1996) 3-17

8. Zaki, M., H.Toivonen and J. Wang, "Report on BIOKDD01: Workshop on Data Mining in
Bioinformatics" in SIGKDD Explorations, vol. 3, nr. 2 (2001) 71-73

