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Abstract. The problem of sequential pattern mining is one of the several that 
has deserved particular attention on the general area of data mining. Despite 
the important developments in the last years, the best algorithm in the area 
(PrefixSpan) does not deal with gap constraints and consequently doesn't allow 
for the introduction of background knowledge into the process. In this paper 
we present the generalization of the PrefixSpan algorithm to deal with gap 
constraints, using a new method to generate projected databases. Studies on 
performance and scalability were conducted in synthetic and real-life datasets, 
and the respective results are presented. 

1   Introduction 

With the rapid increase of stored data in digital form, the interest in the discovery of 
hidden information has exploded in the last decade. One approximation to the prob-
lem of discovery of hidden information is based on finding frequent associations 
between elements in sets, also called basket analysis. One important special case 
arises when this approach is applied to the treatment of sequential data. The sequen-
tial nature of the problem is relevant when the data to be mined is naturally embed-
ded in a one dimensional space, i.e., when one of the relevant pieces of information 
can be viewed as one ordered set of elements. This variable can be time or some 
other dimension, as is common in other areas, like bioinformatics. We define se-
quential pattern mining as the process of discovering all sub-sequences that appear 
frequently on a given sequence database and have minimum support threshold. One 
challenge resides in performing this search in and efficient way. 

In this paper, we present a generalization of the PrefixSpan algorithm to deal with 
gap constraints. A gap constraint imposes a limit on the separation of two consecu-
tive elements of an identified sequence. This type of constraints is critical for the 
applicability of these methods to a number of problems, especially those with long 
sequences and small alphabets. The method we propose is based on the introduction 
of a new method to generate projected databases that efficiently stores the subse-
quences of all occurrences of each frequent element.  



The paper is organized as follows: section 2 exposes the sequential pattern mining 
problem and its main application areas. Section 3 formalizes the sequential pattern 
mining problem and describes the specific problems addressed. Section 4 analyzes 
existing algorithms, paying particular attention to their behavior when dealing with 
gap constraints. Section 5 represents the main contribution of this work and presents 
a generalization of the PrefixSpan algorithm to deal with gap constraints. Section 6 
describes the experimental results obtained with artificial and real-life data. Finally, 
section 7 draws the most relevant conclusions and points out guidelines for future 
research. 

2   Sequential Pattern Mining 

The problem of sequential pattern mining has deserved particular attention inside the 
general area of data mining. Algorithms for this problem are relevant when the data 
to be mined has some sequential nature, i.e., when each piece of data is an ordered 
set of elements, like events in the case of temporal information, or amino-acid se-
quences for problems in bioinformatics. 

One particularly important problem in the area of sequential pattern mining is the 
problem of discovering all subsequences that appear on a given sequence database 
and have minimum support threshold. The difficulty is in figuring out what se-
quences to try and then efficiently finding out which of those are frequent [7]. 

One of the obvious applications of these techniques is in modeling the behavior of 
some entity, along time. For instance, using a database with transactions performed 
by customers at any instant, it is desirable to predict what would be the customer’s 
next transaction, based on his past transactions. This type of concerns is one of the 
main goals of temporal data mining. Examples of these tasks are easily found on a 
number of areas, like the prediction of financial time series, patients’  health monitor-
ing and marketing, to cite only a few. With the increase of stored data in several 
domains and with the advances in the data mining area, the range of sequential pat-
tern mining applications has enlarged significantly. Today, in engineering problems 
and scientific research sequential data appears, for example, in data resulting from 
monitoring sensor networks or spatial missions [4]. In healthcare, despite this type of 
data being a reality for decades (for example in data originated by complex data 
acquisition systems like ECGs or EECs), more than ever, medical staff is interested 
in systems able to help on medical research and on patients monitoring [6]. In busi-
nesses and finance, applications on the analysis of product sales, client behaviors or 
inventory consumptions are essential for today’s business planning ([1], [3]). A sur-
vey of applications and methods used in temporal data mining has been presented 
recently [2]. 

Another relevant application of sequential pattern mining is in bioinformatics, 
where different characteristics of proteins and other biologically significant struc-
tures are to be inferred from mapped DNA sequences. Some important applications 
in this domain are on molecular sequence analysis, protein structure prediction, gene 
mapping, modeling of biochemical pathways and drug design [8]. 



3   Problem Definition 

Several algorithms have been proposed to deal with the problem of sequential pattern 
mining, but they don't always share the same set of assumptions, which makes it 
difficult to compare them. In order to compare the performance of the two most sig-
nificant approaches proposed to date, we present the basic notions needed to clearly 
define the problem of sequential pattern mining. 

Definition 1. A sequence is an ordered list of elements called items. A sequence is 
maximal if it is not contained in any other sequence. 

The number of elements in a sequence s is called the length of the sequence and is 
denoted by |s|. A sequence with length k is called a k-sequence. The i th element in the 
sequence is represented by si. The empty sequence is denoted by <>. The result of the 
concatenation of two sequences x and y is a new sequence s denoted by s=xy. 

Definition 2. A sequence a=<a1a2... an> is contained in another sequence b=<b1b2... 
bm>, or a is a subsequence of b, if there exist integers 1

�
i1<i2<…<in

�
m such that 

a1=bi1, a2=bi2, …, an=bin. 

A subsequence s' of s is denoted by s'⊆s, and by s'⊂s if s' is a proper subsequence 
of s, i.e. if s' is a subsequence of s but is not equal to s. 

When considering the existence of gap constraints, such as the use of a sliding 
window or some time constraints (as proposed by Srikant [7]), the notion of subse-
quence suffers some changes. In general, we can view this relaxation as an approxi-
mation to the original measure. 

Definition 3. A sequence a=<a1a2... an> is a δ-distance subsequence of b=<b1b2... 
bm> if there exist integers i1<i2<…<in such that a1=bi1, a2=bi2, …, an=bin. and ik–ik-

1
� δ. Sequence a=<a1a2... an> is a contiguous subsequence of b=<b1b2... bm> if a is a 

1-distance subsequence of b, i.e., the elements of a can be mapped to a contiguous 
segment of b. 

Note that a contiguous subsequence is a particular case of δ-distance subsequence 
(δ=1) and is equivalent to the original notion of subsequence. A δ-distance subse-
quence s' of s is denoted by s' ⊆ δ s. A contiguous subsequence s' of s is denoted by 
s'∠s. 

Definition 4. Given a database D of sequences and a user-specified minimum 
support threshold σ, a sequence is said to be frequent if it is contained in at least σ 
sequences in the database. A sequential pattern is a maximal sequence that is 
frequent. 

Given a database D of sequences and a user-specified minimum support threshold 
σ, the problem of mining sequential patterns is to find all of the sequential patterns. 



Note that beside the database and the minimum support threshold, the user may 
supply the δ, i.e. the maximum gap allowed between two consecutive elements in a 
sequence.  

4   Existing Algorithms 

4.1   Apriori-based Methods  

The first approach to sequential pattern mining was the AprioriAll algorithm [1]. 
This algorithm follows the candidate generation and test philosophy, and looks for 
all patterns without considering the existence of gap constraints. It considers a se-
quence frequent if all of its elements are present (in the given order), on a sufficient 
number of sequences in the database. 

AprioriAll ( DB,  mi n_sup)  {  
 L1 = {  f r equent  1- sequences } ;  
 i nt  k=2;  
 whi l e ( Lk- 1 ≠ ∅)  {  
  Ck = candi dat eGener at i on( Lk- 1,  k) ;  
  Ck = candi dat ePr uni ng( Ck,  k) ;  
  Lk = suppor t BasedPr uni ng( Ck) ;  
  k  �  k+1 
 }  
 r et ur n Maxi mal  Sequences i n ∪k Lk 

}  
candidateGeneration ( Lk- 1,  k) {  
 Ck = ∅;  
 f or  each a∈Lk- 1  
  f or  each b∈Lk- 1  
   i f  ( ∀ n,  1 � n � k- 2:  an=bn)  
    Ck �  Ck ∪ { a1…ak- 2ak- 1bk- 1,   
      a1…ak- 2bk- 1ak- 1}  
 r et ur n Ck;  
}  

Fig. 1. AprioriAll algorithm and its candidate generation method 

The candidate generation in this case works by joining two frequent k-1-sequences 
when their maximal prefixes are equal. Each pair of such sequences originates two 
k-candidates, as illustrated in figure 1. 

The great advantage of AprioriAll resides on its iterative nature and the use of the 
anti-monotonicity property. Using the frequent k-1-sequences, it generates the k-
candidates, thus reducing the number of sequences to be searched in the database in 
comparison with exhaustive search. It also performs an additional reduction on the 



number of candidates, by removing all the candidates that have some non-frequent k-
1-subsequences, as shown in figure 2. 

These reductions on the number of candidates are possible since the support of a 
sequence obeys the anti-monotonic property, which says that a k-sequence can't be 
frequent unless all of its k-1-subsequences are frequent. 

candidatePruning ( Lk- 1,  Ck,  k)  {  
 f or  each s∈Ck 
  i f  ( ∃ s '  ⊂ s  ∧ | s ' | =k- 1 ∧ s ' ∉Lk- 1)  
   Ck �  Ck \  { s}  
 r et ur n Ck;  
}  

Fig. 2. Candidate pruning based on anti-monotonic property 

Naturally, the most expensive task is the support-based pruning, since it counts 
the support of each candidate on the full database. AprioriAll achieves best perform-
ance when the minimum support threshold is high and there are few frequent differ-
ent 1-sequences, 2-sequences and so on. This leads to maximal pruning and reduces 
the number of support counts. 

However when gap constraints are used, the AprioriAll algorithm cannot be ap-
plied directly. To illustrate this limitation, consider for example the data in Table 1 
and a minimum support threshold of 40%, which means, in this case, that a pattern 
has to occur at least twice in the database. Additionally, assume that the gap con-
straint is equal to 1, which means that only contiguous sequences are allowed. 

Table 1. Database example 

Database 

fgfgfg 
acjcde 
ababa 
achcde 

noqrst 

 
The first step of AprioriAll will find a, c, d and e as frequent 1-patterns and ac, 

cd and de as frequent 2-patterns. However, the process will finish without discover-
ing cde, since there are no 3-candidates. This is due to limitations in the candidate-
generation method, which isn't able to generate all candidates. In fact, while the 
candidate generation process is complete when there are no gap constraints, it be-
comes incomplete when gap constraints are imposed. 

 
Although to our knowledge, this property has never been stated clearly, it eventu-

ally led to the definition of a new method for candidate generation that does not 
suffer from this limitation. 



candidateGeneration (Lk-1, k) { 
 Ck = ∅; 
 for each a∈Lk-1 
  for each b∈Lk-1 
   if (∀1 � n � k-2: an+1=bn ) 
    Ck �  Ck ∪ {a1…ak-1bk-1} 
 return Ck; 
} 

Fig. 3. Candidate generation in GSP method 

The GSP algorithm [7] is an evolution of AprioriAll, allowing for the incorpora-
tion of gap constraints. The key difference between these two methods resides on the 
candidate generation procedure. The GSP algorithm creates a new candidate when-
ever the prefix of a sequence is equal to the suffix of another one, as illustrated on 
figure 3. 

candidatePruning (Lk-1, Ck, k, gap) { 
 if (gap≠1) 
  for each s∈Ck 
   if (∃ s' ⊂ s ∧ |s'|=k-1 ∧ s'∉Lk-1) 
    Ck �  Ck \ {s} 
 else 
  for each s∈Ck 
   if (∃ s' ∠ s ∧ |s'|=k-1 ∧ s'∉Lk-1) 
    Ck �  Ck \ {s} 
 return Ck; 
} 

Fig. 4. Candidate pruning in GSP method 

The changes in the generation method imply changes in the candidate pruning 
process. If gaps are not allowed only candidates with some non-frequent contiguous 
subsequence need to be pruned. When gaps are allowed a sequence is pruned if it 
contains a non-frequent subsequence. Figure 4 shows the pseudo-code for candidate 
pruning method. 

4.2   Pattern-growth Methods 

Pattern-growth methods are a more recent approach to deal with sequential data 
mining problems. The key idea is to avoid the candidate generation step altogether, 
and to focus the search on a restricted portion of the initial database. 



PrefixSpan (DB, min_sup) { 
 return MaximalSequences in run(<>,0, DB) 
} 

run (α, length, DB) { 
 f_list = createsFrequentItemList(DB); 
 for each b∈f_list { 
  α' �  αb; 
  L �  L ∪ α' 
  L � L∪run(α',length+1,createProjectedDB 
(α',DB)) 
 } 
 return L  
} 

createProjectedDB (α, DB) { 
 for each s∈DB 
  if (α ⊆ s) { 
   β � s.postfix (α, 1) 
   α-projDB �  α-projDB ∪ {β} 
  } 
 return α-projDB; 
} 

Fig. 5. PrefixSpan algorithm and the creation of projected databases method 

PrefixSpan [5] is the most promising of the pattern-growth methods and is based 
on recursively constructing the patterns, as shown in figure 5. Its great advantage is 
the use of projected databases. An α-projected database is the set of subsequences in 
the database, that are suffixes of the sequences that have prefix α. In each step, the 
algorithm looks for the frequent sequences with prefix α, in the correspondent pro-
jected database. In this way the search space is reduced in each step, allowing for 
better performances in the presence of small support thresholds. 

Again, the PrefixSpan algorithm performs perfectly without gap constraints but is 
not able to deal with these restrictions. To illustrate that limitation, consider again 
the data in Table 1 and the conditions used before (minimum support threshold of 
40% and a gap constraint equal to 1). It will find a, c, d and e, which will constitute 
f_list. Then it will call recursively the main procedure with α=a and an α-projected 
database equal to {cjcde, baba, chcde}. Next it will recursively proceed with α=ac 
and an α-projected database equal to {jcde, hcde}, which finishes this branch. Simi-
larly for element c: run is called with α=c and an α-projected database equal to 
{jcde, hcde}. Since there is no frequent element at distance 1, the search stops and 
cde is not discovered. This happens because the α-projected database only maintains 
the suffix after the first occurrence of the last element of α. 



5   Generalized PrefixSpan 

In this section we show how PrefixSpan can be generalized to handle gap con-
straints, an important issue since gap constraints are important in many domains of 
application and PrefixSpan is the most efficient algorithm known for sequential 
pattern mining, especially in the situation of low support thresholds. 

The generalization we propose for PrefixSpan (GenPrefixSpan) in order to be able 
to deal with gap constraints, is based on the redefinition of the method used to con-
struct the projected database. Instead of looking only for the first occurrence of the 
element, every element's occurrence is considered. For example, in the previous 
example, the creation of the c-projected database would give as result {jcde, de, 
hcde, de} instead of {jcde, hcde} as before. 

It is important to note that, including all suffixes after the element's occurrence 
changes the database and may change the number of times that each pattern appears. 
For instance, for the same example the a-projected database would be {cjcde, baba, 
ba, chcde}. In order to deal with this issue, associating an id to each original se-
quence in the database and guaranteeing that each sequence counts at most once for 
the support of each element is enough to keep an accurate count on the number of 
appearances of a given sequence. 

initProjDB (α, DB, gap) { 
 for each s∈DB { 
  i � 1; 
  repeat { 
   i � s.nextOccurrence(α, i+1); 
   β � s.postfix(α, i) 
   α-projDB � α-projDB ∪ {β} 
  } until i + gap > |s| 
 } 
 return α-projDB; 
} 

Fig. 6. The new method to create projected databases 

Figure 6 illustrates the new method we propose to create projected databases. This 
new approach is only needed in the first recursion level, since after this isolated step 
the database will contain all of the sequences starting with each frequent element. 

So the generalized PrefixSpan will consist of two main steps: the discovery and 
creation of each frequent element projected database and the usual recursion, as 
shown in figure 7. 



GenPrefixSpan (DB, min_sup, gap) { 
 f_list = createsFrequentItemList(DB); 
 for each b∈f_list { 
  L �  L ∪ b 
  L �  L ∪ run (b, 1,  
       initProjDB (b,DB, gap)) 
 } 
 return MaximalSequences in L 
} 

Fig. 7. Generalized PrefixSpan main method 

Note that when there is no gap constraint, the creation of projected databases is 
similar to the correspondent procedure defined in original PrefixSpan, since it only 
generates the projection relative to the first occurrence of α. In this manner, the 
performance of GenPrefixSpan and PrefixSpan are similar in the absence of gap 
constraints. 

6   Comparison 

In this section we present a comparative study between apriori-based and pattern-
growth approaches with and without the presence of gap constraints. In order to do 
that, we use the AprioriAll, GSP and PrefixSpan algorithms in the absence of gap 
constraints, and the GSP and GenPrefixSpan algorithms in the presence of these 
restrictions. 

All experiments were performed on a Pentium II with 300 MHz and 256MB of 
RAM. The sequences were generated and maintained in main memory during the 
algorithms processing.  

All algorithms were implemented using an object-oriented approach allowing for 
the sharing of the basic methods used by the different algorithms and making all 
speed comparisons meaningful.  

6.1   Experiences with Artificially Generated Data 

To perform this study, we used a synthetic data set generator, based on a Zipf 
distribution, similar to others used on similar studies ([1], [5]). As parameters, this 
data generator receives the number of sequences, the average length of each 
sequence, the number of distinct items (or sequence elements) and a Zipf parameter 
that governs the probability of each item occurrence in the data set. The length of 
each sequence is chosen from a Poisson distribution with mean equal to the input 
parameter correspondent to the average length of each sequence (10 was the chosen 
value for the average sequence length). 

The study is divided in two major sections: the scalability and the performance 
studies. Table 2 lists the parameters of the performed studies. 



Table 2. Comparative studies performed 

Study DB 
size 

Support Gap Alphabet 
Size 

         Scalability  33% 0 5 

Variable Support 10000  0 5 

Variable Gap 10000 33%  5 

P
er

fo
rm

an
ce

 

Variable Alphabet 10000 33% 0  

Scalability Study. As it is shown in figure 8, the scalability of PrefixSpan when 
adapted to use gap constraints suffers some degradation, having a behavior similar to 
that of apriori-based algorithms. This leaves open the question of whether it is 
possible to generalize projection based methods, such as PrefixSpan, in a way that 
implies minimal impact, when compared with the situation where no gap constraints 
are used.  
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Fig. 8. Performance vs. database size 

Note that the worst case to GenPrefixSpan (with gap constraints) is encountered 
when the database is composed of a significant number of sequences with the same 
element repeated several times. In this case, the projected database for each different 
element may be much bigger than the original database, violating the assumption 
that the size of projected database cannot exceed that of the original one, as is the 
case of the original version of PrefixSpan [5]. 

Performance with Variable Support. In terms of performance (figure 9), when the 
minimum support threshold varies, the behavior of PrefixSpan is similar with or 
without the use of gap constraints, with the same pattern of growth. This means that 
the advantages of PrefixSpan over apriori-based methods are still present in the 
situation of low value support thresholds. 
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Fig. 9. Performance vs. minimum support threshold 

Performance with Variable Gap Constraints 
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Fig. 10. Performance vs. gap value 

As expected (fig. 10), when the gap constraint is relaxed, the performance de-
creases as in apriori-based algorithms, since the number of patterns to discover in-
creases. Note that the difference between both methods increases with the relaxation 
of gap constraints. With this relaxation the probability to encounter frequent ele-
ments in the allowed gap is greater and consequently the search for the patterns is 
less time consuming. 

Performance with Variable Alphabet Size. 
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Performance vs  Alphabet (w ith gap)
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Fig. 11. Performance vs. alphabet size 



The impact of the alphabet size on the performance of the methods did not lead to 
any clear conclusions. The PrefixSpan method seems to be better than apriori-based 
methods over all ranges of the alphabet size, but the results are inconclusive and the 
observed evolution is not easily explainable. It is worth noting that the change in 
alphabet size has a significant and non-trivial impact on the type and number of 
patterns present in the database, as is shown in figure 11. 

6.2   Experiences with Real-World Data 

To perform this study, we used the WWW server access logs from the web site of 
a discussion forum. The objective was to identify common patterns of access, in 
order to optimize the layout of the web site and, in the future, to identify and flag 
abnormal behaviors. The dataset is composed of about 7000 sequences, where each 
sequence represents the pages visited by one user when he enters the forum. 
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Performance vs Support (w ith gap)
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Fig. 12. Performance vs. minimum support threshold 

In general, the results achieved with the real-life datasets (figure 12 and 13) con-
firm the results obtained with the synthetic dataset, despite the significantly different 
statistics of the problems. For this reason, we believe the results presented are rele-
vant and applicable to a large range of actual problems. 
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Fig. 13. Performance study with variable gap 



7   Conclusions 

In this paper we have presented the generalization of the PrefixSpan algorithm to 
deal with gap constraints. In order to achieve that goal, we have proposed a new 
method to generate projected databases that store the subsequences of all occurrences 
of each frequent element. 

The modified PrefixSpan method keeps its performance advantages relatively to 
apriori-based algorithms in the more difficult situation of low support thresholds, 
although its relative advantage over these methods is reduced when compared with 
the high support thresholds situation. 

The generalization of projection based methods to gap constrained sequential pat-
tern problems is very important in many applications, since apriori-based methods 
are inapplicable in many problems where low support thresholds are used. In fact, 
the imposition of a gap restriction is critical for the applicability of these methods in 
areas like bioinformatics, which exhibit limited size alphabets and very long se-
quences. We are actively working in applying this methodology to the problem of 
motif finding in bioinformatics sequences, an area that can benefit very much from 
more sophisticated methods for sequential pattern analysis. 
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