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Generalization of results about the Bohr radius

for power series

by

Lev Aizenberg (Ramat-Gan)

Abstract. The Bohr radius for power series of holomorphic functions mapping Rein-
hardt domains D ⊂ C

n into a convex domain G ⊂ C is independent of the domain G.

1. Preliminaries. Let us recall the theorem of H. Bohr [13] of 1914.

Theorem 1.1. If a power series

f(z1) =
∞∑

k=0

ckz
k
1(1.1)

converges in the unit disk U1 and its sum has modulus less than 1, then

∞∑

k=0

|ckz
k
1 | < 1(1.2)

for |z1| < 1/3. Moreover , the constant 1/3 cannot be improved.

For convenience we write the inequality (1.2) in the following equivalent
form:

∞∑

k=1

|ckz
k
1 | < 1 − |c0|.(1.3)

Several generalizations of this result have been obtained.

1o ([24]). If the sum of the series (1.1) is such that |ℜf(z1)| < 1 in U1

and c0 > 0, then the inequality (1.3) holds for |z1| < 1/3.
2o ([23], [22]). If ℜf(z1) < 1 in U1 and c0 > 0, then (1.3) holds for

|z1| < 1/3.
3o ([20]). If ℜ{[exp(−i arg f(0))]f(z1)} < 1 in U1 (here we assume that

arg f(0) = 0 if f(0) = 0) then (1.3) holds for |z1| < 1/3.
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Formulations of Bohr’s theorem in several complex variables appeared
very recently. We recall some of them.

Given a complete Reinhardt domain D, we denote by R1(D) the largest
nonnegative number r with the property that if the power series

f(z) =
∑

|α|≥0

cαzα, z ∈ D,(1.4)

where α = (α1, . . . , αn), |α| = α1 + · · · + αn, zα = zα1

1
. . . zαn

n and all αi

are nonnegative integers, converges in D and the modulus of its sum is less
than 1, then

∑

|α|≥1

|cαzα| < 1 − |c0|

in the homothetic domain Dr = rD. Here c0 = c0,...,0. If D is moreover
bounded, we define R2(D) similarly, with the last inequality replaced by

∑

|α|≥1

sup
Dr

|cαzα| < 1 − |c0|.

We call R1(D) (resp. R2(D)) the first (resp. second) Bohr radius of D.
Let

Dn
p = {z ∈ C

n : |z1|p + · · · + |zn|p < 1},
where 0 < p ≤ ∞. The domain Dn

∞ is the poly-disk {z ∈ C
n : |zj| < 1, j =

1, . . . , n}.
Theorem 1.2 ([12], see also [18]). For n > 1 one has

1

3
√

n
< R1(Dn

∞) <
2
√

log n√
n

.(1.5)

Theorem 1.3 ([1]). For n > 1 one has

1

3 3
√

e
< R1(Dn

1 ) ≤ 1

3
.(1.6)

The estimates (1.5) and (1.6) were generalized to R1(Dn
p ) for 1 ≤ p < ∞

in [11] and for 0 < p ≤ 1 in [3]. We point out the following new remarkable
result which improves the lower estimate in (1.5).

Theorem 1.4 ([15]). For n > 1 one has

C

√
log n

n log log n
< R1(Dn

∞),

where the constant C is independent of n.

Both Bohr radii coincide for a polydisk, and in the case n = 1 they
coincide with the classical Bohr radius 1/3. If D is not a polydisk, then
naturally R2(D) < R1(D).
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Theorem 1.5 ([1]). For every complete bounded Reinhardt domain D,

1 − n

√
2/3 < R2(D).

Theorem 1.6 ([1]). One has

R2(Dn
1 ) <

0.44663

n
.

The radius R2(D) was investigated in [11], [17]. Other results about the
Bohr radius for holomorphic functions can be found in [2], [5], [7]–[10]. We
would like to call a special attention to the paper [16] in which the relation
between the Bohr radius and the Banach–Mazur distance between Banach
spaces was discovered.

2. Generalized Bohr radii. One of the proofs of Bohr’s theorem (The-
orem 1.1) is based on the Landau inequality [21]: if the function (1.1) satisfies
in U1 the inequality |f(z1)| < 1, then |ck| ≤ 2(1− |c0|) for every k ≥ 1. This
inequality can be obtained as a simple consequence of the Carathéodory in-
equality [14]: if the function (1.1) satisfies in U1 the inequality ℜf(z1) > 0,
then |ck| ≤ 2ℜc0 for every k ≥ 1. Both inequalities are particular cases of a
more general assertion.

Let G̃ be the convex hull of G.

Proposition 2.1 ([3]). If f(U1) ⊂ G, then

|ck| ≤ 2 dist(c0, ∂G̃) for all k ≥ 1.(2.1)

Now it is not difficult to prove a generalization of Theorem 1.1. Let
G ⊂ C be any domain. A point p ∈ ∂G is called a point of convexity if
p ∈ ∂G̃. A point of convexity p is called regular if there exists a disk U ⊂ G
so that p ∈ ∂U .

Theorem 2.1. If the function (1.1) is such that f(U1) ⊂ G, with G̃ 6= C,
then

∞∑

k=1

|ckz
k
1 | < dist(c0, ∂G̃)(2.2)

for |z1| < 1/3. The constant 1/3 cannot be improved if ∂G contains at least

one regular point of convexity.

Proof. 1) If |z1| < 1/3 then (2.1) yields
∞∑

k=1

|ckz
k
1 | < 2 dist(c0, ∂G̃)

∞∑

k=1

1

3k
= dist(c0, ∂G̃).

2) We now prove the exactness of the constant 1/3 in case the bound-
ary contains at least one regular point of convexity. In the classical case
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of Bohr’s Theorem 1.1 this is obtained by considering the family of func-
tions ([21])

f(z1) =
α − z1

1 − αz1

, 0 < α < 1.(2.3)

Here
∞∑

k=1

|ckz
k
1 | = 1 if and only if |z1| =

1

1 + 2α
.

Letting α → 1, we obtain the desired result. Note that instead of (2.3)
one can use the family eiφf(z1), where f(z1) is taken from (2.3). In this
case c0 = eiφα, and when α → 1 we see that c0 tends to ∂U1 along the
radius of argument φ. If G is an arbitrary disk U, then, remarking that
(2.2) does not change under homotheties and translations, we deduce the
exactness of 1/3 for any disk. Let ζ be a regular point of convexity. Then
there exists a disk U ⊂ G such that ζ ∈ ∂U ∩ ∂G. Consider the func-
tions f in (1.1) such that f(U1) ⊂ U . For suitable c0 (see above) we have

dist(c0, ∂U) = dist(c0, ∂G) = dist(c0, ∂G̃). Therefore, in the inequality (2.2)
one cannot take |z1| < r, where r > 1/3.

We remark that Theorem 1.1, assertion 3o, as well as generalizations of
1o and 2o are contained in Theorem 2.1. For example, in 1o there is no need
to assume c0 > 0, and instead of (1.3) one gets

∞∑

k=1

|ckz
k
1 | < 1 − |ℜc0|.

Similarly in 2o there is no need to assume c0 > 0, and instead of (1.3) one
gets

∞∑

k=1

|ckz
k
1 | < 1 −ℜc0.

Let us recall another fact, known earlier:

4o ([4]). If ℜf(z1) > 0 in U1 and c0 > 0, then one has
∞∑

k=1

|ckz
k
1 | < c0(2.4)

for |z1| < 1/3, and the constant 1/3 cannot be improved.

I thought before that Theorem 1.1 and 4o were two different facts involving
the same Bohr radius. Now I know that both results are particular cases of
Theorem 2.1. Namely, in the case of 4o, without the assumption c0 > 0, we
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get

∞∑

k=1

|ckz
k
1 | < ℜc0

instead of (2.4).

Theorem 2.1 motivates the following generalization of the first and sec-
ond Bohr radii. Denote by R1(D, G) (resp. R2(D, G)), where G ⊂ C, G̃ 6= C,
and D is a complete Reinhardt domain (resp. a bounded complete Reinhardt
domain) in C

n, the largest r ≥ 0 such that if the function (1.4) is holomor-
phic in D and f(D) ⊂ G then

∞∑

|α|≥1

|cαzα| < dist(c0, ∂G̃)

in a homothety Dr (respectively

∞∑

|α|≥1

sup
Dr

|cαzα| < dist(c0, ∂G̃)).

Theorem 2.1 and the result from [6] about the Rogosinski radius allow one
to hope that the two Bohr radii R1(D, G) and R2(D, G) are independent of
the convex domain G. The main result of the present paper is the proof of
this more general assertion.

3. The main result. Let M be a complex manifold, and let H(M)
be the space of functions holomorphic on M , equipped with the natural
topology of uniform convergence on compact subsets of M .

Let ‖ · ‖r, r ∈ (0, 1), be a one-parameter family of seminorms in H(M)
that are continuous with respect to the topology of H(M). In what follows
we always assume that

(a) ‖ · ‖r1
≤ ‖ · ‖r2

if r1 ≤ r2.
(b) ‖f · g‖r ≤ ‖f‖r · ‖g‖r for all r ∈ (0, 1),

and there exists a point z0 ∈ M such that

(c) ‖f‖r → |f(z0)| as r → 0, for all f ∈ H(M),
(d) ‖f‖r = |f(z0)| + ‖f − f(z0)‖r, for all f ∈ H(M).

Denote by B({‖ · ‖r}, G) the largest r ≥ 0 such that for each f ∈ H(M)
with f(M) ⊂ G one has

‖f − f(z0)‖r < dist(f(z0), ∂G̃),(3.1)

where G̃ is the convex hull of the domain G ⊂ C.
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Proposition 3.1. If U is any disk and Π is any half-plane, then

B({‖ · ‖r}, Π) = B({‖ · ‖r}, U).(3.2)

Proof. Let Π1 = {z1 : ℜz1 > 0}. Then ([4, Theorem 7])

B({‖ · ‖r}, U1) = B′({‖ · ‖r}, Π1),

where B′ is defined in the same way as B but with the additional assumption
f(z0) > 0. This assumption can be removed as follows. If ℜf(z0) > 0 in M
then ℜf1(z0) > 0, where f1(z) = f(z) −ℑf(z0). But f1(z0) > 0, hence

B({‖ · ‖r}, U1) = B({‖ · ‖r}, Π1).

We remark that (3.1) does not change under homotheties, translations and
rotations of the domain G. Therefore (3.2) holds.

Theorem 3.1. If G̃ 6= C, then B({‖ · ‖r}, G) is not smaller than (3.2).
If ∂G contains at least one regular point of convexity , then B({‖ · ‖r}, G) is

equal to (3.2).

Proof. Let G̃ 6= C and f(M) ⊂ G. Fix any f(z0) ∈ G. On the boundary

∂G̃ there exists a point ζ so that dist(f(z0), ∂G̃) = dist(f(z0), ζ). Through

the point ζ passes the line of support of G̃ which defines a half-plane Π0 ⊇ G.
Then

dist(f(z0), ∂G̃) = dist(f(z0), ∂Π0).

Therefore B({‖ · ‖r}, G) ≥ B({‖ · ‖r}, Π0), since {f ∈ H(M) : f(M) ⊂ G} ⊂
{f ∈ H(M) : f(M) ⊂ Π0}.

Assume now that there is a regular point of convexity in ∂G. Then
the proof repeats part 2) of the proof of Theorem 2.1. Note that there
we did not use the concrete form of the family (2.3), but rather the fact
that c0 can lie on any radius emanating from the center of the disk U to
its boundary. So, assume that U ⊂ G and ζ ∈ ∂U ∩ ∂G ∩ ∂G̃. Consider
f(z0) lying on the radius from the center of U to ζ. Then dist(f(z0), ζ) =

dist(f(z0), ∂U) = dist(f(z0), ∂G̃), hence B({‖·‖r}, G) ≤ B({‖·‖r}, U), since
{f ∈ H(M) : f(M) ⊂ U} ⊂ {f ∈ H(M) : f(M) ⊂ G}.

Corollary 3.1. If the domain G is convex and G 6=C, then B({‖·‖r}, G)
is independent of the choice of G.

Proof. There exists a disk U ⊂ G such that ∂U ∩ ∂G 6= ∅. Therefore
there exist regular points of convexity on ∂G.

Corollary 3.2. The first Bohr radius R1(D, G) and the second Bohr

radius R2(D, G) are independent of the choice of the convex domain G,
G 6= C.
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In particular, the assertions of Theorems 1.2–1.4 are valid for R1(D, G)
while those of Theorems 1.5 and 1.6 are valid for R2(D, G) for every convex
domain G 6= C.

Some concluding remarks. If the family of seminorms ‖ · ‖r does not
satisfy some of the conditions (a)–(d), then the assertion of Theorem 3.1

is not valid anymore. Examples can be found in [4]. If G̃ = C, then the
right-hand side of (3.1) is equal to ∞, therefore in this case

B({‖ · ‖r}, G) = 1.

One can also consider different realizations of B({‖ · ‖r}, G) than the first
and second Bohr radii R1(D, G) and R2(D, G).

We conclude the present article with an open problem: if G̃ 6= C, is it
always true that B({‖ · ‖r}, G) is equal to (3.2)? The same question makes
sense for the first and second Bohr radii R1(D, G) and R2(D, G).
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tation.
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