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Abstract

In general, a quadrilateral mesh surface does not enable a continuous rigid motion because an

overconstrained system, in which the number of constraints around degree-4 vertices (three

for each vertex) exceeds the number of variables (the number of hinges), is constructed. How-

ever, it is known that the developable double corrugation surface, called Miura-ori, produces a

rigid deployment mechanism. The rigid-foldability of Miura-ori is due to the singularity in its

pattern, where a single vertex is repeated. We generalize the geometric condition for enabling

rigid motion in general quadrilateral mesh origami without the trivial repeating symmetry. To

ensure the existence of a finite motion, we derive the identity of functions from the formula

for degree-4 single-vertex origami. This yields a variety of unexplored generalized shapes of

quadrilateral mesh origami that preserve finite rigid-foldability in addition to developability

and flat-foldability.
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1 Introduction

Rigid-foldable origami is a piecewise linear developable surface that can realize a deployment

mechanism if its facets and foldlines are substituted with rigid panels and hinges, respectively.

Designing such a deployment mechanism is very important in an engineering context, par-

ticularly in architecture in the following reasons: 1) its structure based on watertight single

surface is suitable for constructing an envelope of a space; 2) its purely geometric mechanism

that does not rely on the elasticity of materials can contribute to a design of robust, repeatedly

usable deployable structure.

The developable double corrugation surface, or Miura-ori [7], utilized in the packaging of

deployable solar panels for use in space or in the folding of maps, is known to be rigid-

foldable as well as developable and flat-foldable (Figure 1). Our objective is to investigate

this type of quadrilateral mesh origami and generalize it so that we can obtain a design of

freeform surface that is developable, flat-foldable, and rigid-foldable (Figure 6).
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The developability and the flat-foldability of a piecewise linear surface are relatively easy to

be generalized. The developability is represented by the gauss area (2π minus the sum of

the sector angles) around each vertex to be 0. The flat-foldability is satisfied if the alternat-

ing sum of the sector angles around each vertex is 0 and the overlapping ordering can be

determined, as shown by Bern and Hayes [3]. There have also been studies that analyze a

valid intermediate state of origami: Huffman [5] used the gauss map to represent the valid

states of an infinitesimal origami surface in three-dimensional spaces; Belcastro and Hull [2]

introduced a matrix representation of the validity conditions.

On the other hand, rigid motion, i.e., the existence of a continuous path in the configuration

space, has not been generalized very well. Only numerical methods have been proposed for

general origami models: Watanabe and Kawaguchi [12] introduced the conditions for in-

finitesimal rigid-foldabilty by calculating the derivative (Jacobian) and the second derivative

of the matrix introduced by Belcastro and Hull [2]; the author [11, 10] developed a system

to calculate the folding motion of a given origami model by solving the Jacobian. How-

ever, these numerical methods cannot be used to estimate the singular finite rigid motion of

Miura-ori; the reason for this is described below.

A rigid origami constructs a constrained mechanism, where the configuration is represented

by the fold angle of each foldline, which is constrained by 3 equations for each inner vertex.

Therefore, the infinitesimal motion can be represented by the solution space of the 3M × N

Jacobian matrix, where N is the number of foldlines and M is the number of the inner

vertices. In this sense, a quadrilateral mesh origami constructs an overconstrained system

in general because N < 3M . However, a Miura-ori constructs a singular 3M × N matrix

whose rank is N − 1 in every possible state, resulting in one-DOF finite rigid motion.

In this paper, we investigate this singularity and find out a method that enables it. In Section

2, we focus on a flat-foldable degree-4 origami vertex, which is known to have a special

relationship between the fold angles. Then, in Section 3, we obtain the global condition that

enables rigid motion and show that this is equivalent to the existence of a non-trivial valid

state. Finally, a design method based on the condition is proposed in Section 4.

Figure 1: Rigid folding motion of Miura-ori
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2 Geometry of Degree-4 Flat-foldable Vertex

The configuration of a flat-foldable degree-4 vertex can be represented by four sector angles

— θA, θB , θC , and θD— and four folding angles —ρAB , ρBC , ρCD, and ρDA— between

the sector angles, as shown in Figure 2. Note that ρCD is negative (mountain fold), while the

other three folding angles are positive (valley fold). The crease pattern of a single vertex that

satisfies the developability and the flat-foldability conditions can be represented in terms of

two parameters, θA and θB (0 < θA < π, 0 < θB < π, π ≤ θA + θB), as θC = π − θA

and θD = π − θB , as shown by Murata [8] and Fushimi [4]. A degree-4 single vertex rigid

origami is known to have one degree of freedom. The relation between the folding angles is

derived as follows using spherical trigonometry, as shown by Huffman [5] and Hull [6].

ρCD = −ρAB and ρDA = ρBC (1)

This means that the folding angles can be represented by the two angles ρAB and ρBC , which

are dependent on each other. According to Hull [6], the relationship between these two angles

was derived by Robert Lang as follows:

cos (π − ρAB) = cos (π − ρBC) −
sin2 (π − ρBC) sin θA sin θB

1 − cos ξ
, (2)

where ξ is the angle between ℓAB and ℓCD and is given by

cos ξ = − cos θA cos θB + sin θA sin θB cos (π − ρBC) .

Here, we assumed that ξ ̸= 0 to enable a one-to-one correspondence, and we will continue to

make this assumption in the following sections.

Equation (2) gives a one-to-one map f : cos ρBC → cos ρAB as follows:

cos ρAB = f (cos ρBC) = K +
1 − K2

cos ρBC + K
, (3)

where

K = K(θA, θB) =
1 + cos θA cos θB

sin θA sin θB

. (4)

Note that map f is only dependent on a one-dimensional parameter K (K > 1), which is

θA

ρAB

ρBC

ρCD
ρDA

θB
θC

θD
ℓCD

ℓAB

ℓBC

ℓDA

Figure 2: A flat-foldable degree-4 vertex.
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determined with respect to the crease pattern. We shall call K the conversion coefficient of

the vertex.

3 Global Condition

3.1 Valid Loop Condition

A general condition can be derived from Equation (3). The map f represents the conversion

from the rotation of the lateral foldlines to the rotation of the longitudinal foldlines. Hence,

its inverse f−1 : cos ρAB → cos ρBC represents the conversion from the longitudinal to the

lateral foldlines. f−1 can be calculated from Equation (3) as follows.

cos ρBC = f−1 (cos ρAB) = −K +
1 − K2

cos ρAB − K
(5)

According to Equations (1), the configuration of a regular quadrilateral mesh origami is rep-

resented by the cosine of the lateral and longitudinal fold angles, cos ρ↔i (t) and cos ρ
↕
j (t)

(i = 0, 1, · · · ,m − 1 and j = 0, 1, · · · , n − 1), each of which is a one-dimensional function

of a parameter t (0 ≤ t ≤ π) representing the folding motion of the entire model; m and

n are the number of rows and columns of the array of inner vertices, respectively (Figure

3). The configuration is constrained at each inner vertex vi,j whose conversion function and

coefficient are denoted by fi,j and Ki,j , respectively.

ρ
t
i

ρ
t
i+1

ρվj ρվj+1

cos ρti

cos ρti+1

cos ρվj

cos ρվj+1

Ki, j

Ki+1, j

Ki, j+1

Ki+1, j+1

n

m

Figure 3: A quadrilateral mesh origami.

The model is rigid-foldable if and only if we can obtain cos ρ↔i (t) and cos ρ
↕
j (t) that are

consistent with Equation (3) for all inner vertices. An inconsistency can arise for the loop

around an inner facet, i.e., facet whose incident vertices are not on the boundary. The fold

angle of a segment determines the fold angle of the next segment, which in turn determines

that of the following segment; this procedure is repeated until the fold angle of the original

segment is once again determined (Figure 3 Right). Therefore, the necessary and sufficient

condition for the rigid-foldability is represented as follows. For any x = cos ρ (−π ≤ ρ ≤ π),

and for every inner facet surrounded by vi,j , vi+1,j , vi+1,j+1, and vi,j+1,

fi,j+1

(

f−1

i+1,j+1

(

fi+1,j

(

f−1

i,j (x)
)))

≡ Identity,
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or

fi+1,j

(

f−1

i,j (x)
)

≡ fi+1,j+1

(

f−1

i,j+1
(x)

)

. (6)

This can be calculated as,
Bjx + Aj

Ajx + Bj

≡
Bj+1x + Aj+1

Aj+1x + Bj+1

, (7)

where, for j′ = j, j + 1,

Aj′ = −Ki,j′ + Ki+1,j′

Bj′ = 1 − Ki,j′Ki+1,j′ .

This gives the following necessary and sufficient condition:

(AjBj+1 − Aj+1Bj)x2 − (AjBj+1 − Aj+1Bj) ≡ 0, (8)

which can be satisfied if and only if

AjBj+1 − Aj+1Bj = 0 (9)

Theorem 1 A quadrilateral mesh origami is finitely rigid-foldable if and only if Equation (9)

is satisfied for every inner facet.

3.2 Existence of State and Existence of Motion

While the existence of a rigid motion is represented by identities, the existence of a single,

static state can be represented by equalities. From the identical Equation (8), we obtain the

following specific equation: For every inner quadrilateral,

(AjBj+1 − Aj+1Bj)
(

cos2 ρ − 1
)

= 0. (10)

This equation indicates that if there exists no rigid motion, i.e., if Equation (9) is not satisfied,

a valid state can exist only if cos ρ = ±1 (i.e., ρ = 0, π,−π). Here, we can conclude that the

existence of rigid motion and the existence of a non-trivial state are equivalent.

Theorem 2 A flat-foldable planar-quad mesh origami has rigid-folding motion if and only if

there exists a non-trivial valid state, i.e., every foldline is folded (ρ ̸= 0) but not completely

folded (ρ ̸= π,−π).

4 Design

4.1 Trivial Model

It is obvious from Theorem 1 that the pattern is rigid-foldable if the conversion coefficient K

of every inner vertex is constant (Ki,j = K0). Miura-ori (Figure 1) and “MARS” (a model

by Paulo Taborda Barreto [1]) (Figure 4(a)) satisfy this condition. Furthermore, if the K of

every inner vertex is constant in each row or in each column (Ki,j = K0
i or Ki,j = K0

j ),

the pattern is rigid-foldable. The single-curved Miura-ori form (Figure 4(b)) satisfies this

sufficient condition.
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(a) (b)

Figure 4: Rigid foldable models with trivial symmetry. (a)MARS (b)Single-curved Miura-

ori.

4.2 General Model

Theorem 2 indicates that we can design a rigid-foldable origami pattern by finding a valid

three-dimensional state. Here, we denote by nvert, ninner-vert, and nquad, the numbers of all the

vertices, the inner vertices, and the quadrilaterals, respectively. We assume that the surface

is a triangular mesh so that it is represented in terms of 3nvert × 1 vector x representing the

vertex coordinates. We can numerically find a valid shape by solving the following nonlinear
(

2ninner-vert + nquad
)

× 1 vector equation with respect to x:

c (x) =





c
dev

c
flat

c
planar



 =









[

2π −
∑4

k=1
θk,i

]

ninner-vert×1
[

∑4

k=1
(−1)kθk,i

]

ninner-vert×1

[ρcrease
i ]nquad×1









= 0, (11)

where θk,i is the angle between k-th pair of adjacent foldlines around i-th inner vertex, and

ρcrease
i is the angle between the normals of two triangles consisting i-th quadrilateral. Note that

c
dev = 0 and c

flat = 0 represent developability and flat-foldability of the surface, respectively,

and c
planar = 0 indicates that the quadrilaterals are planar.

Equation (11) yields an underdetermined system, by exploring the solution space of which

we can obtain variations in the shape. We find valid shapes by starting from a trivial solution,

e.g., a regular Miura-ori, and perturbing the vertex coordinates according to the null space of

the Jacobian ∂c

∂x
, as shown in Figure 5. The Jacobian is a

(

2ninner-vert + nquad
)

×(3nvert) matrix

and the solution is calculated using the pseudoinverse
[

∂c

∂x

]+
of the Jacobian as follows:

∆x =

(

I −

[

∂c

∂x

]+ [

∂c

∂x

]

)

∆x0, (12)

where ∆x0 represents the initial perturbation determined by an arbitrary user input. Equation

(12) finds the valid perturbation closest to ∆x0 by orthogonal projection to the solution space.

For each step, the residual c is eliminated by the Newton-Raphson method.

This method is implemented as an interactive design system in which a user can intuitively

manipulate a freeform valid surface just by dragging it via a standard pointing device. Figure

6 shows the actual rigid motion of the resulting structure, animated using the rigid origami
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simulator [10]. We have also observed that freeform patterns that do not satisfy our condition

cannot fold without the triangulation of the quadrilateral panels.

Figure 5: A perturbation within the solution space. Each form is rigid-foldable.

Figure 6: Freeform Miura-ori with a rigid motion.

5 Conclusion and Future Works

We have derived the necessary and sufficient condition for the existence of finite rigid motion

of general flat-foldable quadrilateral mesh origami. The condition was expressed with respect

to the angles in the crease pattern. We have also shown that the condition is equivalent to the

existence of any non-trivial valid state. Using the condition, we have shown the method to

explore freeform variations of generalized Miura-ori.

A recent study in the field of discrete differential geometry by Schief et al. [9] reveals the

finite rigid-foldability of a quadrilateral mesh called discrete Voss surface. The singularity

investigated in our study is closely related to that of discrete Voss surface. There are also other

specific quadrilateral meshes known to be rigid-foldable. In the future, we intend to study

on the rigid-foldability of a general quadrilateral mesh surface to unify these independently

derived singular surfaces.
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