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Generalization of Slater’s transition state concept
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We present a generalization of the transition state technique introduced by Slater for the calculation of many-
electron relaxation effects accompanying electronic excitations in molecules and molecular simulations of
solids. By making use of ground state information (which is generally available but not used in the Slater
formulation) and transition states which are computationally cheaper (due to being closer to the ground
state), the generalization permits the evaluation of excitation energies to be improved in any of three ways:
(1) comparable accuracy for less computation; (2) improved accuracy for comparable computation; and (3)
full A-SCF accuracy can be approximated with arbitrary precision with additional computation. In

particular, we show that excitation energies of somewhat greater accuracy are obtained from self-consistent
calculations performed for transition states corresponding to 2/3 of the transition rather than 1/2 of the

transition as in the original formulation by Slater.

INTRODUCTION

In the past five years much progress has been made
with respect to our understanding of electronic transi-
tions in molecular systems.!? This progress, to a sub-
stantial extent, is due to the development and application
of the so-called density functional theory of electronic
structure.®* This theory makes practicable the calcula-
tion of electronic transition energies in relatively large
molecules and molecular simulations of solids. A par-
ticularly important advantage of the new theory is the
relative ease and accuracy with which the relaxation of
the electrons not directly involved in the transition can
be calculated. The accurate calculation of relaxation
effects utilizes the “transition state” concept due to
Slater.%® The generalization of this concept is the sub-
ject of this paper. We show that by taking a slightly dif-
ferent point of view the accuracy of the Slater technique
can be increased without additional computation. Of
greater practical importance, however, because the
existing transition state technique is already quite ac-
curate, we show that the accuracy of the present tech-
nique can be obtained with substantially less computa-
tional effort.

The paper is organized as follows. In Sec. I, we re-
view the transition state concept as introduced by Slater.
In Sec. I, we generalize the concept and present a for-
mula for electronic transition energies which requires
the same computational effort as Slater’s but which is
more accurate, In Sec, III, we present the results of
numerical calculations and a formula for transition en-
ergies which provides the same accuracy as the Slater
technique with less computational effort.

I. SLATER’S TRANSITION STATE

The objective of Slater’s transition state® is the ac-
curate evaluation of electronic excitation energies of
finite molecular systems. An excitation energy 7w is
the difference in the total energy (A-SCF) of the elec-
tronic system before and after the excitation,

1.1)

fiw=Epna ~ Enngtiar -
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If the system contains more than a few electrons, E,,,.,
and Eju4¢14 are both very much larger than most of the
#iw’s of interest, so that the straightforward evaluation
of fiw using Eq. (1.1) in conjunction with numerically
computed total energies involves a great deal of nu-
merical cancellation, thereby requiring extremely ac-
curate evaluation of E,,,; and E, ;;,,, . Slater has shown
that most of this cancellation can be avoided if the total
energies are calculated using the relatively new theory
of electronic structure, the density functional formalism,
of which Slater’s X, formalism is the most highly ex-
ploited particular variation. The essential property of
this formalism that makes the transition state notion
possible is the fact that the total energy of the system
is an analytic function of each of a set of one-elec-
tron-like occupation numbers

E=E(ny, ns,...,ny)=EMm) . 1.2)

The occupation numbers »; indicate the contribution to
the electron density p(r) of each of aset of one-electron-
like molecular orbitals {y,(r)},

p<r>=2n,|¢.<r>|2 .

The analyticity of the total energy in the occupation num-
bers permits the Taylor series expansion of E,;,,; and

E | 11141 @bout a common point in occupation number
space, thereby effecting the numerical cancellation ana-
lytically. Consider for example the following ionizing
transition

Fw=E(0, 1, 1’-'~11)-E(1’ 1,1,...,1) .

(1.3)

(1.4)

If we expand both the initial and final energies about the
common point in n space {n,;}=(, 1, 1,...,1), then all
the even order terms in the expansion of 7w in powers of
O0ny are zero leaving,

Fiw=9E/9n, +terms of order (6ny)° . 1.5)

1t is a further convenience of the approximate density
functional schemes now in use (e.g., the X, method and
the Kohn-Sham method) that the required partial deriva-
tives of the total energy are given by the theory in the

Copyright © 1975 American Institute of Physics

Downloaded 20 Feb 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Williams, deGroot, and Sommers: Slater’s transition state concept

form of one-electron-like molecular orbital energies

3E/on;=¢, , (1.6)

so that excitation energies are obtained from the theory
by performing self-consistent field calculations at inter~
mediate values of the orbital occupation numbers.
Slater’s transition state consists of keeping only the first
term in Eq. (1.5) thereby incurring an error of order
5n°. In the next section, we show that the leading term
in the error can be eliminated without additional com-
putation.

1l. GENERALIZED TRANSITION STATE

The simplest way of presenting our generalization of
Slater’s transition state concept is to consider the same
specific example we considered in Sec. I, that of an
ionization excitation, We begin by rewriting Eq. (1.1)
as follows

9E(m)

2.1
il 2.1

0
Fie = J’ dn,

1
which using Eq. (1.6) we can rewrite as follows,

0
Fiw = f dny () . @.2)
1
The path through n space traversed in the course of a
particular transition can be considered as a reaction
coordinate. Equation (2.2) for the excitation energy
shows that we can interpret Slater’s transition state as
the “midpoint” numerical integration formula,

[ @ 1= 0~ fttar 5)/2) @.3)

applied to the integral in Eq. (2.2).

Equation (2.2) not only allows us to reinterpret Slater’s
technique, but also shows us that the transition energy
Rw can be evaluated to any accuracy we like by perform-
ing the integral over the reaction coordinate with as
much numerical sophistication as required. In particu-
lar, we now show that if one is willing to perform the
self-consistent field caleulation required to evaluate the
integrand in Eq. (2.2) at a single intermediate point
along the reaction coordinate, then the midpoint (Slater’s
method) is not the optimum strategy. The reason that
the midpoint is not the best is that the integrand is al-
ways known at one end (the ground state) of the reaction
coordinate. Thus, if we restrict ourselves toone evalua-
tion of the integrand at an intermediate position along
the reaction coordinate (i.e., the same amount of work
required by Slater’s method), then the optimum strategy
consists of determining the values of 8 and X in the fol-
lowing numerical integration formula,

[ axr)= 8- a0 - prlarrE- AN,

(2.4)
which eliminate as many terms as possible in the ex-
pansion of the error in powers of B— A. This can be
accomplished by expanding both sides of Eq. (2.4) in
powers of B- A and equating the coefficients of each
power, The fact the sum of the integration weights 3
and 1 — 8 is unity guarantees that the lowest power of
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B- Ain the error is 2. Equating the general term in the
expansion of both sides of Eq. (2.4) leads to the equation

(B+1)1=(1=-pN%; &>0. (2.5)

Since we have only two degrees of freedom (g and A) we
can only satisfy this relation for £=1 and £#=2, This
requires that =% and A=% and implies that the lowest
power of B— A in the error is 3. The coefficient of

(B~ A)® is proportional to d3f/dx?; for the midpoint
formula on which Slater’s method is based the error

is proportional to (B— AP d% /dx®. (Slater’s method

is seen to result from setting 2=1 and 8=0 in equation
2.5 and is therefore the best that one can do using only
the information provided by a single transition state
calculation,) So, as expected, using the information
available in the ground state calculation eliminates one
additional term in the error. The corresponding expres-
sion for the excitation energy (ionization potential in our
example) is

h’wziﬁ(l, 1’ 1: ---31)+%€1(%’:, 1’ 1’ ""1) * 2.8)

The generalization to excitations involving two or more
orbital states is immediate; rather than obtaining the
excitation energy from the intermediate state half way
between the initial and final states as Slater’s method
prescribes, Eq. (2.6) tells us that a slightly more ac-
curate value of %w is given by the sum of  times the
transition energy indicated by the ground state calcula-
tion and ¥ times the transition energy given by the
“transition state” located 3 of the way along the reaction
coordinate connecting the ground state to the excited
state,

1. NUMERICAL APPLICATIONS

We have applied our analysis of the excitation energy
given in Sec. I and II to two ionizing excitations of a
MoS® cluster used to simulate the crystalline com-
pound MoS,. The relevance of this particular system
to the subject of this paper is (1) it was conveniently
available because one of us (R.dG.) is studying its
electronic structure, and (2) it contains two qualitatively
different kinds of electronic states, d states spatially
localized on the molybdenum sites and spatially de-
localized states arising from the sulfur p states. There-
fore, we were able to study excitations accompanied by
significantly different degrees of relaxation.

Figure 1 shows the variation of ¢; = 3E(n)/9n, along
the ionization reaction coordinate (1=#x,=0) for two
states of the MoS§- cluster. The state labelled p is a
spatially delocalized A’ state arising from atomic sulfur
p states and the state labelled d is a A] state of primari-
ly d character and spatially localized on the molybdenum
site., Figure 1 clearly exhibits the two aspects of re-
laxation discussed by Baerends and Ross? in their re-
cent study of ionization potentials of small molecules.
The bulk of the relaxation is common to all states of the
cluster and stems from the change in total charge on the
cluster due to ionization. The difference in relaxation
experienced by states of differing degrees of localiza-
tion is the physical quantity which is crucial to the in-
terpretation of photoemission data, for example, be-
cause it determines the level ordering and spacing.
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FIG. 1. Dependence of “one-electron” energies €;(n) =8E 4y /
dn; on the occupation of a localized d orbital and a delocalized
p orbital in a Mo 8§ molecular cluster designed to simulate
the solid compound MoS,. The many~electron relaxation ener—
gies are the areas under the respective curves. The circled
points indicate independent self-consistent calculations; the
lines were drawn through the points.

This difference appears in Fig. 1 as the difference in
slope between the two curves. It is clearly seen that
the difference in slope is a good deal smaller than the
slope itself. '

For the purposes of this paper the important point ex-
hibited by Fig. 1 is the essential linearity of both curves.
This linearity implies that the difference between Slater’s
prescription for the transition energy and our slightly
more accurate prescription [Eq. (2.6)] is totally unim-
portant. The calculations required to construct Fig. 1
however suggest a much more practical exploitation of
our generalized point of view, Self-consistent calcula-
tions for occupation numbers far away from the ground
state are much more time consuming and costly be-
cause many more interations are required to achieve
self-consistency starting, as one must, from the ground
state electron density or effective-one-electron poten-
tial. For systems exhibiting a linear dependence of
€,(n)=8E,,, /3n; on n such as that seen in Fig. 1, the
prescription for the excitation energy obtained by setting
A in Eq. (2.4) to a small value,

Fwo=emg)+ @) { e [ng+ A (n - ny)] - e(my)},

will yield accurate excitation energies and greatly re-
duce the number of self-consistency iteractions required
to obtain them. In Eq. (3.1) n, is the set of occupation
numbers describing the ground state and n the set de~
scribing the excited state. Note that Eq. (3.1) includes
Slater’s prescription (\=3) as a special case. The
leading term in the error incurred by the use of Eq.
(3.1),

(3.1)

error «[9°E(n)/on°] ( - 1), (3.2)

is seen to pass through zero for =%, which is the
origin of Eq. (2.6), and to increase as X is reduced to-
ward zero. The loss of numerical significance involved
in evaluating the difference ¢[ny+x(n—ngy)] - €(ny) is the
practical limit to the reduction of A, not the gradual in-
crease in the error seen in Eq. (3.2). In other words,
the use of small A is fundamentally extrapolation, a
process which amplifies errors in the quantities upon
which the extrapolation is based. Our limited numerical
experience suggests that A ~0.1 is a practical com-
promise.

Regarding the question of how generally can we expect
the linearity exhibited in Fig. 1, we do not expect it to
presist in small systems involving only a few electrons.
Only additional calculations will reveal how small is
small. If, as we suspect, nonlinearities in €;(n) as a
function of n decrease as the size of the molecule in-
creases, then Eq. (3.1) will fortunately be of greatest
utility where it is most needed, in calculations on large
systems.

1V. CONCLUSIONS

We have presented a generalization of the transition
state technique for the calculation of electronic excita-
tions in molecular systems. We have shown that, com-
pared to the original formulation by Slater, our general-
ized point of view can be exploited in three different
ways. (1) The prescription for the excitation energy
given in Eq. (2.6) eliminates the leading term in the
error introduced in the Slater method with at most a
marginal increase in computational effort. (The transi-
tion states required by Eq. (2.6) being farther from the
ground state than those required by Slater’s method may
require more iterations to achieve self-consistency.)
(2) Our own limited numerical experience suggests that
the prescription for the excitation energies given in
Eq. (3.1) is a substantial practical improvement over
the Slater method in that it describes the same physical
effect with essentially the same accuracy but with ap-
preciably less computation. (3) As amatter of principle,
we have shown that the transition state technique per se
need not be approximate; the difference between final
and initial total energies can be evaluated toany accuracy
one desires merely by performing the integration in Eq.
(2. 1) with the required numerical precision. As a
final comment, the linear dependence of €,(n)=9E/on,
on n which our numerical examples display raises the
hope that the relaxation energy can be evaluated by per-
turbation theory, a procedure which would eliminate the
need for numerical transition state calculations al-
together,
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