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ABSTRACT
Voice-based biometric systems are highly prone to spoofing
attacks. Recently, various countermeasures have been de-
veloped for detecting different kinds of attacks such as re-
play, speech synthesis (SS) and voice conversion (VC). Most
of the existing studies are conducted with a specific training
set defined by the evaluation protocol. However, for realis-
tic scenarios, selecting appropriate training data is an open
challenge for the system administrator. Motivated by this
practical concern, this work investigates the generalization
capability of spoofing countermeasures in restricted training
conditions where speech from a broad attack types are left
out in the training database. We demonstrate that different
spoofing types have considerably different generalization ca-
pabilities. For this study, we analyze the performance us-
ing two kinds of features, mel-frequency cepstral coefficients
(MFCCs) which are considered as baseline and recently pro-
posed constant Q cepstral coefficients (CQCCs). The exper-
iments are conducted with standard Gaussian mixture model
- maximum likelihood (GMM-ML) classifier on two recently
released spoofing corpora: ASVspoof 2015 and BTAS 2016
that includes cross-corpora performance analysis. Feature-
level analysis suggests that static and dynamic coefficients of
spectral features, both are important for detecting spoofing at-
tacks in the real-life condition.

Index Terms— Spoofing Attack, Replay Attack, ASVspoof
2015, BTAS 2016, Generalized countermeasure.

1. INTRODUCTION
Spoofing attacks imitate a person’s identity in order to gain
illegitimate access to sensitive or protected resources. Nowa-
days, significant advancement in speech technology related to
SS and VC techniques poses threat to speech-based biomet-
ric systems like automatic speaker verification (ASV) sys-
tems [1]. Replay attacks are another form of spoofing at-
tack, where an adversary tries to attack a system using pre-
recorded speech accumulated from target speakers [2]. Due to
the availability of high-quality, low-cost recording and play-
back devices, replay attacks are also a serious threat to the
voice biometric systems. Several replay spoofing detection
approaches such as fixed pass-phrase method, spectral ratio

and modulation index were proposed in [3–5]. A study on
cross database evaluation was demonstrated in [6].

To detect SS and VC attacks, diverse range of feature ex-
traction methods such as mel-frequency cepstral coefficients
(MFCCs) cepstral feature [7], phase features [8–10], a com-
bination of both amplitude and phase feature [11], prosodic
features [12] were reported. A concise experimental review
of spoofing detection was presented in [13]. While, MFCCs
are considered as the standard feature extraction techniques in
speech processing, constant Q transform cepstral coefficients
(CQCCs) have shown best detection performance, especially
for unknown attacks in ASVspoof 2015 corpus [14]. How-
ever, it was not implemented for replay attack detection.

Techniques to generate voice converted speech and syn-
thetic speech, made a rapid progress in recent times. Notable
among them are joint density-Gaussian mixture model (JD-
GMM) [15], line spectrum pairs (LSP) [16], MARY text-to-
speech synthesis (MARY-TTS) [17], hidden Markov model
(HMM) based TTS [18] etc. It is not practically possible to
anticipate the kind of SS and VC attack all the time to in-
clude those types of speeches in the training database. At
the same time, it is expected that detection performance will
degrade if similar kinds of data are unavailable in the train-
ing corpus. The previous studies on spoofing detection do
not focus on attack dependency which is the central theme of
this work. There are some results generated in recent spoof-
ing challenges with unknown attack types but no exhaustive
study is done that can lead to generalization ability of certain
training schemes over other for a range of unknown attacks.

In this work, we did a systematic study of attack depen-
dency to discover corresponding generalization ability. We
demonstrate the result using conventional MFCCs and newly
proposed CQCCs features on GMM-maximum likelihood
(GMM-ML) framework. It is found that GMM-ML as a clas-
sifier is better suited for spoofing detection task [19]. We have
experimented on two recent databases: ASVspoof 2015, de-
veloped as a part of Automatic Speaker Verification Spoofing
and Countermeasure Challenge [20] and BTAS 2016 corpus
in Speaker Anti-spoofing Competition [21]. BTAS 2016 in-
troduces more realistic replay attacks compared to ASVspoof
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Fig. 1: Spectrogram of (a) genuine and replay speech signals for same sentence “The subject should read the sentences carefully”. The
replayed signals are generated by using techniques based on (b) replay laptop, (c) replay laptop high quality, (d) replay phone, (e) SS, (f)
replay SS, (g) replay SS high quality, (h) VC, (i) replay VC and (j) replay VC high quality.

database. Our study shows the generalization ability of one
countermeasure over the other.

2. GENERALIZATION FRAMEWORK
Figure 1 illustrates the spectral characteristics of spoofed sig-
nals for diverse attacks. Generalized countermeasure refers to
the ability to overcome the attack dependency in the detection
process. This dependency signifies the types of attacks that
are best represented by a similar pattern in the attack space.
It involves a prior knowledge of attack type, which is not a
realistic assumption in all the cases. Therefore, the counter-
measure system needs to be robust enough to detect an attack
even though that type of attack data is not used for training
the model. Fig. 2 describes the functional block diagram of a
generalized countermeasure framework where we find which
kind of training has greater generalization ability.
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Fig. 2: A speech-based countermeasure system.

Initially, we train the models using all types of replay (i.e.,
genuine, SS and VC samples) and synthetic (SS and VC sam-
ples) attacks. Then, we study the impact when one type of
spoofing data is not used for modeling the spoofed data.

3. EXPERIMENTAL SETUP
3.1. Database Description

ASVspoof 2015: ASVspoof database is created to assess
ten different types of SS and VC synthetic speech samples

namely S1 to S10 [20]. It includes both the known attacks
(S1-S5) and the unknown attacks (S6-S10).

BTAS 2016: BTAS database contains genuine and differ-
ent kinds of replay attacks where genuine, SS and VC speech
samples were played back using high-quality devices. Two
new replay unknown attacks (R9 and R10) are introduced in
the evaluation data to make it more challenging. The statis-
tics regarding types of attacks and the number of utterances
for each dataset are presented in Table 1.

Table 1: Number of utterances in BTAS 2016 database. LP: laptop,
HQ: high quality speaker, PH1: Samsung Galaxy S4 phone, PH2:
iPhone 3GS and PH3 is iPhone 6S.

Types Training Development Evaluation
Genuine 4973 4995 5576

Replay

Replay LP LP R1 700 700 800
Replay LP HQ LP R2 700 700 800

Replay PH1 LP R3 700 700 800
Replay PH2 LP R4 700 700 800

Replay PH2 PH3 R9 - - 800
Replay LP PH2 PH3 R10 - - 800

SS
SS LP LP R5 490 490 560

SS LP HQ LP R6 490 490 560

VC
VC LP LP R7 17400 17400 19500

VC LP HQ LP R8 17400 17400 19500

3.2. Feature Extraction Techniques
Mel-frequency cepstral coefficients (MFCCs): MFCC

[22] feature utilizes mel-scale based triangular filter bank.
The power spectrum is integrated using overlapping band-
pass filters in the triangular filterbank. We use the configu-
ration reported in [13].

Constant Q cepstral coefficients (CQCCs): The con-
stant Q transform (CQT) gives a higher frequency resolution
in lower frequencies and a greater temporal resolution in the
higher frequency region. A spline interpolation method is ap-
plied to resample the geometric frequency scale into a uni-
form linear scale in order to apply linearly spaced DCT coef-
ficients for CQCC cepstral feature computation [14].

CQCC feature is implemented with maximum frequency
(fmax = 4Khz) and minimum frequency of (fmin =
15Hz). The number of bins per octave is assigned to 96.



Table 2: Performance (in % of EER) for MFCC and CQCC features on BTAS 2016 development data. The corresponding class of attacks
that are not considered in the training are highlighted.

Train AverageFeatures Replay SS VC Type R1 R2 R3 R4 R5 R6 R7 R8 Replay SS VC All
Static 0.14 0.61 0.09 0.00 0.00 0.84 0.00 0.02 0.21 0.42 0.01 0.21

Static+∆∆2 0.34 2.74 0.00 0.00 0.00 0.57 0.00 0.01 0.77 0.29 0.01 0.46X X X
∆∆2 19.50 41.35 28.62 28.67 1.33 0.86 0.00 0.01 29.54 1.10 0.01 15.04
Static 4.91 5.92 30.33 24.56 0.00 1.07 0.01 0.01 16.43 0.54 0.01 8.35

Static+∆∆2 4.73 6.98 30.51 26.29 0.00 0.65 0.01 0.00 17.13 0.33 0.01 8.65× X X
∆∆2 25.44 44.39 34.34 35.52 1.33 1.10 0.00 0.01 34.92 1.23 0.01 17.77
Static 0.27 0.63 0.00 0.00 0.00 1.93 0.00 0.02 0.23 0.97 0.01 0.36

Static+∆∆2 0.31 3.50 0.00 0.00 0.00 2.07 0.00 0.01 0.95 1.04 0.01 0.74X × X
∆∆2 19.63 40.88 27.35 27.99 2.39 1.62 0.00 0.01 28.96 2.01 0.01 14.98
Static 0.00 0.30 0.00 0.00 0.00 0.04 0.32 2.13 0.15 0.02 1.23 0.35

Static+∆∆2 0.04 0.08 0.00 0.00 0.00 0.02 0.55 0.85 0.03 0.01 0.70 0.19

MFCC

X X ×
∆∆2 2.44 24.05 5.80 2.69 0.14 0.85 3.60 6.30 8.75 0.50 4.95 5.73
Static 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Static+∆∆2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00X X X
∆∆2 20.04 6.43 25.22 41.05 1.10 0.11 0.09 0.18 23.19 0.61 0.14 11.78
Static 1.27 0.00 47.71 40.84 0.00 0.00 0.00 0.00 22.46 0.00 0.00 11.23

Static+∆∆2 8.25 0.00 49.18 44.75 0.00 0.00 0.00 0.00 25.55 0.00 0.00 12.77× X X
∆∆2 25.07 9.36 33.72 43.77 1.03 0.23 0.09 0.19 27.98 0.63 0.14 14.18
Static 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Static+∆∆2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00X × X
∆∆2 20.31 6.48 25.54 40.93 2.26 0.20 0.08 0.18 23.32 1.23 0.13 12.00
Static 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Static+∆∆2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CQCC

X X ×
∆∆2 10.52 2.71 18.08 29.93 0.41 0.30 2.46 2.89 15.31 0.36 2.68 8.37

Table 3: Performance (in % of EER) for MFCC and CQCC (static) features on BTAS 2016 evaluation data. The corresponding class of
attacks that are not considered in the training systems are highlighted.

Train AverageFeatures Replay SS VC R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Replay SS VC All
X X X 1.11 8.26 0.01 0.14 0.06 3.67 0.03 1.68 17.87 10.85 6.37 1.87 0.86 4.37
× X X 6.61 16.12 32.89 24.38 0.14 5.34 0.06 2.88 30.50 40.89 25.23 2.74 1.47 15.98
X × X 1.42 8.41 0.02 0.11 0.73 5.80 0.04 1.84 18.21 10.23 6.40 3.27 0.94 4.68MFCC

X X × 0.22 2.31 0.00 0.00 0.00 0.16 3.06 4.90 19.47 6.59 4.77 0.08 3.98 3.67
X X X 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 7.56 0.00 1.27 0.00 0.00 0.76
× X X 7.20 0.43 48.79 43.96 0.00 0.00 0.00 0.01 10.02 32.76 23.86 0.00 0.10 14.32
X × X 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 13.08 0.03 2.19 0.10 0.00 1.33CQCC

X X × 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.01 12.19 0.03 2.04 0.00 0.13 1.25

Speech activity detector (SAD) is not employed as non-
speech frames could be helpful for spoofing detection.

3.3. Classifier and Performance Evaluation
We employ GMM-ML classifier for spoofing detection.
Two target models λn and λs are created from natural and
spoofed speech data respectively [23]. The log-likelihood
score is calculated as, Λ(X) = L(X|λn) − L(X|λs), where
X = {x1, . . . ,xT } is the feature matrix of the test utterance,
T is the number of frames and L(X|λ) is the average log-
likelihood of X given GMM model λ. We train GMMs with
10 iterations of expectation-maximization (EM) algorithm
and 512 mixture components.

Equal error rate (EER) is used as the performance met-
ric to evaluate spoofing attack detection. We use BOSARIS
toolkit [24] to calculate the EER using receiver operating
characteristics convex hull (ROCCH) method.

4. RESULTS AND ANALYSIS
4.1. BTAS 2016
We first conduct an experiment on BTAS 2016 replay spoof-
ing development dataset to investigate the effects of different
training data. The aim is to learn the system’s ability to de-
tect spoofed signals generated by various spoofing algorithms
that are not incorporated in the training phase. Overall perfor-

mance evaluation results on eight replay attacks (R1-R8), ob-
tained using conventional MFCC and proposed CQCC feature
based countermeasures are reported in Table 2. Due to attack
dependency, the performance degrades drastically when one
attack type is excluded from training the models and when
the system is confronted with the similar type of attack in the
system assessment process. We also observe that including
direct replay in training helps for both SS and VC but not
vice versa. This can be justified by the fact that SS and VC
attacks are different whereas replay attacks have high simi-
larity with genuine speech in terms of frequency components
and formant trajectories [1]. Consequently, the replay speech
characteristics of natural signal cannot be captured properly
when they are eliminated from training the models. Interest-
ingly, the static spectral features lead to promising recognition
accuracy as opposed to their dynamic counterparts. This is in
contrast to previous studies [13, 14].

We perform further experiments for only static features on
the evaluation dataset. The overall and individual results are
reported in Table 3. CQCC feature yields superior result in
all training conditions. This probably can be explained by the
fact that CQCC feature provides higher resolution in lower
and higher frequency regions that reflects better human per-
ception system. Thus, they contribute better ability to capture



Table 4: Same as Table 2 but for ASVspoof 2015 evaluation.
Train AverageFeatures SS VC Type S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 SS VC All

Static 1.54 7.54 0.00 0.00 6.80 5.33 2.25 0.04 2.12 26.66 8.89 3.66 5.23
X X

∆∆2 0.09 1.46 0.00 0.00 0.36 0.30 0.02 0.03 0.02 19.45 6.48 0.33 2.17
Static 1.64 7.35 0.32 0.35 5.93 5.07 2.47 0.07 2.67 30.68 10.45 3.60 5.66× X
∆∆2 0.00 1.07 0.30 0.28 0.25 0.25 0.01 0.17 0.01 22.08 7.55 0.25 2.44
Static 19.46 35.82 0.00 0.00 35.16 34.41 26.98 0.26 24.54 8.97 2.99 25.23 18.56

MFCC

X ×
∆∆2 40.96 29.02 0.00 0.00 11.21 11.39 2.18 0.19 2.57 26.23 8.74 13.93 12.38
Static 0.02 0.44 0.00 0.00 1.54 1.04 0.09 0.15 0.13 19.11 6.37 0.49 2.25

X X
∆∆2 0.02 0.31 0.01 0.03 0.27 0.25 0.12 2.29 0.15 0.94 0.33 0.49 0.44
Static 0.03 1.43 0.10 0.07 1.43 1.19 0.08 0.59 0.14 21.77 7.31 0.70 2.68× X
∆∆2 0.01 0.08 4.17 3.86 0.08 0.12 0.07 5.93 0.12 0.72 2.92 0.92 1.52
Static 2.68 16.24 0.00 0.00 25.74 22.09 10.56 0.05 12.22 6.05 2.02 12.80 9.56

CQCC

X ×
∆∆2 26.59 7.86 0.01 0.03 7.86 7.85 1.90 2.09 2.96 35.20 11.75 8.16 9.24

Table 5: Cross corpora evaluation performance (in % of EER) on BTAS 2016 evaluation data trained using ASVspoof 2015 training dataset.
Train AverageFeatures SS VC Type R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Replay SS VC All

Static 46.91 50.00 50.00 50.00 46.68 49.94 42.47 49.28 46.05 50.00 48.83 48.31 45.88 48.13
X X

∆∆2 49.93 34.39 49.88 49.82 34.31 4.92 3.97 4.80 44.62 49.87 46.42 19.62 4.39 32.65
Static 46.54 50.00 50.00 50.00 46.53 49.97 42.77 49.44 45.90 49.16 48.60 48.25 46.11 48.03× X
∆∆2 49.94 35.39 49.61 49.19 39.74 7.42 3.20 3.29 47.89 49.85 46.98 23.56 3.25 33.55
Static 50.00 49.98 43.23 47.96 50.00 49.99 50 46.14 50 49.97 48.52 50 48.07 48.73

MFCC

X ×
∆∆2 50.00 47.42 49.97 50.00 20.03 3.26 14.32 10.67 50.00 49.98 49.56 11.65 12.50 34.57
Static 48.50 49.96 38.68 44.14 41.39 49.88 49.94 49.16 49.96 45.21 46.08 45.64 49.55 46.68

X X
∆∆2 47.67 36.43 49.68 50 19.42 17.29 18.11 19.97 46.64 49.08 46.58 18.36 19.04 35.43
Static 48.38 49.96 42.89 45.88 41.74 49.88 49.96 49.95 49.96 45.03 47.05 45.81 49.96 47.36× X
∆∆2 47.83 40.07 49.57 49.94 30.61 31.82 27.10 28.22 42.81 48.44 46.44 31.22 27.66 39.64
Static 49.99 49.92 40.11 49.99 45.22 49.96 49.99 47.36 50.00 50.00 48.34 47.59 48.68 48.25

CQCC

X ×
∆∆2 44.44 46.12 42.62 49.47 9.87 13.80 21.89 23.71 49.95 49.96 47.09 11.84 22.80 35.18

replay characteristics while the models are trained by entire
or a specific type of attacks. Furthermore, the pattern in EER
values represents similar nature when features from unknown
spoofing classes appear in the evaluation phase. It is worth-
while to mention that overall performance is compromised
throughout all generalization systems for such unknown at-
tacks (R9-R10). Comparing CQCC feature with MFCC fea-
ture, the CQCC feature outperforms other systems reported
in [21] with an average EER of 0.76 %.

4.2. ASVspoof 2015
The results of generalized systems on ASVspoof 2015 syn-
thetic spoofing database are reported in Table 4. We train the
countermeasure with both and either of the SS and VC at-
tacks. In this study, we find that the dynamic coefficients pro-
vide superior performance in detecting synthetic spoofed sig-
nals. The results show a large amount of deterioration in per-
formance when a particular attack is not considered in train-
ing. Although both MFCC and CQCC features give poor per-
formance, CQCC feature leads to better performance across
all cases of generalization scenarios. It is also interesting that
for a particular case of generalization (where SS type attack is
only used for training), static features give higher recognition
accuracy than dynamic features for S1 and S10 attacks. We
also notice that best performance for a specific attack is ob-
tained if data from the specific attack type is used in training.

4.3. Cross-corpora Evaluation
The goal of this study has been to check cross-corpora vul-
nerability in a similar attack dependency framework where
ASVspoof 2015 synthetic data is used to model the counter-
measure and system performance is evaluated on BTAS 2016

replay evaluation dataset. The cross-corpora evaluations are
shown in Table 5. The overall performance is poor as SS and
VC data of BTAS 2016 test set consist of replayed version of
SS and VC attacks as oppose to the ASVspoof database. An
interesting observation is that although replay attacks show
poor recognition accuracy, dynamic features convey more dis-
tinct information in case of SS and VC attacks. It seems rea-
sonable given that SS and VC based spoofed data are better
modeled through dynamic characteristics. This, in turn, en-
hances the recognition accuracy while detecting replay ver-
sion of VC and SS spoofed samples. Conventional MFCC
feature proves to be more efficient in cross-corpora evalua-
tion, but the performance of unknown attacks is poor for both
features.

5. CONCLUSIONS

This work presents first analysis of spoofing countermeasures
for attack dependency and generalization. A detailed study
on BTAS 2016 with extensive experiments reveals that direct
replay data have better generalization capability than SS and
VC-based replayed data. Results on ASVspoof 2015 demon-
strates that VC spoofed data in training can better represent
the attack space. The cross-corpora evaluation performance is
very poor due to lack of suitable data in training. Our study on
both the databases also indicates that both static and dynamic
parts of spectral features are useful for detecting spoofing at-
tacks in generalized sense.
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