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Generalization of Steane’s Enlargement
Construction of Quantum Codes and Applications

San Ling, Jinquan Luo and Chaoping Xing

Abstract— We generalize Steane’s enlargement construction of
binary quantum codes to q-ary quantum codes. We then apply
this result to BCH codes and the study of asymptotic bounds, and
obtain improvements to the quantum BCH codes constructed by
Aly and Klappenecker and the quantum asymptotic bounds from
algebraic geometry codes obtained by Feng, Ling and Xing.

Index Terms— Enlargement, Self-orthogonal, BCH codes, Al-
gebraic geometry codes, Asymptotic bounds

I. INTRODUCTION

After the work of Calderbank, Rains, Shor and Sloane
[5], much work on the constructions of quantum codes from
classical block codes has been done. One of the main ideas
for these constructions is to construct self-orthogonal classical
codes with good parameters (see Section 2 below). In [9],
Steane succeeded in extending this idea by enlarging classical
block codes to obtain quantum codes with better parameters.
However, Steane’s original paper only considered binary quan-
tum codes. As q-ary quantum codes have been studied quite
extensively for some years, it is natural to ask if we can
generalize Steane’s enlargement construction to q-ary quantum
codes.

The main result of this paper is to obtain a q-ary analogue
of Steane’s enlargement construction. Once this enlargement
construction is generalized, we can naturally apply it to various
scenarios to improve upon known results. We focus on only
two such applications in this paper, namely, we apply the q-
ary analogue of Steane’s enlargement construction to BCH
codes and asymptotic problems. In particular, we improve the
following two results: (i) the quantum BCH codes constructed
in [1]; (ii) the quantum asymptotic bounds from algebraic
geometry codes given in [7].

The paper is organized as follows. In Section 2, we present
the original enlargement construction of Steane and generalize
it to a q-ary analogue. This q-ary result is applied to BCH
codes in Section 3. Finally, we improve the asymptotic bounds
obtained from algebraic geometry codes in Section 4.
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II. ENLARGEMENT CONSTRUCTION

Before stating our results, we introduce some definitions
and notations.

Let q be a prime power and let Fq be the finite field of cardi-
nality q. For u ∈ Fn

q , denote by wtH(u) the Hamming weight
of u. Now for (u|v) ∈ F2n

q with u = (u1, · · · , un),v =
(v1, · · · , vn) ∈ Fn

q , define the symplectic weight by

wts(u|v) := #{i : ui 6= 0 or vi 6= 0}.

For two vectors (u|v), (u′|v′) ∈ F2n
q , define the symplectic

inner product by

((u|v), (u′|v′))s = u · v′ − u′ · v ∈ Fq,

where · stands for the usual Euclidean inner product.
For a q-ary classical linear block code C ⊆ F2n

q , the
symplectic dual code of C is defined as

C⊥s = {a ∈ F2n
q | (a,b)s = 0 for all b ∈ C}.

It is easy to verify that C = (C⊥s)⊥s .
A code C ⊆ F2n

q is said self-orthogonal with respect to the
symplectic inner product if C ⊆ C⊥s .

The following construction of quantum codes from classical
block codes was presented by Ashikhmin and Knill in [2].

Proposition 2.1: If C is a q-ary self-orthogonal [2n, k] code
with respect to the symplectic inner product, then there exists
a q-ary [[n, n− k, d]] quantum code with

d = wts(C⊥s\C) = min{wts(v)| v ∈ C⊥s\C}.
In particular, if C is a q-ary classical [n, k, d]-linear code
which contains its Euclidean dual C⊥, then it is easy to see
that the code

C := {(u|v) : u,v ∈ C⊥}

is self-orthogonal with respect to the symplectic inner product.
It is clear that the dimension of C is 2n − 2k. Thus, by
Proposition 2.1, we obtain a q-ary [[n, 2k − n, d]]-quantum
code.

The idea of Steane’s enlargement is to find a q-ary linear
code A that contains B so that the dimension of the result-
ing quantum code is increased, while its distance remains
unchanged. Steane worked out the enlargement construction
only for the binary case [9], which is stated below.

Proposition 2.2: (see [9]) Given a classical binary error-
correcting code C1, of parameters [n, k1, d1], which contains
its Euclidean dual, and which can be enlarged to an [n, k2 >
k1 + 1, d2]-code C2 (i.e., C1 ⊆ C2), a pure binary quantum
code of parameters [[n, k1 + k2 − n, min(d1, d3d2/2e)]] can
be constructed.
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Before generalizing Steane’s enlargement construction to
the q-ary case, we need several lemmas.

Lemma 2.3: Let C1 and C2 be two q-ary linear codes
satisfying C⊥

1 ⊆ C1 $ C2. Let G1,
(

D
G1

)
, H2 and

(
B
H2

)
be

generator matrices of C1, C2, C⊥
2 and C⊥

1 , respectively. Then
BDT is invertible, where T stands for transpose.

Proof: Note that both the sizes of B and D are k × n,
where k is the difference between the dimensions of C2 and
C1, and n is the length of the codes. Thus, BDT is a square
matrix of size k. The desired result is equivalent to the fact
that the equation BDT xT = 0 has only the trivial solution.
Suppose that this was false. Then there exists a nonzero vector
c ∈ Fk

q such that BDT cT = 0. Thus, cD is a nonzero
codeword of C2, but not a codeword of C1. This implies that
H2(DT cT ) = 0 and

(
B
H2

)
(DT cT ) 6= 0. Hence, BDT cT 6= 0,

a contradiction.
Lemma 2.4: Let u,v be two vectors in Fn

q , then we have

q · wts(u|v) = wtH(u) + wtH(v) +
∑
α∈F∗q

wtH(u + αv).

Proof: Let u = (u1, . . . , un) and v = (v1, . . . , vn). It is
sufficient to show that, for any 1 ≤ i ≤ n, one has

q · wts(ui|vi) = wtH(ui) + wtH(vi) +
∑
α∈F∗q

wtH(ui + αvi).

(II.1)
We prove the above identity by considering the four cases.
(i) ui = vi = 0.

In this case, both sides of (II.1) are equal to 0.
(ii) ui = 0 and vi 6= 0.

The left hand side of (II.1) is clearly equal to q. The right
hand side of (II.1) is wtH(vi)+

∑
α∈F∗q

wtH(αvi) which
is also equal to q.

(iii) ui 6= 0 and vi = 0.
The left hand side of (II.1) is clearly equal to q. The right
hand side of (II.1) is wtH(ui) +

∑
α∈F∗q

wtH(ui) which
is also equal to q.

(iv) ui 6= 0 and vi 6= 0.
The left hand side of (II.1) is clearly equal to q. The right
hand side of (II.1) is 2 +

∑
α∈F∗q

wtH(ui + αvi). By the
fact that ui + αvi = 0 if and only if α = −ui/vi, i.e.,
wtH(ui +αvi) = 1 if and only if α ∈ F∗ \{−ui/vi}, we
get

∑
α∈F∗q

wtH(ui + αvi) = q− 2. The identity (II.1) is
also proved in this case.

This finishes the proof.
Lemma 2.5: For any monic polynomial f(x) of degree n

over Fq, there exists a square matrix A of size n such that the
characteristic polynomial of A is equal to f(x).

Proof: Let f(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+
a0 be any monic polynomial over Fq. Then the characteristic
polynomial of the n× n square matrix

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
. . . . . . · · ·

...
...

...
...

. . . . . .
...

0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1



is exactly f(x).
Now we state the main result of this paper.
Theorem 2.6: Let q be a prime power and let C1 be a q-ary

[n, k1, d1]-linear code which contains its Euclidean dual C⊥
1 .

Suppose C1 can be enlarged to an [n, k2, d2]-code C2 with
k2 > k1+1, i.e., C1 ⊆ C2. Then a pure q-ary quantum code of
parameters

[[
n, k1 + k2 − n, min

{
d1, d(1 + 1

q )d2e
}]]

can
be constructed.

Proof: Let G1,
(

D
G1

)
, H2 and

(
B
H2

)
be generator matrices

of C1, C2, C⊥
2 and C⊥

1 , respectively. Let C be the q-ary
[2n, k1 + k2]-linear code with generator matrix D AD

G1 0
0 G1

 ,

where A is a (k2 − k1)× (k2 − k1) non-singular matrix with
no eigenvalues in Fq (Lemma 2.5 guarantees the existence of
such a matrix). By Lemma 2.3, the matrix BDT is invertible.
Thus, we can define a matrix Ã := BDT (AT )−1(BDT )−1.

Let C⊥s be the symplectic dual of C. Then it is not difficult
to verify that a generator matrix of C⊥s isÃB B

H2 0
0 H2

 .

From the above generator matrix of C⊥s , we know that C
contains its symplectic dual C⊥s . Thus, by Proposition 2.1,
there exists a q-ary [[n, k1 + k2 − n, d]]-quantum code with
d = wts(C\C⊥s).

It then remains to prove d ≥ min{d1, d(1 + 1/q)d2e}. It
suffices to show that, for any nonzero (u|v) ∈ C, wts(u|v) ≥
min{d1, d(1 + 1/q)d2e}.

Assume that

(u|v) = (x,y, z)

 D AD

G1 0
0 G1


for some vectors x,y and z. Then we have

u = xD + yG1, v = xAD + zG1.

Case 1. u = 0. Then we have x = 0 and hence v = zG1 is a
nonzero codeword of C1. Therefore, wts(u|v) = wtH(v) ≥
d1.
Case 2. v = 0. The same argument gives that wts(u|v) =
wtH(u) ≥ d1.
Case 3. wtH(u) ≥ d1 or wtH(v) ≥ d1. In this case, it is clear
that wts(u|v) ≥ d1.
Case 4. 0 < wtH(u) < d1 and 0 < wtH(v) < d1. In this
case, both u and v are not codewords of C1. This implies that
x 6= 0. We claim that u and v are Fq-linearly independent.
Suppose that this was false, then there exists a nonzero element
β ∈ Fq such that u = βv, i.e., xD + yG1 = βxAD + βzG1.
This gives (x(I−βA),y−βz)

(
D
G1

)
= 0. Therefore, we must

have x(I − βA) = 0. This implies that 1/β is an eigenvalue
of A, which contradicts the choice of A.



3

Since both u and v are vectors of C2, we have that
wtH(v) ≥ d2 and wtH(u + αv) ≥ d2 for all α ∈ Fq. Now
by Lemma 2.4, we have

q ·wts(u|v) = wtH(u)+wtH(v)+
X

α∈F∗q

wtH(u+αv) ≥ (q+1)d2.

The desired result follows.

III. APPLICATION TO BCH CODES

From the previous section, we know that, to construct
quantum codes from classical linear block codes, we need to
find classical codes that contain their Euclidean duals. We can
explore among some well-known codes from classical coding
theory. In this section, we use classical BCH codes to construct
quantum codes.

To apply the results of the previous section, we need to find
classical BCH codes that contain their Euclidean duals. In [1],
a sufficient condition for a classical BCH code to contain its
Euclidean dual is given.

Let BCH(n, q; δ) denote the q-ary narrow-sense BCH code
of length n with designed distance δ.

Let
x[m odd] =

{
x if m is odd,
0 otherwise.

Proposition 3.1: (see [1]) Let n be a positive integer co-
prime to q and let m = ordn(q) be the order of q modulo n.
Then
(i) if 2 ≤ δ ≤ δmax, where

δmax :=
⌊

n

qm − 1

(
qdm/2e − 1− (q − 2)[m odd]

)⌋
,

then BCH(n, q; δ) contains its Euclidean dual
BCH(n, q; δ)⊥;

(ii) if qbm/2c < n ≤ qm − 1 and 2 ≤ δ ≤
min{bnqbm/2c/(qm − 1)c, n}, then the dimension of
BCH(n, q; δ) is n−md(δ − 1)(1− q−1)e.

By applying Proposition 3.1 and the construction in the
paragraph after Proposition 2.1, we obtain a q-ary [[n, k, δ]]-
quantum code with k = n − 2md(δ − 1)(1 − q−1)e. This is
one of the main results of [1] which is stated in [1, Theorem
19].

By applying our enlargement construction of Theorem 2.6,
we can obtain a better quantum code.

Theorem 3.2: Let m = ordn(q). Let n be in the range
qbm/2c < n ≤ qm−1 and let δ be in the range 2 ≤ δ ≤ δmax,
with

δmax =
n

qm − 1

(
qdm/2e − 1− (q − 2)[m odd]

)
,

then there exists a quantum code with parameters

[[n, k,≥ δ]]q

where

k = n−m

��
(δ − 1)

�
1 − q−1��+

���
qδ

q + 1

�
− 1

��
1 − q−1��� .

Proof: Proposition 3.1 implies that the q-ary narrow-
sense BCH code C1 := BCH(n, q; δ) with parameters [n, n−
md(δ − 1)(1 − q−1)e,≥ δ] contains its Euclidean dual. By

taking δ′ =
⌈

qδ
1+q

⌉
and letting C2 := BCH(n, q; δ′) be the

narrow-sense q-ary BCH code with parameters [n, n−md(δ′−
1)(1−q−1)e,≥ δ′], we obtain the desired result from Theorem
2.6.

IV. APPLICATION TO ASYMPTOTIC BOUNDS

As in classical coding theory, asymptotical problems of
quantum codes have been discussed in several papers (see, for
example, [2], [3], [4], [6], [7]). We first recall some definitions
and results from [7].

For a q-ary quantum code Q, we denote by n(Q),K(Q),
and d(Q) the length, the dimension over C, and the minimum
distance of Q, respectively. In this case, we say that Q
is an ((n(Q),K(Q), d(Q)))- or [[n(Q), logq K(Q), d(Q)]]-
quantum code. Let UQ

q be the set of ordered pairs (δ,R) ∈ R2

for which there exists a family {Qi}∞i=1 of q-ary quantum
codes with n(Qi) →∞ and

δ = lim
i→∞

d(Qi)
n(Qi)

, R = lim
i→∞

logq K(Qi)
n(Qi)

,

where logq denotes the logarithm to the base q. The following
description on the domain UQ

q is given in [7].
Proposition 4.1: There exists a function αQ

q (δ), δ ∈ [0, 1],
such that UQ

q is the union of the domain

{(δ,R) ∈ R2 : 0 ≤ R < αQ
q (δ), 0 ≤ δ ≤ 1}

with some points on the boundary αQ
q (δ). Moreover, αQ

q (0) =
1, αQ

q (δ) = 0 for δ ∈ [1/2, 1], and αQ
q (δ) decreases on the

interval [0, 1].
Some upper bounds on the function αQ

q (δ) were investigated
in [3]. The first lower bound on αQ

2 (δ) was derived in [4] using
algebraic geometry codes and later this bound was improved
by Chen-Ling-Xing [6] and Matsumoto [8]. A very good
existence lower bound for p-ary quantum codes was introduced
by Ashikhmin and Knill [2]. It is called the quantum Gilbert-
Varshamov bound, which is a benchmark for the function
αQ

q (δ). In [7], two lower bounds on q-ary quantum codes were
derived from classical algebraic geometry codes and these
two bounds improved the quantum Gilbert-Varshamov bound
for square prime powers q ≥ 192. In this section, we apply
our enlargement construction to classical algebraic geometry
codes again to obtain an improvement on these two algebraic
geometry quantum bounds.

Before proceeding to the algebraic geometry bounds, we
recall some background on classical algebraic geometry codes
and a result on self-orthogonal algebraic geometry codes given
in [11]. The reader may refer to [10], [12] for more details on
algebraic geometry codes.

Let X/Fq be an algebraic curve of genus g. We denote by
Fq(X ) the function field of X . An element of Fq(X ) is called
a function. We write νP for the normalized discrete valuation
corresponding to the point P of X/Fq.

For a divisor G, we form the Riemann-Roch space

L(G) = {x ∈ Fq(X )\{0} : div(x) + G ≥ 0} ∪ {0}.

Then L(G) is a finite-dimensional vector space over Fq, and
we denote its dimension by `(G). By the Riemann-Roch
theorem we have



4

`(G) ≥ deg(G) + 1− g,

and equality holds if deg(G) ≥ 2g − 1.
Let P = {P1, P2, . . . , Pn} be a subset of X (Fq).
Choose a divisor G such that supp(G) ∩ P = ∅. Then

νPi
(f) ≥ 0 for all 1 ≤ i ≤ n and any f ∈ L(G).

Consider the map

φ : L(G) −→ Fn
q , f 7→ (f(P1), f(P2), . . . , f(Pn)).

Then the image of φ forms a subspace of Fn
q that was defined

as an algebraic geometry code by Goppa. The image of φ is
denoted by CL(G;P). If n is bigger than the degree of G,
then φ is an embedding and the dimension k of CL(G;P) is
equal to `(G). The Riemann-Roch theorem makes it possible
to estimate the parameters of the code CL(G;P).

H. Stichtenoth showed in [11] that there exists a family of
algebraic geometry codes achieving the TVZ bound that are
equivalent to self-orthogonal codes. More precisely:

Proposition 4.2: Let q be the square of a prime power. Then
there exists a family {X/Fq} of curves over Fq and a family
of algebraic geometry codes C(G;P) of length n from the
curves X/Fq together with a family of vectors v ∈ (F∗q)n

such that
(i) vC(G;P) is self-orthogonal if its dimension is less than

or equal to n/2; and vC(G;P) contains its Euclidean
dual if its dimension is bigger than or equal to n/2;

(ii) the code C(G;P) achieves the asymptotic TVZ bound,
i.e.,

lim
n→∞

dim(C(G;P)) + dH(C(G;P))
n

≥ 1− 1
√

q − 1
,

(IV.1)
where dH(·) denotes the Hamming distance of a code.

We note that the curves X contain rational points other than
those that are contained in P . For instance, the rational points
lying over the pole of z of the rational function field Fq(z)
do not belong to P . See [11] for the details.

From Proposition 4.2 and the paragraph after Proposition
2.1, we can construct q-ary [[n, 2k − n, d]-quantum codes
with k = dim(C(G;P)) and d = dH(C(G;P)). If we let
limn→∞ d/n = δ, then, by the TVZ bound (IV.1), we obtain

αQ
q (δ) ≥ 1− 2δ − 2

√
q − 1

. (IV.2)

The bound (IV.2) was derived in [7] using algebraic geometry
codes as well, but through a different approach. One notes that
the bound (IV.2) beats the quantum Gilbert-Varshamov bound
if q ≥ 192 is an even power of a prime .

By using more careful analysis, the bound (IV.2) was further
improved to the following in [7]

αQ
q (δ) ≥ 1− 2δ − 2

√
q − 1

+ logq

(
1 +

1
q3

)
. (IV.3)

Now we are ready to state and prove our main result of this
section.

Theorem 4.3: Let q be a prime power square, then one has

αQ
q (δ) ≥ 1−

(
2− 1

q + 1

)
δ − 2

√
q − 1

. (IV.4)

Proof: Let C(G;P) be the algebraic geometry codes
achieving the TVZ bound (IV.1) in Proposition 4.2 and let
v ∈ (F∗q)n be a vector such that vC(G;P) contains its Euclid-
ean dual. Let C1 := vC(G;P), with parameters [n, k1, d1].
Choose a rational point P outside of P (see paragraph after
Proposition 4.2) and consider the code C2 := vC(G+rP ;P),
with parameters [n, k1+r, d1−r] for some integer r ≥ 2. Then
it is clear that C1 is a subspace of C2. Moreover, C1 contains
its Euclidean dual if k1 ≥ n/2. Applying Theorem 2.6, we
obtain a quantum [[n, 2k1+r−n, min{d1, (1+1/q)(d1−r)}]]-
code. By letting r = bd1/(q+1)c and letting limn→∞ d1/n =
δ, we obtain the desired result from the bound (IV.1).
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