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The �-stable distributions introduced by Lévy play an important role in probabilis-
tic theoretical studies and their various applications, e.g., in statistical physics, life
sciences, and economics. In the present paper we study sequences of long-range
dependent random variables whose distributions have asymptotic power-law decay,
and which are called �q ,��-stable distributions. These sequences are generaliza-
tions of independent and identically distributed �-stable distributions and have not
been previously studied. Long-range dependent �q ,��-stable distributions might
arise in the description of anomalous processes in nonextensive statistical mechan-
ics, cell biology, finance. The parameter q controls dependence. If q=1 then they
are classical independent and identically distributed with �-stable Lévy distribu-
tions. In the present paper we establish basic properties of �q ,��-stable distribu-
tions and generalize the result of Umarov et al. �Milan J. Math. 76, 307 �2008��,
where the particular case �=2,q� �1,3� was considered, to the whole range of
stability and nonextensivity parameters �� �0,2� and q� �1,3�, respectively. We
also discuss possible further extensions of the results that we obtain and formulate
some conjectures. © 2010 American Institute of Physics. �doi:10.1063/1.3305292�

I. INTRODUCTION

The central limit theorem �CLT� and �-stable distributions have rich applications in various
fields including the Boltzmann–Gibbs �BG� statistical mechanics. The nonextensive statistical
mechanics1–6 characterized by the nonextensivity index q �which recovers the BG theory in the
case q=1� studies, in particular, strongly correlated random states, mathematical models of which
can be represented by specific long-range dependent random variables. The q-CLT consistent with
nonextensive statistical mechanics was established in Ref. 7. The main objective of Ref. 7 was to
study the scaling limits �attractors� of sums of q-independent random variables with a finite
�2q−1�-variance. The mapping

Fq:Gq�2� → Gz�q��2� , �1�

where Fq is the q-Fourier transform �see Sec. II� z�s�= �1+s� / �3−s�, and Gq�2� is the set of
q-Gaussians up to a constant factor �see, e.g., Refs. 2 and 3�, was essentially used in the descrip-
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tion of attractors. The number 2 in the notation will soon become transparent in the context of the
current paper.

In the present work we study a q-analog of the �-stable Lévy distributions. In this sense, the
present paper is a conceptual continuation of Ref. 7. The classic theory of �-stable distributions
was originated by Lévy and developed by Lévy, Gnedenko, Feller and others; for details and
history see, for instance, Refs. 8–14 and references therein. Distributions with asymptotic power-
law decay ��-stables, and particularly q-Gaussians, in the first place� found a huge number of
applications in various practical studies �see, e.g., Refs. 14–23 just to mention a few�, confirming
the frequent nature of these distributions. As it will become clear later on, �q ,��-stable distribu-
tions unify both of them. Indeed, �1,��-stable distributions correspond to the �-stable ones, and
the �q ,2�-stable distributions correspond to the q-Gaussian ones. All �q ,��-stable distributions,
except Gaussians ��1,2�-distributions�, exhibit asymptotic power laws. In practice the researcher is
often interested in identification of a correct attractor of correlated states, which plays a major role
in the adequate modeling of physical phenomenon itself. This motivates the study of sequences of
�q ,��-stable distributions and their attractors, as focused in the present paper.

For simplicity we will consider only symmetric �q ,��-stable distributions in the one-
dimensional case �see Ref. 8, for the multivariate q-CLT�. We denote the class of random variables
with �q ,��-stable distributions by Lq���. A random variable X�Lq��� has a symmetric density
f�x� with asymptotics f �C�x�−�1+��/�1+��q−1��, �x�→�, where 1�q�2, 0���2, and C is a posi-
tive constant. Hereafter g�x��h�x�, x→a, means that limx→ag�x� /h�x�=1. Linear combinations
and properly scaling limits of sequences of q-independent random variables with �q ,��-stable
distributions are again random variables with �q ,��-stable distributions, justifying that Lq��� form
a class of “stable” distributions. To this end, we note that Lq��� shares the same asymptotic
behavior with the set Lsym��� of symmetric Lévy distributions centered at 0, where

� = ��q,�� =
��2 − q�

1 + ��q − 1�
.

However, there is an essential difference between �q ,��-stability of q-independent random vari-
ables and the classic stability of �-stable distributions. Namely, q-independence exhibits a special
long-range correlation between random variables �see the exact definition in Sec. III�. In practice
this notion reflects physical states �arising e.g., in nonextensive statistical mechanics�, which are
strongly correlated. The term “global correlation” instead of “strong correlation” is also used
widely in physics literature; see, e.g., Refs. 3 and 4. Examples of such systems include
earthquakes,24 cold atoms in optical dissipative lattices,25 and dusty plasma.26 A decomposition of
nonextensive processes with strong correlation into independent states cannot adequately reflect
their evolution. Likewise, �q ,��-stable distributions cannot be captured by the existing theory of
�-stable distributions, which is heavily based on the concept of independence �or weak depen-
dence�. This distinction ends up with essential implication: attractors of �q ,��-stable distributions
are different from the attractors of �-stable distributions, unless q=1. If q=1 then correlation
disappears, that is, q-independence becomes usual probabilistic independence, and ��1,��=�,
implying L1���=Lsym���.

Following the method established in Ref. 7, we will apply Fq-transform for the study of
sequences of q-independent �q ,��-stable distributions. Parameter q controls correlation. We will
classify �q ,��-stable distributions depending on parameters 1�q�2 �or equivalently 1�Q�3,
Q=2q−1� and 0���2. We establish the mapping

Fq:GqL�2� → Gq��� , �2�

where Gq��� is the set of functions �beq
−����� ,b�0,��0�, and
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qL =
3 + Q�

1 + �
, Q = 2q − 1,

i.e.,

2

qL − 1
=

1 + �

1 + ��q − 1�
.

The particular case q=Q=1 recovers qL= �3+�� / �1+��, already known in the literature.2 Denote
Q1= ��Q ,�� :1�Q�3,�=2�, Q2= ��Q ,�� :1�Q�3,0���2�, and Q=Q1�Q2. Note that the
case �Q ,���Q1 for q-independent random variables with a finite Q-variance was studied in Ref.
7. For �Q ,���Q2 the Q-variance is infinite. We will focus our analysis, namely, on the latter case.
Note that the case �=2, in the framework of this classification like the classic �-stable distribu-
tions, becomes peculiar.

In the scope of second classification we study the attractors of scaled sums and expand the
results of Ref. 7 to the region Q generalizing the mapping �1� to

F	��q�:Gq��� → Gz��q����, 1 � q � 2, 0 � � � 2, �3�

where

	��s� =
� − 2�1 − q�

�
and z��s� =

�q + 1 − q

� + 1 − q
.

Note that, if �=2, then 	2�q�=q and z2�q�= �1+q� / �3−q�, thus recovering the mapping �1�, and
consequently, the result of Ref. 7.

These two classifications of �q ,��-stable distributions based on mappings �2� and �3�, respec-
tively, can be unified to the scheme

Lq���→
Fq

Gq��� ↔
Fq	���

Gq	���
�2� ,

�Fq

GqL�2� , �4�

which gives the full picture of interrelations of �q ,��-stable distributions with parameters
q� �1,2� and �� �0,2� �see details in Sec. VIII�.

II. PRELIMINARIES AND AUXILIARY RESULTS

A. Basic operations of q-algebra

In this section we briefly recall the basic operations of q-algebra. Indeed, the analysis we will
conduct is entirely based on the q-structure of nonextensive statistical mechanics �for more details,
see Refs. 3–5 and references therein�. To this end, we recall the well-known fact that the classical
BG entropy SBG=−	ipi ln pi satisfies the additivity property. Namely, if A and B are two inde-
pendent subsystems, then SBG�A+B�=SBG�A�+SBG�B�. However, the q-generalization of the clas-
sic entropy introduced in Ref. 1 and given by Sq= �1−	ipi

q� / �q−1� with q�R and S1=SBG, does
not possess this property if q�1. Instead, it satisfies the pseudoadditivity �or q -additivity�,1,2,4

Sq�A + B� = Sq�A� + Sq�B� + �1 − q�Sq�A�Sq�B� .

Inherited from the right hand side of this equality, the q -sum of two given real numbers, x and y,
is defined as x�qy=x+y+ �1−q�xy. The q-sum is commutative, associative, recovers the usual
summing operation if q=1 �i.e., x�1y=x+y�, and preserves 0 as the neutral element �i.e.,
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x�q0=x�. By inversion, we can define the q -subtraction as x�qy= �x−y� / �1+ �1−q�y�. The q
-product for x ,y is defined by the binary relation x�qy= �x1−q+y1−q−1�+

1/�1−q�. Here the symbol
�x�+ means that �x�+=x if x
0, and �x�+=0 if x�0. This operation also commutative, associative,
recovers the usual product when q=1, and preserves 1 as the unity. The q-product is defined if
x1−q+y1−q
1. Again by inversion, it can be defined the q -division: x�qy= �x1−q−y1−q+1�1/�1−q�.

B. q-generalization of the exponential and cyclic functions

Now let us recall the main properties of two functions, q-exponential and q-logarithm, which
will be essentially used in this paper. Let eq

x and lnq x denote, respectively, the functions

eq
x = �1 + �1 − q�x�+

1/�1−q� and lnq x =
x1−q − 1

1 − q
�x � 0� .

The entropy Sq then can be conveniently rewritten in the form Sq=	ipi lnq 1 / pi. For the
q-exponential the relations eq

x�qy =eq
xeq

y and eq
x+y =eq

x
�qeq

y hold true. These relations can be written
equivalently as follows: lnq�x�qy�=lnq x+lnq y and lnq�xy�= �lnq x��q�lnq y�. The q-exponential
and q-logarithm have the asymptotics,

eq
x = 1 + x +

q

2
x2 + o�x2�, x → 0, �5�

and

lnq�1 + x� = x −
q

2
x2 + o�x2�, x → 0, �6�

respectively. The q-product and q-exponential can be extended to complex numbers z=x+ iy �see
Refs. 7, 27, and 28�. In addition, for q�1 the function eq

z can be analytically extended to the
complex plain except the point z0=−1 / �1−q� and defined as the principal value along the cut
�−� ,z0�. If q�1, then, for real y, �eq

iy�
1 and �eq
iy��Kq�1+y2�1/2�1−q�, y→�, with

Kq= �1−q�1/�1−q�. Similarly, if q�1, then 0� �eq
iy��1 and �eq

iy�→0 if �y�→�. For complex z it is
not hard to verify the power series representation,

eq
z = 1 + z + z2	

n=0

�
An�q�

�n + 2�!
zn, �z� �

1

�1 − q�
, �7�

where An�q�=
k=0
n ak�q�, ak�q�=q−k�1−q�. Let Iq= �−1 / �1−q� ,1 / �1−q��. Then it follows from �7�

that for arbitrary real number x� Iq the equation

eq
ix = �1 − x2	

n=0

�
�− 1�nA2n�q�

�2n + 2�!
x2n� + i�x − x2	

n=0

�
�− 1�nA2n+1�q�

�2n + 3�!
x2n+1�

holds. Define for x� Iq the functions q-cos and q-sin by formulas

cosq�x� = 1 − x2	
n=0

�
�− 1�nA2n�q�

�2n + 2�!
x2n �8�

and
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sinq�x� = x − x2	
n=0

�
�− 1�nA2n+1�q�

�2n + 3�!
x2n+1. �9�

In fact, cosq�x� and sinq�x� can be defined for all real x by using appropriate power series expan-
sions. Properties of q-sin, q-cos, and corresponding q-hyperbolic functions, were studied in Ref.
29. Here we note that the q-analogs of Euler’s formulas read

eq
ix = cosq�x� + i sinq�x�

and

cosq�x� =
eq

ix + eq
−ix

2
, sinq�x� =

eq
ix − eq

−ix

2i
.

It follows from the definitions of cosq�x� and sinq�x�, and from the equality �eq
x�2=e�1+q�/2

2x �see
Lemma 2.1 in Ref. 7�, that

cosq�2x� = e2q−1
2�1−q�x2

− 2 sin2q−1
2 �x� . �10�

Denote �q�x�=cosq 2x−1. Then Eq. �10� implies

�q�x� = �e2q−1
2�1−q�x2

− 1� − 2 sin2q−1
2 �x� . �11�

The following two properties of �q will be used later on.
Proposition II.1: Let q
1. Then

�1� −2��q�x��0;
�2� �q�x�=−2qx2+o�x3�, x→0.

Proof: Assume q
1. Since e2q−1
−2�q−1�x2

�1, then �11� immediately implies that �q�x��0.
Further, sinq�x� can be written in the form �see Ref. 29� sinq�x�=�q�x�sin�q�x��, where

�q�x�= �eq
�1−q�x2

�1/2 and q�x�= �arctan�1−q�x� / �1−q�. A simple calculation yields �q�x�
−2. Us-
ing asymptotic relation �5�, we get

e2q−1
2�1−q�x2

− 1 = 2�1 − q�x2 + o�x3�, x → 0. �12�

In turn, it follows from �9� that

− 2 sin2q−1
2 �x� = − 2x2 + o�x3�, x → 0. �13�

Now �11�–�13� imply the second part of the statement. �

Representation �7� shows the behavior of q-exponential near the origin. It is not hard to verify
that in the case q�1 for x� �q−1�−1 the representation

eq
−x = ��q − 1�x�−1/�q−1��1 −

1

�1 − q�2x
+

1

�1 − q�4x2 	
n=0

�
�− 1�nAn�q�

�n + 2�!�q − 1�2n1

x
�n�

holds.

C. q-Fourier transform for symmetric densities

The q -Fourier transform for q
1 was introduced in Ref. 7 and used as a basic tool in
establishing the q-analog of the standard CLT. Formally the q-Fourier transform for a given
function f�x� is defined by
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Fq�f���� = �
−�

�

eq
ix�

�qf�x�dx . �14�

For discrete functions fk ,k=0, �1, . . ., this definition takes the form

Fq�f���� = 	
k=−�

�

eq
ik�

�qf�k� . �15�

In the future we use the same notation in both cases. We also call �14� or �15� the q -characteristic
function of a given random variable X with an associated density f�x�, using the notations Fq�X�
or Fq�f� equivalently.

It should be noted that, if in the formal definition �14� f is compactly supported then integra-
tion has to be taken over this support, although, in contrast with the usual analysis, the function
eq

ix�
�qf�x� under the integral does not vanish outside the support of f . This is an effect of the

q-product.
The q-Fourier transform for non-negative f�x� can be written in the form

Fq�f���� = �
−�

�

f�x�eq
ix��f�x��q−1

dx . �16�

We note that, if the q-Fourier transform of f�x� defined by �14� exists, then it coincides with �16�.
The q-Fourier transform determined by formula �16� has an advantage to compare to the formal
definition: it does not use the q-product, which is, as we noticed above, restrictive in use �for
q�1�.

Proposition II.2: Let f�x� be an even function. Then its q -Fourier transform can be written in
the form

Fq�f���� = �
−�

�

f�x�cosq�x��f�x��q−1�dx . �17�

Proof: Notice that, because of the symmetry of f ,

�
−�

�

eq
ix�

�qf�x�dx = �
−�

�

eq
−ix�

�qf�x�dx .

Taking this into account, we have

Fq�f���� =
1

2
�

−�

�

�eq
ix�

�qf�x� + eq
−ix�

�qf�x��dx .

Now due to �16� we obtain

Fq�f���� = �
−�

�

f�x�
eq

ix��f�x��q−1
+ eq

−ix��f�x��q−1

2
dx ,

which coincides with �17�. �

Further, denote

Hq,� = �f � L1:f�x� � C�x�−�1+��/�1+��q−1��, �x� → �� .

For a given f �Hq,� the constant C=Cf is defined uniquely by f . It is readily seen that
��q ,��= ��+1� / �1+��q−1���1 for all �� �0,2� and q� �1,2�. Moreover, ��q ,���2q−1��3
for all �� �0,2� and q� �1,2�, which implies �2q−1

2 �f�=�. Notice also ��q ,��=1+���q ,��,
where
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�� = ���q,�� =
��2 − q�

1 + ��q − 1�
.

On the other hand, the density g of any ��-stable Lévy distributions has the asymptotic behavior
g�x��C / �x�1+��

, �x�→�. Hence, for a fixed q� �1,2� Hq,� is asymptotically equivalent to the set
of densities of ��-stable Lévy distributions.

The following proposition plays a key role in our further analysis.
Proposition II.3: Let f�x�, x�R , be a symmetric probability density function. Further, let

either

(i) the �2q−1�-variance �2q−1
2 �f��� (associated with �=2 and 1�q�2) or

(ii) f�x��Hq,�, where �2q−1,���Q2.

Then, for the q-Fourier transform of f�x� , the following asymptotic relation holds true:

Fq�f���� = 1 − �q,����� + o������, � → 0, �18�

where

�q,� =�
q

2
�2q−1

2 �2q−1, if � = 2,

22−��1 + ��q − 1��Cf

2 − q
�

0

� − �q�y�
y�+1 dy , if �2q − 1,�� � Q2,� �19�

with �2q−1�f�=�−�
� �f�x��2q−1dx.

Proof: First, assume that �=2. By Proposition II.2,

Fq�f���� = �
−�

�

�eq
ix���qf�x�dx = �

−�

�

f�x�cosq�x��f�x��q−1�dx . �20�

Making use of the asymptotic expansion �5� we can rewrite the right hand side of �20�, in the form

Fq�f���� = �
−�

�

f�x��1 + ix��f�x��q−1 − q/2x2�2�f�x��2�q−1��dx + o��3�

= 1 − �q/2��2�2q−1
2 �2q−1 + o��3�, � → 0, �21�

from which the first part of proposition follows.
Now, we assume �2q−1,���Q2. We apply Proposition II.2 to obtain

Fq�f���� − 1 = �
−�

�

f�x��cosq�x��f�x��q−1� − 1�dx = 2�
0

N

f�x��q x��f�x��q−1

2
�dx

+ 2�
N

�

f�x��q x��f�x��q−1

2
�dx ,

where N is a sufficiently large finite number. In the first integral we use the asymptotic relation
��x /2�=−�q /2�x2+o�x3�, x→0, which follows from Proposition II.1, and get

2�
0

N

f�x��q x��f�x��q−1

2
�dx = − q�2�

0

N

x2f2q−1�x�dx + o��3�, � → 0, �22�

that is, a quantity of order o������, �→0, for any ��2. In the second integral taking into account
the hypothesis of the proposition with respect to f�x�, we have
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2�
N

�

f�x��q x��f�x��q−1

2
�dx=2Cf�

N

� 1

x��+1�/�1+��1−q���q x1−��+1��q−1�/1+��q−1��

2Cf
1−q �dx . �23�

We use the substitution

x�2−q�/�1+��q−1�� =
2y

Cf
q−1�

�24�

in the last integral and obtain

2�
N

�

f�x��q x��f�x��q−1

2
�dx = �q,����� + o������, � → 0, �25�

where

�q,� = −
22−��1 + ��q − 1��Cf

2 − q
�

0

� �q�y�
y�+1 dy .

Hence, the obtained asymptotic relations �22� �we take �� �� ,2�� and �25� complete the proof. �

For stable distributions �q,� must be positive. We have seen �Proposition II.1� that if q
1,
then �q�x��0 �not being identically zero�, which yields �q,��0. Note also that the condition for
f�x� to be symmetric was not required in Ref. 7 if �2q−1�f���.

III. WEAK CONVERGENCE OF CORRELATED RANDOM VARIABLES

Let us start this section by introducing the notion of q -independence. We will also introduce
two types of convergence, namely, q -convergence and weak q-convergence and establish their
equivalence.

By definition, two random variables X and Y are said to be �q� ,q ,q�� -independent if

Fq��X + Y���� = Fq�X�����q�Fq�Y���� . �26�

In terms of densities, Eq. �26� can be rewritten as follows. Let fX and fY be densities of X and Y,
respectively, and let fX+Y be the density of X+Y. Then

�
−�

�

eq�
ix�

�q�fX+Y�x�dx = Fq�fX�����q�Fq�fY���� . �27�

If all three parameters q�, q, and q� coincide, i.e., q=q�=q�, then we call simply q-independent.
For q=1 the condition �26� turns into the well-known relation

F�fX � fY� = F�fX� · F�fY�

between the convolution �noted *� of two densities and the multiplication of their �classical�
characteristic functions and holds for independent X and Y. If q�1, then �q� ,q ,q��-independence
describes a specific class of correlations.

Remark III.1: It is worth to mention at this point that q-independence appears to be relevant
to the notion of scale invariance.30 To be more specific, it might well be that q-independence
implies scale invariance, i.e., scale invariance is necessary for q-independence, although it is by
now clear that it is not sufficient. Indeed, scale-invariant probabilistic models exist in the litera-
ture. Some of them presumably involve q-independence since their N→� limits are
q-Gaussians;30,31 others do not involve q-independence32–34 �if they did involve, their N→� limits
would have to be q-Gaussians and they are not�. See also Ref. 35 which discusses limit distribu-
tions in general setting within the exchangeability concept.

Let XN be a sequence of identically distributed random variables. Denote YN=X1+ ¯+XN. By
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definition, XN is said to be �q� ,q ,q��-independent �or �q� ,q ,q��-independent and identically dis-
tributed� if the relations

Fq��YN���� = Fq�X1�����q� ¯ �q�Fq�XN���� �28�

hold for all N=2,3 , . . ..
For q=q�=q�=1 the condition �28� turns into the condition for the sequence XN to be usual

independent and identically distributed. If q=q�=q� then we call the sequence XN simply a
q- independent and identically distributed. Consider example of an �q� ,q ,q�- independent and
identically distributed sequence of random variables, where q� �1,3� and q�= �3q−1� / �q+1�.
Assume XN is the sequence of identically distributed random variables with the associated Gauss-
ian density,

Gq���,x� =
��

Cq�
eq�

−�x2
,

where Cq� is the normalizing constant �see, e.g., Ref. 7�. Further, assume the sums X1+ ¯+XN,
N=2,3 , . . ., are distributed according to the density Gq��� ,x�, where �=N−1/2−q��. Then the se-
quence XN satisfies �28� for all N=2,3 , . . ., with q=q�, thus being �q� ,q ,q�-independent identi-
cally distributed sequence of random variables.

For the sake of simplicity in this paper we will consider only q- independent and identically
distributed random variables.

By definition, a sequence of random variables XN is said to be q-convergent to a random
variable X� if limN→� Fq�XN����=Fq�X����� locally uniformly in �.

Evidently, this definition is equivalent to the weak convergence �denoted by “⇒”� of random
variables if q=1. For q�1 denote by Wq the set of continuous functions � satisfying the condition
���x���C�1+ �x��−q/�q−1�, x�R.

A sequence of random variables XN with the density fN is called weakly q-convergent to a
random variable X� with the density f if �RfN�x�dmq→�Rdf�x�dmq for arbitrary measure mq

defined as dmq�x�=�q�x�dx, where �q�Wq. We denote the weak q-convergence by the symbol

⇒
q

.

Proposition III.2: Let q�1. Then XN⇒X0 yields XN⇒
q

X0.
The proof of this statement immediately follows from the obvious fact that Wq is a subset of

the set of bounded continuous functions. Recall that a sequence of probability measures �N is
called tight if, for an arbitrary ��0, there is a compact K� and an integer N�

�, such that
�N�Rd \K���� for all N
N�

�.
Proposition III.3: Let 1�q�2. Assume a sequence of random variables XN, defined on a

probability space with a probability measure P, and associated densities fN, is q -convergent to a
random variable X with an associated density f . Then the sequence of associated probability
measures �N= P�XN

−1� is tight.
Proof: Assume that 1�q�2 and XN is a q-convergent sequence of random variables with

associated densities fN and associated probability measures �N. We have

1

R
�

−R

R

�1 − Fq�fN�����d� =
1

R
�

−R

R 1 − �
R

fNeq
ix�fN

q−1

dx�d� = �
R
 1

R
�

−R

R

�1 − eq
ix�fN

q−1

�d��d�N�x� .

�29�

It is not hard to verify that
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1

R
�

−R

R

eq
ix�td� =

2 sin1/�2−q��Rx�2 − q�t�

Rx�2 − q�t
. �30�

It follows from �29� and �30� that

1

R
�

−R

R

�1 − Fq�fN�����d� = 2�
−�

� 1 −
sin1/2−q�x�2 − q�RfN

q−1�
Rx�2 − q�fN

q−1 �d�N�x� . �31�

Since 1�q�2 by assumption, 1 / �2−q��1 as well. It is known29,36,37 that for any q��1 the
properties sinq��x��1 and �sinq��x�� /x→1, x→0 hold. Moreover, �sinq��x�� /x�1, ∀x�R. Sup-
pose, lim�x�→��x�fN

q−1=LN, N
1. Divide the set �N
N0� into two subsets A= �Nj 
N0 :LNj
�1� and

B= �Nk
N0 :LNk
�1�. If N�A, since sin1/�2−q��1, there is a number a�0, such that

1

R
�

−R

R

�1 − Fq�fN�����d� 
 2�
�x�
a

1 −
1

R�x��2 − q�fN
q−1�d�N�x� 
 C�N��x� 
 a�, C � 0,

∀ N � A ,

for R small enough. Now taking into account the q-convergence of XN to X and, if necessary,
taking R smaller, for any ��0, we obtain

�N��x� 
 a� �
1

CR
�

−R

R

�1 − Fq�f0�����d� � �, ∀ N � A .

If N�B, then there exist constants b�0, ��0, such that

fN�x� �
LN + �

�x�1/�q−1� �
1 + �

�x�1/�q−1� , �x� 
 b, ∀ N � B .

Hence, we have

�N��x� � b� = �
�x��b

fN�x�dx � �1 + ���
�x��b

dx

�x�1/�q−1� , N � B .

Since, 1 / �q−1��1, for any ��0 we can select a number b�
b, such that �N��x��b����,
N�B. As far as A�B= �N
N0� the proof of the statement is complete. �

Further, we introduce the function

Dq�t� = Dq�t;a� = teq
iatq−1

= t�1 + i�1 − q�atq−1�−1/�q−1�, �32�

defined on �0,1�, where 1�q�2 and a is a fixed real number. Obviously, Dq�t� is continuous on
�0,1� and differentiable in the interval �0,1�. In accordance with the classical Lagrange average
theorem for any t1 , t2 ,0� t1� t2�1 there exists a number t� , t1� t�� t2, such that

Dq�t1� − Dq�t2� = Dq��t���t1 − t2� , �33�

where Dq� means the derivative of Dq�t� with respect to t.
Consider the following Cauchy problem for the Bernoulli equation:

y� −
1

t
y =

ia�q − 1�
t

yq, y�0� = 0. �34�

It is not hard to verify that y�t�=Dq�t� is a solution to problem �34�.
Proposition III.4: For Dq��t� the estimate

�Dq��t;a�� � C�1 + �a��−q/�q−1�, t � �0,1�, a � R1, �35�
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holds, where constant C does not depend on t.
Proof: It follows from �32� and �34� that

�y��t�� � t−1�y + ia�q − 1�yq� = �eq
iatq−1

+ ia�q − 1�tq−1�eq
iatq−1

�q� = �1 + ia�1 − q�tq−1�−q/�q−1�

� C�1 + �a��−q/�q−1�, t � �0,1� .

�

Now we are in a position to formulate the following two theorems on the relationship between
q-convergence and weak q-convergence.

Theorem III.5: Let 1�q�2 and a sequence of random variables XN be weakly q -convergent
to a random vector X. Then XN is q -convergent to X.

Proof: Assume XN, with associated densities fN, is weakly q-convergent to a X, with an
associated density f . The difference Fq�fN����−Fq�f���� can be written in the form

Fq�fN���� − Fq�f���� = �
R

�Dq�fN�x�� − Dq�f�x���dx , �36�

where Dq�t�=Dq�t ;a� is defined in �32� with a=x�. It follows from �33� and �35� that

�Fq�fN���� − Fq�f����� � C�
R

��1 + �x��−q/�q−1��fN�x� − f�x���dx ,

which yields Fq�fN����→Fq�f���� for all ��R. �

Theorem III.6: Let 1�q�2 and a sequence of random variables XN with the associated
densities fN is q -convergent to a random variable X with the associated density f and Fq�f���� is
continuous at �=0. Then XN weakly q -converges to X.

Proof: Suppose that fN converges to f in the sense of q-convergence. It follows from Propo-
sition III.3 that the corresponding sequence of induced probability measures �N= P�XN

−1� is tight.
This yields relatively weak compactness of �N. Theorem III.5 implies that each weakly convergent
subsequence ��Nj

� of �N converges to �= P�X−1�. Hence, �N⇒�, or the same, XN⇒X. Now
applying Proposition III.2 we complete the proof. �

IV. SYMMETRIC „q ,�…-STABLE DISTRIBUTIONS AND THEIR PROPERTIES

In this section we introduce the symmetric �q ,��-stable distributions and classify them on the
base of mapping �2�. In this classification q takes any value in �1,2�, however, we distinguish the
cases �=2 and 0���2.

Definition IV.1: A random variable X is said to have a �q ,�� -stable distribution if its

q -Fourier transform is represented in the form eq
−�����, with ��0. We denote the set of random

variables with �q ,�� -stable distributions by Lq���.
Denote Gq���= �beq

−����� ,b�0,��0�. In other words X�Lq���, if Fq�X��Gq��� with b=1.
Note that if �=2, then Gq�2� represents the set of q-Gaussians and Lq�2�—the set of random
variables whose densities are q�-Gaussians, where q�= �3q−1� / �1+q�. Further, from the

asymptotic relation �5� we have eq
−����� =1−�����+o������. This and Proposition II.3 imply that the

associated density of any �q ,��-stable distribution belongs to Hq,�.
Proposition IV.2: Let q-independent random variables Xj �Lq��� , j=1, .. ,m. Then for con-

stants a1 , . . . ,am,

	
j=1

m

ajXj � Lq��� .

Proof: Let
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Fq�Xj���� = eq
−�j����, j = 1, . . . ,m .

Using the properties eq
x

�qeq
y =eq

x+y and Fq�aX����=Fq�X��a2−q��, it follows from the definition of
the q-independence that

Fq�	
j=1

m

ajXj� = eq
−�����, � = 	

j=1

m

� j�a���2−q� � 0.

�

Proposition IV.2 justifies the stability of distributions in Lq���. Recall that if q=1 then
q-independent random variables are independent in the usual sense. Thus, if q=1, 0���2, then
L1����Lsym���, where Lsym��� is the set of �-stable Lévy distributions.

Moreover, the appropriately scaling limit of sequences of q-independent random variables
with �q ,��-stable distributions has again a �q ,��-stable distribution. To this end consider the sum

ZN =
1

sN�q,��
�X1 + ¯ + XN�, N = 1,2, . . .

where sN�q ,�� is a scaling parameter specified below. First we prove a general result.
Theorem IV.3: Assume �2q−1,���Q2. Let XN be symmetric q -independent random

variables all having the same probability density function f�x��Hq,�. Then ZN, with
sN�q ,��= ��q,�N�1/��2−q� , is q -convergent to a �q ,�� -stable distribution, as N→�.

Proof: Assume �Q ,���Q2. Let f be the density associated with X1. First we evaluate
Fq�X1�=Fq�f�x��. Using Proposition II.3 we have

Fq�f���� = 1 − �q,����� + o������, � → 0. �37�

Denote Y j =N−1/�Xj, j=1,2 , . . .. Then ZN=Y1+ ¯+YN. Further, it is readily seen that for a given
random variable X and real a�0, the equality Fq�aX����=Fq�X��a2−q�� holds. It follows from this
relation that Fq�Y j�=Fq�f��� / ��q,�N�1/��, j=1,2 , . . .. Moreover, it follows from the
q-independence of X1 ,X2 , . . ., and the associativity of the q-product that

�38�

Further, making use of the expansion �6� for the q-logarithm, Eq. �38� implies

lnq Fq�ZN���� = N lnq Fq�f����q,�N�−1/��� = N lnq1 −
����

N
+ o ����

N
�� = − ���� + o�1�, N → � ,

�39�

locally uniformly by �. Hence, locally uniformly by �,

lim
N→�

Fq�ZN� = eq
−���� � Gq��� . �40�

Thus, ZN is q-convergent to a random variable with �q ,��-stable distribution, as N→�. �

Since the density of X�Lq��� is in Hq��� it follows immediately the following Corollary
from Theorem IV.3.

Corollary IV.4: Assume �2q−1,���Q2. Let XN be a sequence of symmetric q -independent
�q ,�� -stable random variables. Then ZN, with the same sN�q ,�� in Theorem IV.3, q weakly
converges to a �q ,�� -stable distribution.

Note that �=2 is not included to Q2 in Theorem IV.3. The case �=2, in accordance with the
first part of Proposition II.3, coincides with Theorem 2 of Ref. 7. Recall that in this case Lq�2�
consists of random variables whose densities are in Gq��2�, where q�= �3q−1� / �q+1�.
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Theorem IV.3 also allows to establish a connection between the classic Lévy distributions and
q�

L-Gaussians. Indeed, for a X�Lq���, its density function f has asymptotics

f � Cf/�x���+1�/�1+��q−1��, �x� → � .

It is not hard to verify that there exists a q�
L-Gaussian, which is asymptotically equivalent to f . Let

us now find q�
L. Any q�

L-Gaussian behaves asymptotically C1 / �x��=C2 / �x�2/�q�
L−1�, Cj =const,

j=1,2, i.e., �=2 / �q�
L −1�. Hence, we obtain the relation

� + 1

1 + ��q − 1�
=

2

q�
L − 1

. �41�

Solving this equation with respect to q�
L, we have

q�
L =

3 + Q�

� + 1
, Q = 2q − 1, �42�

linking three parameters: �, the parameter of the �-stable Lévy distributions, q, the parameter of
correlation, and q�

L, the parameter of attractors in terms of q�
L-Gaussians. Equation �42� identifies

all �Q ,��-stable distributions with the same index of attractor Gq
�
L, proving the following propo-

sition.
Proposition IV.5: Let 1�Q�3 �Q=2q−1�, 0���2 , and

3 + Q�

� + 1
= q�

L . �43�

Then the density of X�Lq��� is asymptotically equivalent to q�
L -Gaussian.

In the particular case Q=1, we recover the known connection between the classical Lévy
distributions �q=Q=1� and corresponding q�

L-Gaussians. In fact, putting Q=1 in Eq. �42�, we
obtain

q�
L =

3 + �

1 + �
, 0 � � � 2. �44�

When � increases between 0 and 2 �i.e., 0���2�, q�
L decreases between 3 and 5/3 �i.e.,

5 /3�q�
L �3�.

It is useful to find the relationship between �=2 / �q�
L −1�, which corresponds to the asymptotic

behavior of the attractor depending on �� ,Q�. Using formula �41�, we obtain

� =
2�� + 1�

2 + ��Q − 1�
. �45�

Proposition IV.6: Let X�LQ���, 1�Q�3 , 0���2 . Then the associated density function
fX has asymptotics fX�x���x�� , �x�→� , where �=��Q ,�� is defined in (45).

If Q=1 �classic Lévy distributions�, then �45� implies the well-known fact �=�+1.
Analogous relationships can be obtained for other values of Q. We call, for convenience, a

�Q ,��-stable distribution a Q-Cauchy distribution, if �=1. We obtain the classic Cauchy–Poisson
distribution if Q=1. For Q-Cauchy distributions �43� and �45� imply

q1
L�Q� =

3 + Q

2
and � =

4

Q + 1
, �46�

respectively.
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V. SCALING LIMITS OF SUMS OF „q ,�…-STABLE DISTRIBUTIONS

In this section we generalize the q-CLT established in Ref. 7 for q-Gaussians, that is, in the
case of �=2, to symmetrical �q ,��-stables with any �� �0,2�.

Let 1�q�2 and f �Gq���, 0���2. It follows from the definition of the q-exponential that
f �Cf�x�−�/q−1, Cf �0, as �x�→�. Analogously, if g�Gq�2�, then g�Cg�x�−2/�q−1�, Cg�0, as
�x�→�. Comparing orders of asymptotics we can easily verify that for a fixed �� �0,2� and for
any q� �1,2� there exists a one-to-one mapping,

Mq,q�:Gq��� → Gq��2�, q� =
� + 2�q − 1�

�
,

such that the image of a density f �Gq��� is again density. Analogously, there is a one-to-one
mapping,

Kq,q�:Gq��� → Gq��2� ,

with the same q�, such that it maps f�x�=eq
−��x��, an element of Gq��� with the coefficient b=1 onto

the element g�x�=e
q�

−���/2��x�2 with the same coefficient b=1. We notice that if �=2, then q�=q and
both operators coincide with the identity operator.

Let Fq be an operator defined as Fq=K
z�q��,q�

−1
Fq�Mq,q�, where z�q��= �1+q�� / �3−q��. It is

readily seen that in the particular case �=2 it coincides with the q-Fourier transform, Fq=Fq. We
call Fq a generalized q-Fourier transform.

Proposition V.1: Assume 0���2 and let the numbers q�, q�, and q be connected through the
relationships

q� =
� − 2�q − 1�

�
and q� =

�q + �q − 1�
� + �q − q�

. �47�

Then the mapping

Fq:Gq��� → Gq�
�48�

holds.
Proof: We use the scheme

�49�

for the proof. Let a density f �Gq���, i.e., asymptotically f�x��Cf�x�−�/�q−1�, x→� with some
Cf �0. Its image Mq,q��f��x�, a q�-Gaussian Gq��� ;x�, in order to be asymptotically equivalent to
f , necessarily

Gq���;x� �
C1

�x�2/�q�−1�
�

Cf

�x��/�q−1� , �x� → � .

Hence,

q� =
� + 2�q − 1�

�
= 1 +

2�q − 1�
�

.

Further, it follows from Corollary 2.10 of Ref. 7 that
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Fq�:Gq��2� → Gq1
�2� ,

where

q1 =
1 + q�

3 − q�
=

� + �q − 1�
� − �q − 1�

.

Now taking into account the asymptotic equality �the right vertical line in �49��

Gq1
��1;x� �

C2

�x�2/�q1−1� �
C3

�x��/�q�−1� , �x� → � ,

we obtain

q� =
�q − �q − 1�
� − �q − 1�

= 1 +
��q − 1�

� − �q − 1�
.

Thus, the mapping �48� holds with q� and q� in Eq. �47�. �

Let us now introduce two functions that are important for our further analysis,

z��s� =
�s − �s − 1�
� − �s − 1�

= 1 +
��s − 1�

� − �s − 1�
, �50�

where 0���2, s��+1, and

	��s� =
� + 2�s − 1�

�
= 1 +

2�s − 1�
�

, 0 � � � 2. �51�

It can be easily verified that 	��s�=s if �=2.
The inverse, z�

−1�t�, t� �1−� ,��, of the first function reads

z�
−1�t� =

�t + �t − 1�
� + �t − 1�

= 1 +
��t − 1�

� + �t − 1�
. �52�

The function z�s� possesses the properties z��1 /z��s��=1 /s and z��1 /s�=1 /z�
−1�s�. If we denote

q�,1=z��q� and q�,−1=z�
−1�q�, then

z� 1

q�,1
� =

1

q
and z�1

q
� =

1

q�,−1
. �53�

Proposition V.1 implies that for 0���2 and 1�q�min�2,1+�� the following mappings hold:

�i� Fq :Gq���→Gz��q����,
�ii� Fq

−1 :Gz��q����→Gq���,

where Fq
−1 is the inverse to Fq.

It should be noted that as Hilhorst38 noticed q-Fourier transform, in general, is not one to one
in the space of densities. In Ref. 39 the invertibility of Fq in the set of q-Gaussians is established.
Since mappings Mq,q� and Kq,q� are one to one, relationship �49� yields invertibility of Fq in
Gz��q���� and validity of property �ii�.

Further, we introduce the sequence q�,n=z�,n�q�=z�z�,n−1�q��, n=1,2 , . . ., with a given
q=z0�q�, q�1+�. We can extend the sequence q�,n for negative integers n=−1,−2, . . . as well,
setting q�,−n=z�,−n�q�=z�

−1�z�,1−n�q��, n=1,2 , . . .. It is not hard to verify that
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q�,n = 1 +
��q − 1�

� − n�q − 1�
=

�q − n�q − 1�
� − n�q − 1�

�54�

for all integer n satisfying −��n� �� / �q−1��. The restriction n� �� / �q−1�� implies the neces-
sary condition q�,n�1, since q-Fourier transform is defined for q
1. Note that q�,n is a function
of �q ,n /��, that q�,n�1 for all n=0, �1, �2, . . ., if q=1, and that limn→�� z�,n�q�=1 for all
q�1. Equation �54� can be rewritten as follows:

�

q�,n − 1
− n =

�

q − 1
, n = 0, � 1, � 2, . . . �55�

We note that the latter coincides with Eq. �13� of Ref. 40, once we identify � with the quantity
z therein defined, which was obtained through a quite different approach �related to the renormal-
ization of the index q emerging from summing a specific expression over one degree of freedom�.

We also note an interesting property of q�,n. If we have a q-Gaussian in the variable �x��/2

�q
1�, i.e., a q-exponential in the variable �x��, its successive derivatives, and integrations with
respect to �x�� precisely correspond to q�,n-exponentials in the same variable �x��.

Further, we introduce the sequence q�,n
� =	�q�,n�, which can be written in the form

q�,n
� = 1 +

2�q − 1�
� − n�q − 1�

=
� + �n − 2��1 − q�

� − n�q − 1�
�56�

for n=0, �1, . . ., or, equivalently,

2

q�,n
� − 1

+ n =
�

q − 1
, n = 0, � 1, . . . . �57�

It follows from Proposition V.1 and definitions of sequences q�,n and q�,n
� that

Fq�,n
:Gq�,n

��� → Gq�,n+1
, − � � n � � �

q − 1
� . �58�

Proposition V.2: For all n=0, �1, �2, . . . the following relations

q�,n−1
� +

1

q�,n+1
� = 2, �59�

q2,n
� = q2,n �60�

hold.
Proof: We notice that

1

q�,n+1
� = 1 −

2�q − 1�
� − �n − 1��q − 1�

.

On the other hand, by �56�

−
2�q − 1�

� − �n − 1��q − 1�
= 1 − q�,n−1

� ,

which implies �59� immediately. The relation �60� can be checked easily. �

The property q2,n
� =q2,n shows that the sequences �54� and �56� coincide if �=2. Hence, the

mapping �58� takes the form Fq2,n
:Gq2,n

�2�→Gq2,n+1
�2�, recovering Lemma 2.16 of Ref. 7. More-

over, in this case the duality �59� holds for the sequence q�,n as well. If ��2 then the values of
q�,n

� are distinct from the values of q�,n. The difference is given by
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q�,n − q�,n
� =

�2 − ���1 − q�
� + n�1 − q�

,

vanishing for �=2, ∀q, or for q=1, ∀�. In the latter case q�,n=q�,n
� �1.

Further, we define for n=0, �1, . . ., k=1,2 , . . ., n+k� �� / �q−1��+1, the operators

Fn
k�f� = Fq�,n+k−1

� ¯ � Fq�,n
�f� = Fq�,n+k−1

�¯Fq�,n+1
�Fq�,n

�f��¯�

and

Fn
−k�f� = Fq�,n−k

−1 � ¯ � Fq�,n−1

−1 �f� = Fq�,n−k

−1 �¯Fq�,n−2

−1 �Fq�,n−1

−1 �f��¯� .

In addition, we assume that Fq
k�f�= f , if k=0 for any appropriate q. Summarizing the above

mentioned relationships, we obtain the following assertions.
Proposition V.3: The following mappings hold:

�1� Fq�,n
:Gq�,n

���→Gq�,n+1
���, −��n� �� / �q−1��;

�2� Fn
k :Gq�,n

���→Gq�,k+n
���, k=1,2 , . . .,

n=0, �1, . . ., −��n+k� �� / �q−1��+1;
�3� limk→−� Fn

kGq���=G���, n=0, �1, . . .,

where G��� is the set of densities of classic symmetric �-stable Lévy distributions.
Theorem V.4: Assume 0���2 and a sequence q�,n ,−��n� �� / �q−1��, is given as in (54)

with q0=q� �1,min�2,1+���. Let XN be a symmetric q�,k -independent (for some
−��k� �� / �q−1�� and �� ��0,2��) random variables all having the same probability density
function f�x� satisfying the conditions of Proposition II.3.

Then the sequence

ZN =
X1 + ¯ + XN

��q�,k,�N�1/��2−q�,k� ,

is q�,k-convergent to a �q�,k−1 ,�� -stable distribution, as N→� .
Proof: The case �=2 coincides with Theorem 1 of Ref. 7. For k=0, the first part of theorem

�q-convergence� is proven in Sec. V of the present paper. The same method can be applied for
k�1. For the readers convenience we proceed the proof of the first part also in the general case,
namely, for arbitrary k. Suppose that 0���2. We evaluate Fq�,k

�ZN�. Denote Y j =Xj /sN�q�,k�,
j=1,2 , . . ., where sN�q�,k�= ��q�,k,�N�1/��2−q�,k�. Then ZN=Y1+ ¯+YN. Again using the relationship
Fq�aX����=Fq�X��a2−q��, we obtain Fq�,k

�Y1�=Fq�,k
�f��� / ��q�,k,�N�1/��. Further, it follows from

q�,k-independence of X1 ,X2 , . . . and the associativity property of the q-product that

Fq�,k
�ZN���� = �q�,k

N Fq�,k
�f� �

��q�,k,�N�1/�� , �61�

the right hand side of which exhibits the q�,k-product of N identical factors Fq�,k
�f�� �

��q�,k,�N�1/� �.

Hence, making use of the properties of the q-logarithm, from �61� we obtain

lnq�,k
Fq�,k

�ZN���� = N lnq�,k
Fq�,k

�f� �

��q�,k,�N�1/�� = N lnq�,k
1 −

����

N
+ o ����

N
��

= − ���� + o�1�, N → � , �62�

locally uniformly by �. Consequently, locally uniformly by �,
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lim
N→�

Fq�,k
�ZN� = eq�,k

−���� � Gq�,k
��� . �63�

Thus, ZN is q�,k-convergent.
To show the second part of Theorem we use Proposition V.3. In accordance with this lemma

there exists a density f�x��Gq�,k−1
���, such that F�,k−1�f�=eq�,k

−����. Hence, ZN is q�,k-convergent to
a �q�,k−1 ,��-stable distribution, as N→�. �

VI. SCALING RATE ANALYSIS

In Ref. 7 the formula

�k =  3 − qk−1

4qkCqk−1

2qk−1−2�1/�2−qk−1�

�64�

was obtained for the q-Gaussian parameter � of the attractor. It follows from this formula that the
scaling rate in the case �=2 is

� =
1

2 − qk−1
= qk+1, �65�

where qk−1 is the q-index of the attractor. Moreover, if we insert the “evolution parameter” t, then
the translation of a q-Gaussian to a density in Gq��� changes t to t2/�. Hence, applying these two
facts to the general case, 0���2, and taking into account that the attractor index in our case is
q�,k−1

� , we obtain the formula for the scaling rate,

� =
2

��2 − q�,k−1
� �

. �66�

In accordance with Proposition V.2, 2−q�,k−1
� =1 /q�,k+1

� . Consequently,

� =
2

�
q�,k+1

� =
2

�

� − �k − 1��q − 1�
� − �k + 1��q − 1�

. �67�

Finally, in terms of Q=2q−1 the formula �67� takes the form

� =
2

�

2� − �k − 1��Q − 1�
2� − �k + 1��Q − 1�

. �68�

In Ref. 7 it was noticed that the scaling rate in the nonlinear Fokker–Planck equation can be
derived from the model corresponding to the case k=1. Taking this fact into account we can
conjecture that the scaling rate in the fractional generalization of the nonlinear Fokker–Planck
equation is

� =
2

� + 1 − Q
,

which can be derived from �68� setting k=1. In the case �=2 we get the known result
�=2 / �3−Q� obtained in Ref. 41.

VII. ON ADDITIVE AND MULTIPLICATIVE DUALITIES

In the nonextensive statistical mechanical literature, there are two transformations that appear
quite frequently in various contexts. They are sometimes referred to as dualities. The multiplica-
tive duality is defined through

��q� = 1/q , �69�
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and the additive duality is defined through

��q� = 2 − q . �70�

They satisfy �2=�2=1, where 1 represents the identity, i.e., 1�q�=q , ∀q. We also verify that

����m����m = ����m����m = 1 �m = 0,1,2, . . .� .

Consistently, we define ����−m�����m and ����−m�����m.
Also, for m=0, �1, �2, . . ., and ∀q,

����m�q� =
m − �m − 1�q
m + 1 − mq

=
q + m�1 − q�
1 + m�1 − q�

,

�����m�q� =
m + 2 − �m + 1�q

m + 1 − mq
=

2 − q + m�1 − q�
1 + m�1 − q�

, �71�

and

����m��q� =
− m + 1 + mq

− m + �m + 1�q
=

1 − m�1 − q�
q − m�1 − q�

.

We can easily verify, from Eqs. �54� and �71�, that the sequences q2,n �n=0, �2, �4, . . .� and
q1,n �n=0, �1, �2, . . .� coincide with the sequence ����m�q� �m=0, �1, � ,2 , . . .�.

VIII. CLASSIFICATION OF „q ,�…-STABLE DISTRIBUTIONS AND SOME CONJECTURES

The q-CLT formulated in Ref. 7 states that the appropriately scaling limit of sums of
qk-independent random variables with a finite �2qk−1�-variance is a qk

�-Gaussian, which is a
qk

�-Fourier preimage of a qk-Gaussian. Here qk and qk
� are sequences defined as

qk =
2q − k�q − 1�
2 − k�q − 1�

, k = 0, � 1, . . . ,

and

qk
� = qk−1, k = 0, � 1, . . . .

Schematically q-CLT in Ref. 7 can be represented as

�f:�2qk−1�f� � ��→
Fqk

Gqk
�2�←

Fqk
�

Gqk
��2� . �72�

We have also noticed that q-CLT can be described by the triplet �Patt , Pcor , Pscl�, where Patt, Pcor,
and Pscl represent parameters of the attractor, the correlation, and the scaling rate, respectively.
We found that �see details in Ref. 7� for q-CLT this triplet,

�Patt,Pcor,Pscl� � �qk−1,qk,qk+1� . �73�

Schematically Theorem 3 of the current paper can be represented as

Lq���→
Fq

Gq���←
Fq

GqL�2�, 0 � � � 2, �74�

where Lq��� is the set of �q ,��-stable distributions, GqL�2� is the set of qL-Gaussians with index qL

defined as
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qL = q�
L�q� =

3 + �2q − 1��
1 + �

.

Recall that the case �=2 was peculiar and we agree to refer to the scheme �72� in this case.
Theorem 4 generalizes the q-CLT �which corresponds to �=2� to the whole range 0���2.

Schematically this theorem can be represented as

Lq�,k
��� →

Fq�,k

Gq�,k
��� ←

Fq�,k
�

Gq
�,k
� �2�, 0 � � � 2, �75�

generalizing the scheme �72�. The sequences q�,k and q�,k
� in this case read

q�,k =
�q + k�1 − q�
� + k�1 − q�

, k = 0, � 1, . . . ,

and

q�,k
� = 1 −

2�1 − q�
� + k�1 − q�

, k = 0, � 1, . . . .

Note that the triplet �Patt , Pcor , Pscl� mentioned above, in this case, takes the form

�Patt,Pcor,Pscl� � �q�,k−1
� ,q�,k,�2/��q�,k+1

� � , �76�

recovering the triplet �73� in the case �=2.
In connection with the above discussion about triplets, we note that the existence of a q-triplet,

namely, �qsen ,qrel ,qstat�, related, respectively, to sensitivity to the initial conditions, relaxation, and
stationary state was conjectured in Ref. 42. Later it was observed in the solar wind at the distant
heliosphere.43,44 The triplet in �73� obtained theoretically might be useful hint for its understand-
ing.

Finally, unifying the schemes �74� and �75� we obtain the general picture for the description of
�q ,��-stable distributions,

Lq�,k
��� →

Fq�,k

Gq�,k
��� ←

Fq�,k
�

Gq
�,k
� �2� ,

�Fq,

Gq
�,k
L �2� , �77�

where

q�,k
L = q�

L�q�,k� =
3 + �2q�,k − 1��

1 + �
.

In Fig. 1 the dependence of qL and q� on parameters �Q ,���Q in the case k=0 is repre-
sented. If Q=1 and �=2 �the blue box in the figure�, then the random variables are independent in
the usual sense and have finite variance. The standard CLT applies, and the attractors are classic
Gaussians.

If Q belongs to the interval �1,3� and �=2 �the blue straight line on the top�, the random
variables are not independent. If the random variables have a finite Q-variance, then q-CLT �Ref.
7� applies, and the attractors belong to the family of q�-Gaussians. Note that q� runs in �1,5/3�.
Thus, in this case, attractors �q�-Gaussians� have finite classic variance �i.e., 1-variance� in addi-
tion to finite q�-variance.

If Q=1 and 0���2 �the vertical green line in the figure�, we have the classic Lévy distri-
butions, and random variables are independent, and have infinite variance. Their scaling limits-
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attractors belong to the family of �-stable Lévy distributions. It follows from �44� that in terms of
q-Gaussians classic symmetric �-stable distributions correspond to �5/3�q�3Gq.8

If 0���2 and Q belong to the interval �1,3� we observe the rich variety of possibilities of
�q ,��-stable distributions. In this case random variables are not independent and have infinite
variance and infinite Q-variance. The rectangle �1�Q�3;0���2�, at the right of the classic
Lévy line, is covered by nonintersecting curves,

CqL � ��Q,��:
3 + Q�

� + 1
= qL�, 5/3 � qL � 3.

This family of curves describes all �Q ,��-stable distributions based on the mapping �74� with
q-Fourier transform. The constant qL is the index of the qL-Gaussian attractor corresponding to the
points �Q ,�� on the curve CqL. For example, the curve �green� corresponding to qL=2, which
passes through point �1,1� �the green box in the figure�, describes all Q-Cauchy distributions,
recovering the classic Cauchy–Poisson distribution if �=1. The figure also represents the curve
�brown� describing all the distributions corresponding to qL=2.5.

Every point �Q ,�� lying on the brown curve corresponds to qL=2.5.
The second classification of �Q ,��-stable distributions presented in the current paper and

based on the mapping �75� with q�-Fourier transform leads to a covering of Q by curves distinct
from CqL. Namely, in this case we have the following family of straight lines:

Lq� � ��Q,��:
4�

Q + 2� − 1
= 3 − q��, 1 � q� � 3, �78�

which are obtained from �56� replacing n=−1 and 2q−1=Q. For instance, every �Q ,�� on the line
F-I �the blue diagonal of the rectangle in the figure� identifies q�-Gaussians with q�=5 /3. This line
is the frontier of points �Q ,�� with finite and infinite classic variances. Namely, all �Q ,�� above
the line F-I identify attractors with finite variance, and points on this line and below identify
attractors with infinite classic variance. Two bottom lines in Fig. 1 reflect the sets of q� corre-

FIG. 1. �Color online� �Q ,��-regions.
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sponding to lines ��1�Q�3;�=2�� �the top boundary of the rectangle in the figure� and
��1�Q�3;�=0.6�� �the brown horizontal line in the figure�.

Some conjectures. Both classifications of �Q ,��-stable distributions are restricted to the region
Q= �1�Q�3,0���2�. This limitation is caused by the tool used for these representations,
namely, Q-Fourier transform is defined for Q
1. However, at least two facts, the positivity of
�q,� in Proposition II.3 for q�max�0,1−1 /�� �or, the same, Q�max�−1,1−2 /��� and continu-
ous extensions of curves in the family CqL, strongly indicate to following conjectures, regarding
the region �Q�1� on the left to the vertical green line �the classic Lévy line� in Fig. 1. In this
region we see three frontier lines, F-II, F-III, and F-IV.

Conjecture VIII.1. The line F-II splits the regions where the random variables have finite and
infinite Q-variances. More precisely, the random variables corresponding to �Q ,�� on and above
the line F-II have a finite Q -variance, and, consequently, q-CLT �Ref. 7) applies. Moreover, as
seen in the figure, the qL -attractors corresponding to the points on the line F-II are the classic
Gaussians, because qL=1 for these �Q ,��. It follows from this fact that qL -Gaussians correspond-
ing to points above F-II have compact support (the blue region in the figure), and
qL -Gaussians corresponding to points on this line and below have infinite support.

Conjecture VIII.2: The line F-III splits the points �Q ,�� whose qL -attractors have finite or
infinite classic variances. More precisely, the points �Q ,�� above this line identify attractors (in
terms of qL -Gaussians) with finite classic variance, and the points on this line and below identify
attractors with infinite classic variance.

Conjecture VIII.3: The frontier line F-IV with the equation Q+2�−1=0 and joining the points
(1,0) and (�1,1) is related to attractors in terms of q�-Gaussians. It follows from (78) that for
�Q ,�� lying on the line F-IV, the index q�=−�. Thus the horizontal lines corresponding to
��1 can be continued only up to the line F-IV with q�� �−� ,3−4� / �Q+2�−1�� (see the dashed
horizontal brown line in the figure). If �→0 , the Q -interval becomes narrower, but q� -interval
becomes larger tending to �−� ,3�.

Results confirming or refuting any of these conjectures would be an essential contribution to
deeper understanding of the nature of �Q ,��-stable distributions, and nonextensive statistical
mechanics, in particular.

Finally, we note that Fig. 1 corresponds to the case k=0 in the description �4�. The cases
k�0 can be treated in the same way.
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