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We propose an extension of the Landau-Lifshitz-Gilbert (LLG) equation by explicitly including the role

of conduction electrons in magnetization dynamics of conducting ferromagnets. The temporal and spatial

dependent magnetization order parameter mðr; tÞ generates both electrical and spin currents that provide

dissipation of the energy and angular momentum of the processing magnet. The resulting LLG equation

contains highly spatial dependence of damping term and thus micromagnetic simulations based on the

standard LLG equation should be reexamined for magnetization dynamics involving narrow domain walls

and spin waves with short wavelengths.
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Despite the phenomenological nature of the Landau-
Lifshitz-Gilbert (LLG) equation [1], it has been widely
used for interpreting and predicting vast experimental re-
sults such as domain wall structure, magnetization rever-
sal, and magnetic noise. The powerful universal micro-
magnetic simulation codes [2] based on the LLG equation
have already become a standard tool for studying the
magnetization dynamics of complex structure. The key
term in the LLG equation is the damping, which is usually
written in a simplest form �0m� @tm [mðr; tÞ is the order
parameter of the magnetization and @tm � @m=@t]. Since
many calculated magnetic properties such as magnetic
hysteresis are not sensitive to the damping parameter,
one has enjoyed the simplicity and usefulness of the LLG
equation for a long time. However, there are other cases
where the details of the damping matter. For example, the
current-induced spin torque [3] directly competes with the
damping and thus the switching threshold depends on the
strength and forms of the damping. A number of theoreti-
cal studies have already shown that the extension of the
LLG is needed in general [4–7], but it is unclear whether
inclusion of more damping terms would describe the mag-
netization better due to complexity of many damping
mechanisms. In conducting ferromagnets, the damping
mechanism is clearer: the most significant source of damp-
ing is due to the conduction electron that carries away the
excess angular momentum of the precessing ferromagnet
via interband and intraband transitions [8,9]. In this Letter,
we construct a new LLG equation by explicitly including
the conduction electron-mediated damping.

The essential idea is that the spin current generated by
the time-dependent magnetization becomes a damping
torque, similar to the spin-pumping induced damping at
ferromagnetic-nonmagnetic interfaces [10,11]. For a spa-
tially varying magnetization, the induced spin current is
nonuniform and thus one expects that the change of the
spin angular momentum or the damping torque, associated
with the spin current, is also spatially dependent. Indeed,
we find that the resulting dynamic equation contains a
damping tensor which depends on the spatial derivative

to the magnetization order parameter. We will show how
the generalized LLG equation alters the magnetization dy-
namics in several cases. In general, micromagnetic simu-
lation based on our improved LLG equation should be
developed for highly nonuniform magnetization dynamics.
Let us start with a simplest model for the interaction of

the magnetization and the conduction electron spin,

i@
@

@t
� ¼

�
p2

2me

� Jex� �mðr; tÞ
�
�; (1)

where � is the Pauli matrix and mðr; tÞ is the unit vector
jmj ¼ 1 representing the direction of the local magnetiza-
tion. Since the order parameter mðr; tÞ varies in space and
time, we first rotate the quantization axis from a fixed axis
(ez) to the axis parallel to m at given ðr; tÞ, i.e., � ¼
Uðr; tÞ’ where U ¼ expð�i �2� � nÞ, � is the angle of the

rotation and n ¼ ez �m=jez �mj represents the axis of
the rotation. After a straightforward algebra, Eq. (1) can be
written in the following form,

i@
@

@t
’ ¼

�
eVs þ ðp� eAsÞ2

2me

� Jex�z

�
’; (2)

where the scalar potential is Vs ¼ �ði@=eÞUy@tU and the
vector potential As ¼ ði@=eÞUyrU. As the magnetization
vector m varies slowly in space and in time, we can treat
the scalar and vector potentials as a perturbation in the
unperturbed Hamiltonian H0 ¼ p2=2me � Jex�z, which
describes two spin-up and spin-down bands with respect
to the local magnetization direction. The scalar and vector
potentials Vs and As can then be projected to these two
spin bands. Specifically, the electric and magnetic fields for
each band can be introduced,

Ei � �@iV
s � @tA

s
i ¼ �ð@=2eÞð@tm� @imÞ �m (3)

and

Bi � �ijkð@jAs
k � @kA

s
jÞ ¼ �ð@=2eÞ�ijkð@jm� @kmÞ �m;

(4)

where � stands for spin-up and spin-down bands, the
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subscript (i; j; k) denotes the spatial coordinate (x; y; z),
�ijk is the antisymmetric unit tensor. The above electric
and magnetic fields have already been identified by a
number of papers [12–15]. These electric and magnetic
fields affect the electron transport properties in several
significant ways. First, it had been shown that the magnetic
field, Eq. (4), has a profound effect for the dynamics of a
vortex wall [13]. Recently, the focus has been on the role of
the electric field. As shown by Barnes and Maekawa [16]
and Saslow [17], this electric field can induce an electro-
motive force and produce a finite voltage for a moving
domain wall as long as @tm is not parallel to @im. Yang
et al. included these fields in the semiclassical equation of
motion to study the electron dynamics [14]. Bazaliy et al.
[18] explicitly introduced an interaction of the applied
electric current je with the vector potential �je �As as
the source of the current-driven spin torque in the nonuni-
form ferromagnet. Duine [19] and Tserkovnyak and Wong
[20] have extended this spin torque by including the spin
relaxation to study the domain wall dynamics. If one
includes these fields in the calculation for the conductivity,
one finds a domain wall resistance due to mixing of two
spin bands [21].

We intend to explicitly integrate these fields in the LLG
equation. To do so, we first realize that these fields are the
effective fields for the conduction electrons, not for the
local magnetization m. Thus, there is no direct interaction
between the magnetic field and the local magnetization,
i.e., H0 � �m �B. Instead, the electron orbital receives a
Lorentz force. By using Ohm’s law for each spin band, the
electrical current jei and spin current jsi can be obtained.
Explicitly, the electrical current is

jei ¼G"ðBÞE"
iþG#ðBÞE#

i¼
PG0@

2e
ð@tm�@imÞ �m; (5)

where G"ð#Þ is the conductivity for the spin-up (-down)
band, G0 ¼ G" þG#, and P ¼ ðG" �G#Þ=ðG" þG#Þ is
the spin polarization of the ferromagnet. In general, the
conductivity depends on the magnetic field B due to the
ordinary magnetoresistive effect. For the transition metal
ferromagnet considered here, the ordinary magnetoresis-
tance is typically very small even for a magnetic field as
large as a few tesla. We thus neglect the magnetic field
dependence of the conductivity, i.e., G�ðBÞ ¼ G�. We
point out that this electric current, Eq. (5), is precisely
the electromotive force voltage Vemf considered by
Barnes and Maekawa [16] when one defines Vemf ¼
ðG0Þ�1

R
jed

3x.
Similarly, we obtain the spin current [22]

j s
i ¼

g�B

2e
ðG"E"

i�G#E#
iÞm¼g�B@G0

4e2
ð@tm�@imÞ: (6)

One immediately realizes that the spin current does not
contain the spin polarization P, and one would question
whether the above spin current is correct when P is zero.
We recall that the electric and magnetic fields are obtained

by projecting the scalar and vector potentials in Eq. (2) to
two spin bands, i.e., we are limiting ourselves to a strong
ferromagnet, or more precisely Jex � @!a0=�0, where a0
is a lattice constant, ! is the precessing frequency, and �0

is the wall width. The transition metal ferromagnets cer-
tainly satisfy the above condition. The conductivity polar-
ization P of a ferromagnet is determined by both Jex and
the spin-dependent impurity potential. Even if P is small,
Eq. (6) remains valid.
Interestingly, the above induced spin current can also be

understood in terms of the spin-pumping formulation [10]
where the spin current flows from the ferromagnetic layer
to the surrounding nonmagnetic medium as a result of the
precessional motion of the ferromagnet. The spin current
may be expressed as Arm� @tm, where Ar is proportional
to the conductance [10]. Now let us apply the spin pumping
to two identical ferromagnetic layers in contact (separated
by just one-lattice constant a0); i.e., the left layer occupies
x � 0 and the right layer occupies x 	 a0. We assume that
the magnetization directions of the two layers differ by a
small angle. The spin current pumping from left (right) to
right (left) layers is jsL!RðR!LÞ ¼ Arðm� @tmÞx¼0ðx¼a0Þ.
Thus the net spin current across the x ¼ 0 plane is the
difference between the pumping spin currents from the left
to the right and vice versa, i.e.,

j s
i ¼ Arðm� @tmÞx¼0 � Arðm� @tmÞx¼a0

¼ �Ara0@iðm� @tmÞ: (7)

The above equation contains both longitudinal (parallel to
m) and transverse (perpendicular to m) spin current com-
ponents, i.e., jsi ¼ js

ik þ jsi?, where js
ik ¼ �Ara0ð@imÞ �

@tm and jsi? ¼ �Ara0m� @i@tm. Notice that both vec-

tors @im and @tm are perpendicular to m due to jmj ¼ 1;
therefore, js

ik is indeed parallel to m. The longitudinal and

transverse spin currents play quite different roles in the
spin transport of ferromagnets. The transverse spin current
can be discarded in the strong ferromagnet while the
longitudinal spin current usually decays slowly, of the
order of the spin diffusion length. By only keeping the
longitudinal spin current, Eq. (7) is equivalent to Eq. (6).
We now return to our central point of this Letter: the

effect of the induced spin current on the magnetization
dynamics. In the absence of spin relaxation, the spin cur-
rent is directly related to the spin torque received from the
magnetization, i.e.,

� �e ¼ @tns þ
X
i

@ij
s
i ; (8)

where ns is the spin density of the conduction electrons. By
using Eq. (6), we find

��e ¼ @tns þ g�B@G0

4e2

�
m
X
i

@i½m � ð@tm� @imÞ


þX
i

@im½ð@tm� @imÞ �m

�
; (9)
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where we have used the fact that A � @tm� @im is
parallel to m so that we write A ¼ ðA �mÞm. The spin
torque on the local magnetization is simply the opposite of
the above torque. By including the above torque in the
standard LLG equation, we have

@tm ¼ ��m�Heff þm� ðD � @tmÞ; (10)

where � is the gyromagnetic ratio,Heff is the total effective
magnetic field, and D is the 3� 3 differential damping
tensor given by

D �� ¼ �0��� þ 	
X
i

ðm� @imÞ�ðm� @imÞ�; (11)

where ��� is the unit matrix element, �0 is the original

damping parameter from all other sources, Ms is the satu-
ration magnetization, 	 ¼ g�B@G0=ð4e2MsÞ, and we have
used the identity @im ¼ �m� ðm� @imÞ. Note that we
have discarded the first two terms on the right-hand side of
Eq. (9). The first term, @tns, is a small renormalization of
the gyromagnetic ratio � because ns is parallel tom to the
first order approximation. The second term contributes to
the longitudinal torque since it is parallel to m. We can
drop this term because we are only interested in the LLG
equation, which addresses the dynamics of the transverse
magnetization motion.

We notice that the enhanced damping parameter 	 is
proportional to the conductivity; this is not surprising
because the larger the conductivity, the more rapidly the
angular momenta are carried away by the conduction
electron. Thus our new LLG equation is more significant
for materials with large conductivities. A quick estimate on
the magnitude of 	 can be readily done for transition
metals. For example, if we use G0 ¼ ð5 ��cmÞ�1 and
Ms ¼ 800 emu=cc for Permalloy, we find 	 ¼ 0:5 nm2.
For a wavelength of 
 ¼ 30 nm for the magnetization
pattern, one would expect the equivalent of the damping
parameter 0:5 nm2ð2�=
Þ2 ¼ 0:02; this is comparable to
the damping parameter from other sources. For a vortex
wall where the core magnetization varies on the scale of
less than 10 nm, the damping due to the new term can be
dominant.

Equations (10) and (11) are the central result of this
Letter. It is interesting to compare our results with other
proposed LLG forms. First, it has been suggested that
the damping parameter should be taken as a tensor form
to account for the anisotropic damping process [7]. In
their phenomenological model, the damping is due to
magnetization-lattice relaxation and each matrix element
of the damping tensor is modeled by constants, indepen-
dent of the spatial distribution of the magnetization. Foros
et al. [23] considered the enhanced damping from the
fluctuating spin current where they also relate the spin
torque to the spin current in a similar way. However, their
resulting damping term is nonanalytic and it is unclear how
the LLG equation can incorporate these nonanalytic re-
sults. By explicitly taking into account the disorder and
electron-electron scattering, Hankiewicz [24] recently de-

veloped a damping term which contains the form of�m�
r2@tm. Our formulation presented in Eqs. (10) and (11) is
considered more general: it does not rely on the detailed
electron scattering mechanism and the full tensor property
is derived via the general angular momentum conservation
for the precessing magnet and the itinerant electrons.
We show next that the spin torque generated by the spin

current flow always reduces the magnetic energy. The
rate of the energy density change is ð1=MsÞdE=dt �
�Heff �m. We rewrite Eq. (10) by eliminating @tm in
the right-hand side of the equation and find

dE

Msdt
¼ ���0

0jm�Heffj2 � �	0

�X
i

j@im � ðHeff � �0m�HeffÞj2; (12)

where �0
0 ¼ �0=ð1þ �2

0Þ, and 	0 ¼ 	=ð1þ �2
0 þ

�0	jrmj2Þ. Both terms are definitively negative, indicat-
ing the energy relaxation. The second term represents the
energy damping due to the dissipation of the angular
momentum carried away by the spin current. If one keeps
only the first order terms in �0 and 	, Eq. (12) reduces to a
rather simple form for the energy dissipation,

dE

Msdt
¼ ���0jm�Heff j2 � �	

X
i

j@im �Heffj2: (13)

The magnetic energy damped into the conduction electron
is dissipated through the Joule heating. To verify this, we
calculate the Joule heating density

Q ¼ G"E"2 þG#E#2 ¼ �	
X
i

j@im �Heffj2; (14)

where we have used Eq. (3) and replaced @tm by ��m�
Heff in Eq. (3). Equation (14) is precisely the second term
of Eq. (13).
Our generalized LLG equations, Eqs. (10) and (11), alter

many earlier predictions based on constant damping pa-
rameters. Because of dependence of the damping on the
spatial distribution of magnetization vectors, the dynamics
of short wavelength of spin waves or narrow domain walls
will be different from that of long wavelength and wide
domain walls. For example, the size of the vortex core is
usually very small (order of 1 nm) and the damping of the
vortex core would increase by an order of magnitude
compared to the conventional LLG. The detailed investi-
gation of magnetization dynamics requires the develop-
ment of new micromagnetic simulation based on Eqs. (10)
and (11). In the following, we apply them to study the
dynamics of a simple domain wall.
In the original LLG model, the domain wall velocity

driven by the magnetic field and by the electric current is
usually modeled by the Walker’s trial domain wall profile
[25]. In the present case where the damping tensor D is
spatially dependent, we find that the Walker wall profile is
no longer a good solution of Eq. (10) in general. One
special solution is the steady-state motion of the domain
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wall, i.e., m ¼ mðx� vxtÞ and thus @tm ¼ �vx@xm,
where vx is the wall velocity. Since @tm and @xm are
parallel, the induced current and spin current are identi-
cally zero; see Eqs. (5) and (6). Thus, the steady-state wall
domain does not generate the additional damping. We also
want to comment that the recent proposed domain wall
motion induced voltage [16] does not always exist, since
the steady-state wall motion produces neither electrical
current of Eq. (5) nor the spin current Eq. (6). When the
applied magnetic field exceeds a Walker breakdown field,
the steady-state wall motion is no longer a solution of
Eq. (10). Instead, the wall shape and widths are constantly
changed during wall motion. Although there is no analyti-
cal form for the wall profile, we may still estimate the
average wall velocity at a large external field below.

The transverse domain wall in the conventional LLG
equation moves along the one-dimensional magnetic wire
in an oscillatory manner for a magnetic field larger than the
Walker breakdown field Hw ¼ �02�Ms [25,26]. The os-
cillatory component of the wall velocity can be averaged
out by defining an average wall velocity vx as

� 2vxHextMs �
�
@E

@t

�
: (15)

The above equation has a clear interpretation: the average
rate of the energy change due to the domain wall motion is
solely determined by the change of the Zeeman energy
(left-hand side); this is because all other energies (ex-
change, anisotropy, magnetostatics) are internal energies
and their changes are averaged to zero in the long time
limit. The rate of the energy change can then be estimated
from Eq. (13) by using the approximate expressions for the
wall energy at a large magnetic field [26],

h��0jm�Heffj2i ¼ ð��0H=�0Þ½H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 �H2

w

q

;

where �0 is the average wall width and

Z
jð@xmÞ �Heffj2dx � H2=�0:

The domain wall velocity is thus

vx ¼ ��0H

2�0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2

w

H2

s �
þ �	H

2�0

: (16)

The second term is the additional velocity due to the
new damping term. In the case of large external field
H � Hw ¼ �02�Ms, one has

vx ¼ ��0

�
�0�

2M2
s

H
þ 	H

2�2
0

�
:

The first term is a Walker velocity that is inversely propor-
tional to the applied field. The second term is proportional
to the field.

In summary, we have proposed a Landau-Lifshitz-
Gilbert equation for conducting ferromagnets by explicitly
taking into account nonuniform magnetization. The origin
of this additional damping is due to the electron spin
current carrying away the nonequilibrium angular momen-
tum and energy of the ferromagnet, leading to a spatial
dependent damping tensor.
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