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Generalization of the topological algebra (Cb(X), β)

by

Jorma Arhippainen and Jukka Kauppi (Oulu)

Abstract. We study subalgebras of Cb(X) equipped with topologies that generalize
both the uniform and the strict topology. In particular, we study the Stone–Weierstrass
property and describe the ideal structure of these algebras.

1. Introduction. Let X be a completely regular Hausdorff space. The
algebra Cb(X) of all continuous and bounded complex-valued functions on X
is one of the most studied objects in modern analysis. Usually it is equipped
with the supremum norm topology (denoted by σ) which makes it a Ba-
nach algebra. However, the structure of (Cb(X), σ) is quite complicated. For
example, its Gelfand space (the set of all regular maximal ideals equipped
with the relative weak∗-topology) is homeomorphic to the Stone–Čech com-
pactification β(X) of X. Another difficulty is that (Cb(X), σ) does not have
the Stone–Weierstrass property, i.e., a point-separating symmetric subalge-
bra which is bounded away from zero is not necessarily uniformly dense in
Cb(X). So the topology on Cb(X) defined by the supremum norm is not the
“best” topology from this point of view.

Another well-known and useful topology on Cb(X) is the so-called strict
topology (denoted by β) defined by the family of weighted supremum semi-
norms with weights running through all bounded (or equivalently, upper
semicontinuous) non-negative functions on X which vanish at infinity. The
topological algebra (Cb(X), β) is in some sense easier to handle than
(Cb(X), σ). For example, its Gelfand space is homeomorphic to X and it has
the Stone–Weierstrass property. On the other hand, even though the struc-
ture of (Cb(X), β) has been extensively studied, it appears that its closed
ideals have not been described yet. In [23] it was claimed without proof
that in the case when X is locally compact, every closed ideal of (Cb(X), β)
consists of those functions on Cb(X) which vanish on some closed subset E
of X.
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The structures of (Cb(X), σ) and (Cb(X), β) have been generalized in
[1–5, 15] so as to contain also unbounded functions. In these generalizations
functions behave locally on certain subsets S of X as functions in Cb(S).
In this paper, we generalize the structures of (Cb(X), σ) and (Cb(X), β) in
another direction. Namely, we study certain types of (possibly proper) sub-
algebras of Cb(X) and provide them with topologies that generalize both
the uniform and the strict topologies. We then study the Stone–Weierstrass
property and the ideal structure of these algebras. In particular, a detailed
description of the closed ideals and quotient algebras (modulo closed ide-
als) is given with respect to a topology that generalizes the strict topology.
Therefore, the results we get for these subalgebras imply some old and new
results for (Cb(X), β).

The algebras we are interested in consist of functions which vanish at
certain fixed points very quickly. A motivation for their study comes from
connections to many classical results on Banach and function algebras. These
include Gelfand representation of commutative Banach algebras and Stone–
Weierstrass type approximation theorems. In particular, the structures we
will study are required to get a satisfactory Gelfand representation also
for those Banach algebras for which the Gelfand transform algebra is not
complete with respect to the supremum norm (see [7]). Standard methods,
like addition of a unit element, do not help in describing the structure of
those algebras. Further, the use of uniform and strict topologies leads to
various difficulties.

2. Function algebras. In this paper, X will denote a completely reg-
ular Hausdorff space. Let F (X) be the set of all complex-valued functions
on X. We denote by B(X) the set of all bounded functions in F (X), by
B0(X) the set of all functions in B(X) which vanish at infinity, and by
B00(X) the set of all functions in B(X) which have a compact support. By
C(X) we denote the set of all continuous functions in F (X) and by Cb(X)
the set of all continuous functions in B(X). If X is locally compact, then
we set C0(X) = C(X)∩B0(X) and C00(X) = C(X)∩B00(X). It is easy to
verify that with respect to pointwise algebraic operations, all these sets are
algebras.

Let now A be a subset of F (X). We denote by Z(A) = {t ∈ X : f(t) = 0
for all f ∈ A} the zero set of A. We say that A is bounded away from zero
if for each t in X there is some f in A for which f(t) 6= 0, i.e., the zero set
of A is empty. Further, we say that A separates the points of X if for any
s and t in X with s 6= t there is some f in A for which f(s) 6= f(t). If A
separates the points of X and is bounded away from zero, then we say that
A strongly separates the points of X. Finally, A is said to be symmetric if it
is closed under complex conjugation.
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Suppose now that A is a symmetric subalgebra of C(X) which separates
the points of X\Z(A). For a given subset B of A, we define S(B) = {f ∈ B :
f ∈ B} (here f is the complex conjugate of f). Obviously, B is symmetric
if and only if B = S(B). The following lemma plays an important role in
several theorems of this paper. For the proof, see [8, Lemma 2.2].

Lemma 2.1. Suppose that A is a symmetric subalgebra of C(X) which
separates the points of X \ Z(A). Let I be an ideal of A, and M a maximal
ideal of A. Then

(i) S(I) is a symmetric ideal of A.
(ii) Z(I) = Z(S(I)).
(iii) I strongly separates the points of X \ Z(I).
(iv) S(I) strongly separates the points of X \ Z(I).
(v) M separates the points of X \ Z(A).
(vi) S(M) separates the points of X \ Z(A).

Let ‖ ‖∞ be the usual supremum norm on Cb(X). Throughout the paper,
σ will denote the uniform topology on Cb(X) defined by ‖ ‖∞, and β will de-
note the strict topology on Cb(X) defined by the seminorms pφ, φ ∈ B0(X),
where pφ(f) = ‖φf‖∞ for every f ∈ Cb(X). The compact-open topology on
C(X) will be denoted by κ. Our main tool in this paper will be the Stone–
Weierstrass property. It is well-known that both (Cb(X), β) and (C(X), κ)
have this property. That is, if B is a symmetric subalgebra of Cb(X) (respec-
tively, of C(X)) which strongly separates the points of X, then the β-closure
of B is Cb(X) (respectively, the κ-closure of B is C(X)). We will now study
the Stone–Weierstrass property from a more general point of view. For this,
we give the following definition.

Definition 2.2. Let X be a completely regular Hausdorff space and let
A be a subalgebra of C(X) which is symmetric and separates the points
of X \ Z(A). Let T be a topology on A making it a topological algebra,
i.e., (A, T ) is a topological vector space and multiplication on A is sepa-
rately continuous. We say that (A, T ) is a Stone–Weierstrass algebra if for
each symmetric subalgebra B of A which strongly separates the points of
X \Z(A), we have clT (B) = A (here clT (B) stands for the closure of B with
respect to the topology T ).

So (Cb(X), β) and (C(X), κ) are Stone–Weierstrass algebras. Further, if
X is locally compact, also (C0(X), σ) is a Stone–Weierstrass algebra. Note
that a Stone–Weierstrass algebra (A, T ) is not necessarily complete. For ex-
ample, (Cb(X), β) and (C(X), κ) are complete if and only if X is a kR-space
(see [16, p. 72]). On the other hand, (Cb(X), σ) is complete but not a Stone–
Weierstrass algebra unless X is compact. The concept of Stone–Weierstrass
algebra was introduced by the first author in his talk at ICTAA 2005 Athens
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(see [6]). This was motivated by the application of the Stone–Weierstrass
property in describing the ideal structure of topological algebras (see for
example [8, Theorem 4.3], [17, Theorem 3.2] and [19, Theorem 8.3.2]). It
is interesting to note that topological algebras with the Stone–Weierstrass
property appear to have a very similar structure of closed ideals. In [8,
Theorem 2.3], it was shown that if M is a closed maximal ideal of a Stone–
Weierstrass algebra (A, T ), then it is the kernel of some point evaluation,
more precisely we have the following:

Theorem 2.3. Let M be a closed maximal ideal of a Stone–Weierstrass
algebra (A, T ). Then there exists a unique t0 ∈ X \ Z(A) such that M =
{f ∈ A : f(t0) = 0}.

Let now I be an arbitrary closed ideal of the Stone–Weierstrass algebra
(C(X), κ). It is well-known that I is of the form {f ∈ C(X) : f(t) = 0 for all
t ∈ E} with E some closed subset of X. The same holds true in (C0(X), σ)
with X locally compact.We will show later that for (Cb(X), β) this property
is also valid. In fact, it appears to hold for every concrete Stone–Weierstrass
algebra (A, T ) that comes to mind. It is an interesting question whether it
is a general property of Stone–Weierstrass algebras.

3. Basic properties of Cvb (X). In this paper, we are interested in
proper subalgebras of Cb(X). We now introduce a method of generating
such algebras.

Let v be an upper semicontinuous real-valued function on X for which
inft∈X v(t) > 0. We define

Cvb (X) = {f ∈ C(X) : vf ∈ B(X)}.
If X is locally compact, then we set

Cv0 (X) = {f ∈ C(X) : vf ∈ B0(X)}.
Obviously, both Cvb (X) and Cv0 (X) are algebras with respect to pointwise
operations. If v is unbounded, then Cvb (X) is clearly a proper subalgebra of
Cb(X), and Cv0 (X) is a proper subalgebra of C0(X). On the other hand, if
v is bounded, then obviously Cvb (X) = Cb(X) and Cv0 (X) = C0(X). Thus,
Cb(X) and C0(X) are special cases of Cvb (X) and Cv0 (X).

Remark 3.1. The assumption inft∈X v(t) > 0 is essential if we want
to study Cvb (X) and Cv0 (X) as algebras. For example, if X = [0,∞) and v
is defined on X by v(t) = e−t, then Cvb (X) and Cv0 (X) are not algebras.
To see this, take f(t) = et. Then f ∈ Cvb (X), but as f2(t) = e2t, we have
f2 /∈ Cvb (X).

The following two results are needed later in this paper.

Lemma 3.2. Let K be a compact subset of X. Then Cvb (X)|K = C(K).
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Proof. It clearly suffices to show that for any given f ∈ C(K), there
exists g ∈ Cvb (X) such that g|K = f . Since v is upper semicontinuous on X,
there exists a constant M such that v(t) < M for all t ∈ K. Let now
U = {t ∈ X : v(t) < M}. Then the upper semicontinuity of v implies that
U is an open subset of X. By [11, Lemma 2.1.1], there exists g ∈ Cb(X) for
which g(X \ U) ⊂ {0} and g|K = f . As vg is obviously bounded on X, the
lemma follows.

Corollary 3.3. Let K be a compact subset of X and let E be a closed
subset of X disjoint from K. Then there exists f ∈ Cvb (X) such that f(K) =
{1}, f(E) = {0} and 0 ≤ f(t) ≤ 1 for all t ∈ X.

Note that the algebras Cvb (X) and Cv0 (X) are special cases of the so-
called Nachbin algebras. Different types of Nachbin algebras have been stud-
ied for example in [9, 10, 20, 21, 22]. Their importance is based on their
connections to many classical results on function and topological algebras.
These include Stone–Weierstrass type theorems and Gelfand representation
theory (see for example [7]). In [8], the Banach algebra structure of Cv0 (X)
is studied. In this paper, we will study the structure of Cvb (X) as a Banach
algebra and as a locally convex algebra.

Since Cvb (X) is a subset of Cb(X), we can equip it with both the uniform
and strict topologies. However, it is easy to see that if v is unbounded, then
(Cvb (X), σ) and (Cvb (X), β) are not complete. Therefore, σ is not the natural
norm topology and β is not the natural locally convex topology on Cvb (X).
We will now introduce more suitable linear topologies for Cvb (X).

For f ∈ Cvb (X), define

‖f‖v = sup
t∈X

v(t)|f(t)|.

Further, for φ ∈ B0(X), set

pv,φ(f) = sup
t∈X

v(t)|φ(t)||f(t)|.

Obviously, ‖ ‖v is a norm and {pv,φ : φ ∈ B0(X)} is a directed system of
seminorms on Cvb (X).

Definition 3.4. The weighted uniform topology σv on Cvb (X) is the
norm topology defined by the weighted supremum norm ‖ ‖v. The v-strict
topology βv on Cvb (X) is the locally convex topology defined by the weighted
seminorms pv,φ, where φ ranges over B0(X).

Note that if v is bounded, then σv is equivalent to σ, and βv is equivalent
to β. Thus, (Cb(X), σ) is a special case of (Cvb (X), σv), and (Cb(X), β) is a
special case of (Cvb (X), βv). On the other hand, if v is unbounded, then σ is
strictly weaker than σv, and β is strictly weaker than βv.
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We now state some basic properties of the weighted uniform and v-
strict topologies. These properties are similar to those of Cb(X) with respect
to the usual uniform and strict topologies. In the following, we denote by
S0,+(X) the set of all upper semicontinuous non-negative functions on X
which vanish at infinity.

Theorem 3.5.

(i) σ ≤ σv and κ ≤ β ≤ βv ≤ σv.
(ii) βv and σv have the same bounded subsets on Cvb (X).

(iii) βv and κ coincide on every βv-bounded subset of Cvb (X).
(iv) βv = σv if and only if X is compact.
(v) βv coincides with the topology defined by the seminorms pv,φ, where

φ ranges over S0,+(X).

Proof. (i): Set m = inft∈X v(t). Since m > 0, the result follows easily
from the fact that for given f ∈ Cvb (X), φ ∈ B0(X) and t ∈ X, we have

|φ(t)| |f(t)| ≤ 1
m
v(t)|φ(t)| |f(t)|.

(ii): By (i), it suffices to show that every βv-bounded subset B of Cvb (X)
is σv-bounded. Suppose that B is not σv-bounded. Then there exist se-
quences (fn)∞n=1 in B and (tn)∞n=1 in X such that v(tn)|fn(tn)| > n2 for
every n. Let φ be a function on X defined by φ(tn) = 1/n for every n, and
φ(t) = 0 elsewhere. Obviously, φ ∈ B0(X) and pv,φ(fn) > n for every n.
Thus, B is not βv-bounded, a contradiction.

(iii): The proof can be carried out as for (Cb(X), β). See [16, p. 47].
(iv): If X is compact, then obviously Cvb (X) = Cb(X) = C(X) and

κ = β = βv = σv. Conversely, suppose that βv = σv. Then by (iii), κ and
σv coincide on the unit ball Bv = {f ∈ Cvb (X) : ‖f‖v ≤ 1} of (Cvb (X), σv).
Thus, there exists a compact set K in X and a positive constant M such
that ‖f‖v ≤MpK(f) for all f ∈ Bv. If K 6= X, then by Corollary 3.3, there
exists g ∈ Cvb (X) such that g(t) 6= 0 for some t ∈ X \K and g(K) = {0}.
Since clearly it can be assumed that ‖g‖v ≤ 1, we have ‖g‖v ≤MpK(g) = 0,
a contradiction. Thus, K = X.

(v): Since S0,+(X) ⊂ B0(X), the topology on Cvb (X) defined by the
directed system {pv,ψ : ψ ∈ S0,+(X)} of seminorms is weaker than βv. On
the other hand, by [18, Theorem 3.7], for each φ ∈ B0(X), there exists
ψ ∈ S0,+(X) such that |φ(t)| ≤ ψ(t) for all t ∈ X. This clearly implies the
result.

Note that if v is unbounded, then the σ-bounded subsets of Cvb (X) do
not coincide with the σv-bounded subsets. To see this, note that the unit
ball B = {f ∈ Cvb (X) : ‖f‖∞ ≤ 1} of (Cvb (X), σ) is bounded with respect
to σv if and only if there exists a constant M such that ‖f‖v ≤M‖f‖∞ for
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all f ∈ Cvb (X). However, the latter is clearly valid only if v is bounded. In
a similar way, it can be shown that if v is unbounded, then the β-bounded
subsets of Cvb (X) do not coincide with the βv-bounded subsets.

We now show that σv and βv are the natural linear topologies on Cvb (X).

Theorem 3.6.

(i) (Cvb (X), σv) is complete.
(ii) (Cvb (X), βv) is complete if X is a kR-space.

Proof. (i): Let (fn) be a Cauchy sequence in (Cvb (X), σv). Then (fn) is
also a Cauchy sequence in (Cb(X), σ). Since (Cb(X), σ) is complete, there
exists f ∈ Cb(X) such that ‖fn − f‖∞ → 0. Then also ‖fn − f‖v → 0.
To see this, let ε > 0 be given and choose a positive integer nε such that
n, k ≥ nε implies ‖fn − fk‖v < ε. Then for any n ≥ nε and t ∈ X, we have
v(t)|fn(t)− f(t)| = limk v(t)|fn(t)− fk(t)| ≤ ε, since v(t)|fn(t)− fk(t)| < ε
as soon as k ≥ nε. Hence, ‖fn − f‖v → 0. To complete the proof, we have
to show that f ∈ Cvb (X). For this, choose a positive integer n0 such that
‖fn0 −f‖v < 1. Then for all t ∈ X, we have v(t)|f(t)| ≤ v(t)|f(t)−fn0(t)|+
v(t)|fn0(t)| < 1 + ‖fn0‖v. Thus, vf is bounded, and so f ∈ Cvb (X).

(ii): Let (fα) be a Cauchy net in (Cvb (X), βv). Then (fα) is also a Cauchy
net in (Cb(X), β). Since (Cb(X), β) is complete, (fα) has a β-limit, say f ,
in Cb(X). This implies that pv,φ(fα − f) → 0 for all φ ∈ B0(X). To see
this, fix ε > 0, φ ∈ B0(X), and choose αε such that pv,φ(fα − fγ) < ε for
α, γ ≥ αε. For any α ≥ αε and t ∈ X, we now have v(t)|φ(t)| |fα(t)−f(t)| =
limγ v(t)|φ(t)| |fα(t) − fγ(t)| ≤ ε, since v(t)|φ(t)||fα(t) − fγ(t)| < ε as soon
as γ ≥ αε. Hence, pv,φ(fα − f) → 0. To complete the proof, we have to
show that vf ∈ B(X). Suppose that vf is unbounded. Then there exists a
sequence (tn)∞n=1 in X such that v(tn)|f(tn)| > 3n for every n. Let ψ be a
function on X defined by ψ(tn) = 1/2n for every n, and ψ(t) = 0 elsewhere.
Obviously, ψ ∈ B0(X) and vψf is unbounded. But this clearly contradicts
the condition pv,ψ(fα − f)→ 0, and so vf is bounded.

4. The ideal structure of Cvb (X). We now study approximation prop-
erties of Cvb (X) with respect to the weighted uniform and v-strict topologies.
In particular, we are interested in the Stone–Weierstrass property and the
structure of the closed ideals of (Cvb (X), σv) and (Cvb (X), βv). We start by
considering the former.

It is easy to see that (Cvb (X), σv) is not in general a Stone–Weierstrass
algebra. For example, if X is locally compact, then the Stone–Weierstrass
property of (Cvb (X), σv) would imply that Cv0 (X) = Cvb (X), which is clearly
not the case. On the other hand, it is an interesting question whether there
exists a stronger condition that would imply a symmetric subalgebra to
be dense in (Cvb (X), σv). As is well-known, for (Cb(X), σ) such a condition
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exists: a symmetric subalgebra B is dense in (Cb(X), σ) if and only if B
separates the zero sets of X (for any disjoint zero sets Z1 and Z2 of X there
exists f ∈ B such that f(Z1) and f(Z2) have disjoint closures) and there
exists f ∈ B for which inft∈X f(t) > 0. Note that these conditions are not in
general valid for (Cvb (X), σv). In fact, it may happen that Cvb (X) does not
even separate the zero sets of X. For example, if X is locally compact and
v is such that v(tα)→∞ for all nets (tα) in X for which tα → t∞ (here t∞
denotes the point at infinity of X), then Cvb (X) is a subalgebra of C0(X),
and so it cannot separate the zero sets of X. On the other hand, finding
similar approximation properties for (Cvb (X), σv) seems difficult. This is due
to the complicated ideal structure of (Cvb (X), σv). We consider this in greater
detail below.

Topological algebras without the Stone–Weierstrass property often have
a complicated structure of closed ideals. For example, the maximal ideal
space of (Cb(X), σ), which can be identified with the Stone–Čech compact-
ification β(X) of X, is known to be extremely complicated. On the other
hand, if the weight function v is unbounded, then the structure of the closed
maximal ideals of (Cvb (X), σv) turns out to be even more involved than β(X).
Indeed, as we now show, in some cases describing the structure of the closed
maximal ideals of (Cvb (X), σv) would even require describing closed maximal
subspaces of (Cvb (X), σv).

Example 4.1. Consider (Cvb (X), σv) with X locally compact and v such
that Cvb (X) ⊂ C0(X). Let L be an arbitrary subspace of Cvb (X) such that
Cv0 (X) ⊂ L. Then, surprisingly, L is automatically an ideal of Cvb (X). For if
f, g ∈ Cvb (X), then the inclusion Cvb (X) ⊂ C0(X) implies that fg ∈ Cv0 (X),
and so Cvb (X)L = {fg : f ∈ Cvb (X) and g ∈ L} ⊂ Cv0 (X) ⊂ L. By using
the Hahn–Banach Theorem, it is now easy to generate σv-closed maximal
ideals in Cvb (X). For example, if f is a function on Cvb (X) such that f /∈
Cv0 (X), then there exists a closed maximal subspace M of Cvb (X) such that
Cv0 (X) ⊂ M and f /∈ M . By the above, M is a closed maximal ideal of
(Cvb (X), σv).

Note that in Example 4.1, every ideal I of Cvb (X) with Cv0 (X) ⊂ I is
non-regular. In fact, even though the ideal structure of (Cvb (X), σv) is in
general very complicated, in some cases it is possible to describe the regular
maximal ideals of Cvb (X). For t ∈ X, set Mv

t = {f ∈ Cvb (X) : f(t) = 0}.
Obviously, Mv

t is a regular maximal ideal of Cvb (X). We now have the fol-
lowing:

Theorem 4.2. Suppose that X is locally compact and v is such that
Cvb (X) ⊂ C0(X). Then every regular maximal ideal M of Cvb (X) is of the
form M = Mv

t for some unique t ∈ X.
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Proof. By Lemma 2.1, M separates the points of X. Hence, the zero
set of M is either empty or a single point. If Z(M) = ∅, then S(M) is, by
Lemma 2.1, a symmetric ideal of Cvb (X) strongly separating the points of X.
Therefore, Cv0 (X) ∩ S(M) is a symmetric ideal of Cv0 (X) which strongly
separates the points of X. Since (Cv0 (X), σv) is a Stone–Weierstrass al-
gebra (see [8, Theorem 4.1]), we have clσv(Cv0 (X) ∩ S(M)) = Cv0 (X) ⊂
clσv(M) = M . On the other hand, as M is a regular ideal of Cvb (X), there
exists g ∈ Cvb (X) such that fg − f ∈ M for all f ∈ Cvb (X). However,
since fg ∈ Cv0 (X) for all f ∈ Cvb (X), we have f ∈ Cv0 (X) + M ⊂ M for
all f ∈ Cvb (X), a contradiction. Thus, there exists a unique t ∈ X such
that M ⊂ Mv

t . But since Mv
t is a proper ideal of Cvb (X), we must have

M = Mv
t .

Let (A, T ) be a (commutative) topological algebra. It is said to have an
approximate identity if there exists a net (eα)α∈Ω in A for which eαx → x
for all x ∈ A. An interesting difference between the structures of (Cb(X), σ)
and (Cvb (X), σv) with v unbounded is that unlike (Cb(X), σ), which al-
ways contains an identity element, (Cvb (X), σv) does not in general contain
even an approximate identity. For if (Cvb (X), σv) of Example 4.1 has an
approximate identity, then clσv(Cvb (X)Cvb (X)) = Cvb (X). However, clearly
clσv(Cvb (X)Cvb (X)) = Cv0 (X).

Remark 4.3. Although (Cvb (X), σv) does not in general contain an ap-
proximate identity, the subalgebra (Cv0 (X), σv) always does. However, by
[8, Corollary 3.6], the approximate identity of (Cv0 (X), σv) is unbounded
whenever v is.

We next consider the structure of Cvb (X) with respect to the v-strict
topology. For technical reasons, we restrict to the seminorms pv,φ with
φ ∈ S0,+(X). By Theorem 3.5, the topology on Cvb (X) generated by those
seminorms is equivalent to βv.

As mentioned earlier, (Cb(X), β) is a Stone–Weierstrass algebra. This
was first established by Giles [13] (for X locally compact it had already
been done by Todd [23]). We now generalize this result by showing that also
(Cvb (X), βv) is a Stone–Weierstrass algebra.

Theorem 4.4. Let B be a symmetric subalgebra of Cvb (X) which strongly
separates the points of X. Then B is dense in (Cvb (X), βv).

Proof. Let f ∈ Cvb (X), φ ∈ S0,+(X) and ε > 0. Since (Cb(X), β) is
a Stone–Weierstrass algebra, B is β-dense in Cb(X). Thus, as the identity
function is in Cb(X), there exists g ∈ B such that φ(t)|1−g(t)| < ε/2‖f‖v for
all t ∈ X. Similarly, as f ∈ Cb(X), there is h ∈ B such that φ(t)|f(t)−h(t)|
< ε/2‖g‖v for all t ∈ X. Now, for any t ∈ X, we have
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v(t)φ(t)|f(t)− g(t)h(t)|
≤ v(t)φ(t)|f(t)− f(t)g(t)|+ v(t)φ(t)|f(t)g(t)− g(t)h(t)|

= v(t)φ(t)|f(t)| |1− g(t)|+ v(t)φ(t)|g(t)| |f(t)− h(t)|

< ε/2 + ε/2 = ε,

and so pv,φ(f − gh) ≤ ε. Since gh ∈ B, the theorem follows.

We next study the ideal structure of (Cvb (X), βv). Since it is a Stone–
Weierstrass algebra, we have the following:

Theorem 4.5. Let M be a closed maximal ideal of (Cvb (X), βv). Then
M = Mv

t for some unique t ∈ X.

Let now E be a closed subset of X. Set
IC(X)(E) = {f ∈ C(X) : f(t) = 0 for all t ∈ E},

I(E) = {f ∈ Cb(X) : f(t) = 0 for all t ∈ E},
Iv(E) = {f ∈ Cvb (X) : f(t) = 0 for all t ∈ E}.

Obviously, Iv(E) is a βv-closed ideal of Cvb (X). We now show that the
assumption we made earlier on the structure of closed ideals of Stone–
Weierstrass algebras is valid for (Cvb (X), βv). First we need the following
lemma.

Lemma 4.6. Let E be a closed subset of X. Then IC(X)(E) is a Stone–
Weierstrass algebra with respect to the relative compact-open topology inher-
ited from C(X).

Proof. Obviously, IC(X)(E) is a symmetric subalgebra of C(X) which
separates the points of X \Z(IC(X)(E)) = X \E. Let now B be a symmetric
subalgebra of IC(X)(E) which strongly separates the points of X\E. Further,
let f ∈ IC(X)(E) and ε > 0. For an arbitrary compact subset K of X, define

BK = {h|K : h ∈ B}.
It is easy to see that BK is a symmetric subalgebra of C(K) which strongly
separates the points of K \ (K ∩ E). Further, BK is clearly contained in

IC(K)(K ∩ E) = {f ∈ C(K) : f(t) = 0 for all t ∈ K ∩ E}.
By [19, Theorem 8.3.2], IC(K)(K∩E) and C0(K \ (K∩E)) can be identified
by an isometric isomorphism (both equipped with the uniform topology),
and so IC(K)(K ∩ E) is a Stone–Weierstrass algebra with respect to the
uniform topology. Thus, since f|K ∈ IC(K)(K ∩ E), there exists g ∈ B such
that pK(f − g) = supt∈K |f(t)− g(t)| < ε. Hence, clκ(B) = IC(X)(E).

Theorem 4.7. Let I be a closed ideal of (Cvb (X), βv). Then I = Iv(E)
for some closed subset E of X.
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Proof. Let E be the zero set of I. Then E is a closed subset of X and
I ⊂ Iv(E). To show that I = Iv(E), let f ∈ Iv(E), φ ∈ S0,+(X) and
ε > 0. Then there exists a compact set K in X such that φ(t) < ε/2‖f‖v
for all t ∈ X \ K. Further, since v is upper semicontinuous, there exists a
constant M > 1 such that v(t) < M for all t ∈ K. By Lemma 2.1, the
set S(I) is a symmetric subalgebra of IC(X)(E) which strongly separates
the points of X \ E. Hence, by Lemma 4.6, S(I) is dense in IC(X)(E) with
respect to the compact-open topology, and so there exists g ∈ I such that
|f(t)− g(t)| < ε/2M‖φ‖∞ for all t ∈ K. Define

U = {t ∈ X : v(t) < M},

V =
{
t ∈ X : |f(t)− g(t)| < ε

2M‖φ‖∞

}
,

W = U ∩ V.
Obviously, W is an open subset of X which contains K. Thus, by Corollary
3.3, there exists h ∈ Cvb (X) such that 0 ≤ h(t) ≤ 1 for all t ∈ X, h(K) = {1}
and h(X \W ) ⊂ {0}. Now gh ∈ I and for all t ∈ X, we have

v(t)φ(t)|f(t)− g(t)h(t)|
≤ v(t)φ(t)|f(t)| |1− h(t)|+ v(t)φ(t)|h(t)| |f(t)− g(t)|.

By considering the cases t ∈ K, t ∈W \K and t ∈ X \W , it is easy to verify
that in every case v(t)φ(t)|f(t)− g(t)h(t)| < ε. Thus, pv,φ(f − gh) ≤ ε, and
so I = clβv(I) = Iv(E).

Corollary 4.8. Let I be a closed ideal of (Cb(X), β). Then I = I(E)
for some closed subset E of X.

It is well-known that the sum of two closed ideals of a C∗-algebra is
always closed. Further, in [8, Theorem 4.7], it was shown that this is also
valid for (Cv0 (X), σv). However, it is not a general property of topological, or
even of Banach, algebras (see for example [12]). Corollary 4.8 implies that
(Cb(X), β) has this property at least when X is normal.

Theorem 4.9. Suppose that X is normal. Let I1 and I2 be closed ideals
of (Cb(X), β). Then I1 + I2 is a closed ideal of (Cb(X), β).

Proof. Set Ei = Z(Ii), i = 1, 2. Then E1 and E2 are closed subsets of X
and I1 +I2 is an ideal of Cb(X) for which Z(I1 +I2) = E1∩E2. By Corollary
4.8, we have Ii = I(Ei), i = 1, 2, and clβ(I1 + I2) = I(E1 ∩ E2). Let now
f ∈ I(E1 ∩ E2) and define a function g on E1 ∪ E2 by g(t) = f(t) for all
t ∈ E1, and g(t) = 0 for all t ∈ E2. Obviously, g ∈ Cb(E1∪E2). Further, since
Cb(X)|E1∪E2

= Cb(E1 ∪ E2), there exists h ∈ Cb(X) for which g = h|E1∪E2
.

Now h ∈ I(E2) = I2 and f−h ∈ I(E1) = I1. Thus, f = (f−h)+h ∈ I1 +I2,
and so I1 + I2 = clβ(I1 + I2) = I(E1 ∩ E2).
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Let I be a closed ideal of (Cvb (X), βv). Since we now know the exact form
of I, we can study the structure of the quotient algebra Cvb (X)/I. Denote by
β̃v the usual quotient topology of Cvb (X)/I and by p̃v,φ the corresponding
quotient seminorms. So for every f + I ∈ Cvb (X)/I, we have

p̃v,φ(f + I) = inf
g∈I

pv,φ(f + g).

Denote by E the zero set of I and set w = v|E . Obviously, w is upper
semicontinuous on E. Further, f|E ∈ Cwb (E) for each f ∈ Cvb (X). Let now
ϕ be a mapping from (Cvb (X)/I, β̃v) into (Cwb (E), βw) defined by

(4.1) ϕ(f + I) = f|E .

Here βw denotes of course the w-strict topology on Cwb (E). From now on,
ϕ will always denote the mapping defined by (4.1). By Theorem 4.7, it is
well-defined. We next show that ϕ is in fact a topological isomorphism from
(Cvb (X)/I, β̃v) onto (ϕ(Cvb (X)/I), βw). For this, we first need the following
two lemmas.

Lemma 4.10. Let I be a closed ideal of (Cvb (X), βv) and set E = Z(I).
Then p̃v,φ(f+I) = supt∈E v(t)φ(t)|f(t)| for all f ∈ Cvb (X) and φ ∈ S0,+(X).

Proof. Let f ∈ Cvb (X) and φ ∈ S0,+(X). As I = Iv(E), it is easy to see
that supt∈E v(t)φ(t)|f(t)|≤pv,φ(f+g) for all g∈I. Thus, supt∈E v(t)φ(t)|f(t)|
≤ p̃v,φ(f + I). To prove the converse inequality, let ε > 0 and set k =
supt∈E v(t)φ(t)|f(t)| and F = {t ∈ X : v(t)φ(t)|f(t)| ≥ k + ε}. Since vφf ∈
B0(X), there exists a compact subset Q of X such that v(t)φ(t)|f(t)| <
k + ε/4 for all t ∈ X \Q. Clearly F ⊂ Q and F ⊂ X \ E.

We next show that also cl(F ) ⊂ Q∩(X\E). Suppose on the contrary that
there exists t0 ∈ cl(F ) such that t0 /∈ Q∩(X \E). Then f(t0) 6= 0 (otherwise
t0 would clearly have a neighbourhood V in X such that v(t)φ(t)|f(t)| < ε
for all t ∈ V , a contradiction with F ∩V 6= ∅). Further, as t0 ∈ (X \Q)∪E,
we have v(t0)φ(t0)|f(t0)| < k + ε/4. Let now

U1 =
{
t ∈ X : |f(t)| < |f(t0)|+ |f(t0)|ε

4k + ε

}
,

U2 =
{
t ∈ X : φ(t) <

k

v(t0)|f(t0)|
+

ε

4v(t0)|f(t0)|

}
,

U3 =
{
t ∈ X : v(t) < v(t0) +

v(t0)ε
2k + ε

}
.

As these are neighbourhoods of t0 in X, so is U = U1 ∩ U2 ∩ U3. Hence,
U∩F 6= ∅. On the other hand, it is easy to calculate that v(t)φ(t)|f(t)| < k+ε
for every t ∈ U , a contradiction. Thus, cl(F ) ⊂ Q ∩ (X \ E).

Set now K = cl(F ). Since K ⊂ Q∩ (X \E), it is a compact subset of X
disjoint from E. Hence, by Corollary 3.3, there exists h ∈ Cvb (X) for which
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h(K) = {1}, h(E) = {0} and 0 ≤ h(t) ≤ 1 for all t ∈ X. Let now g = −fh.
Then g ∈ Iv(E) = I. Further, as f(t) − f(t)h(t) = 0 for all t ∈ K and
v(t)φ(t)|f(t)| < k + ε for all t ∈ X \K, we have

p̃v,φ(f + I) ≤ pv,φ(f + g) = sup
t∈X

v(t)φ(t)|f(t) + g(t)|

= sup
t∈X

v(t)φ(t)|f(t)− f(t)h(t)| = sup
t∈X\K

v(t)φ(t)|f(t)− f(t)h(t)|

= sup
t∈X\K

v(t)φ(t)|f(t)| |1− h(t)| ≤ k + ε.

Since ε > 0 was chosen arbitrarily, we have p̃v,φ(f + I) ≤ k. Therefore,
p̃v,φ(f + I) = supt∈E v(t)φ(t)|f(t)|.

Lemma 4.11. Let E be a closed subset of X. Then S0,+(X)|E = S0,+(E).

Proof. It is easy to see that S0,+(X)|E ⊂ S0,+(E). To prove the converse
inclusion, let φ ∈ S0,+(E) and define a function ψ on X by ψ(t) = φ(t) for
all t ∈ E, and ψ(t) = 0 for all t ∈ X \E. Obviously, ψ vanishes at infinity. To
see that ψ is upper semicontinuous, fix m > 0. Then V = {t ∈ E : φ(t) < m}
is an open subset of E, and so there exists an open set W in X such that
V = W ∩ E. Since

{t ∈ X : ψ(t) < m} = {t ∈ E : φ(t) < m} ∪ {t ∈ X \ E : ψ(t) < m}
= (W ∩ E) ∪ (X \ E) = W ∪ (X \ E)

and W ∪ (X \E) is open in X, the upper semicontinuity of ψ follows. Thus,
S0,+(E) ⊂ S0,+(X)|E .

Theorem 4.12. Let I be a closed ideal of (Cvb (X), βv) and set E = Z(I)
and w = v|E. Then the mapping ϕ (see (4.1)) is a topological isomorphism
from (Cvb (X)/I, β̃v) onto (ϕ(Cvb (X)/I), βw).

Proof. Obviously, ϕ is an algebra homomorphism from Cvb (X)/I into
Cwb (E). Further, by Theorem 4.7, ϕ is injective. We next prove its continuity.
Let V be a neighbourhood of zero in (Cwb (E), βw). Then there exist φ ∈
S0,+(E) and ε > 0 such that

{f ∈ Cwb (E) : pw,φ(f) < ε} ⊂ V.
By Lemma 4.11, there exists ψ ∈ S0,+(X) such that ψ|E = φ. Let now

U = {g + I ∈ Cvb (X)/I : p̃v,ψ(g + I) < ε}.

Then U is a neighbourhood of zero in (Cvb (X)/I, β̃v). By Lemma 4.10, we
have p̃v,ψ(g + I) = supt∈E v(t)ψ(t)|g(t)| = pw,φ(ϕ(g + I)) for all g + I ∈
Cvb (X)/I. Thus, ϕ(U) ⊂ V , and so ϕ is continuous. In a similar way, it
can be shown that also ϕ−1 from (ϕ(Cvb (X)/I), βw) onto (Cvb (X)/I, β̃v) is
continuous. This proves the theorem.
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Corollary 4.13. Let I be a closed ideal of (Cvb (X), βv) and set E =
Z(I) and w = v|E. Then (Cvb (X)/I, β̃v) and (Cvb (X)|E , βw) are topologically
isomorphic.

It is well-known that a quotient space of a complete topological linear
space is not necessarily complete. We now prove an interesting result on
how the completeness of (Cvb (X)/I, β̃v) is connected with the topological
structure of the zero set of I. First we need the following definition.

Definition 4.14. Let E be a closed subset of X and set w = v|E . We
say that E has the v-extension property if for every f ∈ Cwb (E), there exists
f̃ ∈ Cvb (X) such that f̃|E = f .

Note that for v bounded, this notion coincides with the usual extension
property: a closed subset E of X is said to have the extension property if
for every f ∈ Cb(E), there exists f̃ ∈ Cb(X) such that f̃|E = f (see [14]).

Theorem 4.15. Let I be a closed ideal of (Cvb (X), βv) and set E = Z(I)
and w = v|E. If E is a kR-space, then the following conditions are equivalent :

(i) (Cvb (X)/I, β̃v) is complete.
(ii) ϕ is a topological isomorphism from (Cvb (X)/I, β̃v) onto (Cwb (E), βw).
(iii) E has the v-extension property.

Proof. By using Corollary 4.13, it is easy to verify that (ii)⇔(iii). Thus, it
suffices to show that (i)⇔(iii). Suppose first that (iii) is valid. By Theorem 3.6,
Cwb (E) is complete with respect to βw. The completeness of (Cvb (X)/I, β̃v)
is now a direct consequence of Corollary 4.13 and the v-extension property
of E. Conversely, suppose that (i) is valid. Then Corollary 4.13 implies that
(Cvb (X)|E , βw) is complete. Thus, as βw is a Hausdorff topology, Cvb (X)|E
is closed in Cwb (E) with respect to βw. On the other hand, since Cvb (X)|E
is obviously a symmetric subalgebra of Cwb (E) which strongly separates
the points of E, the Stone–Weierstrass property of (Cwb (E), βw) implies
that Cvb (X)|E = clβw(Cvb (X)|E) = Cwb (E). Hence, E has the v-extension
property.

Corollary 4.16. Let I be a closed ideal of (Cb(X), β) and set E = Z(I).
If E is a kR-space, then the following conditions are equivalent :

(i) (Cb(X)/I, β̃) is complete.
(ii) ϕ is a topological isomorphism from (Cb(X)/I, β̃) onto (Cb(E), βE).
(iii) E has the extension property.

Corollary 4.17. Suppose that X is normal. Let I be a closed ideal
of (Cb(X), β) and set E = Z(I). If E is a kR-space, then the following
conditions are valid :
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(i) (Cb(X)/I, β̃) is complete.
(ii) (Cb(X)/I, β̃) and (Cb(E), βE) are topologically isomorphic.

In Corollaries 4.16 and 4.17, βE denotes of course the usual strict topol-
ogy on Cb(E).
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