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Generalization of the Wang-Landau method for off-lattice simulations

M. Scott Shell, Pablo G. Debenedetti* and Athanassios Z. Panagiotopoulos
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544

~Received 25 June 2002; published 22 November 2002!

We present a rigorous derivation for off-lattice implementations of the so-called ‘‘random-walk’’ algorithm
recently introduced by Wang and Landau@Phys. Rev. Lett.86, 2050~2001!#. Originally developed for discrete
systems, the algorithm samples configurations according to their inverse density of states using Monte Carlo
moves; the estimate for the density of states is refined at each simulation step and is ultimately used to calculate
thermodynamic properties. We present an implementation for atomic systems based on a rigorous separation of
kinetic and configurational contributions to the density of states. By constructing a ‘‘uniform’’ ensemble for
configurational degrees of freedom—in which all potential energies, volumes, and numbers of particles are
equally probable—we establish a framework for the correct implementation of simulation acceptance criteria
and calculation of thermodynamic averages in the continuum case. To demonstrate the generality of our
approach, we perform sample calculations for the Lennard-Jones fluid using two implementation variants and
in both cases find good agreement with established literature values for the vapor-liquid coexistence locus.
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I. INTRODUCTION

Computer simulations have become an important
well-established method for evaluating structural, dynam
and equilibrium properties of substances. In particu
Monte Carlo ~MC! methods in the canonical~constant
N,V,T), isothermal-isobaric~constantN,P,T), and grand-
canonical ensembles~constantm,V,T) are commonly used
to obtain thermodynamic properties for given microsco
interactions@1,2#. Though the conceptual basis for conve
tional MC simulations is straightforward, sampling co
straints can emerge under certain circumstances. Exam
of such conditions include low-temperature and high-den
systems for which ergodic sampling is difficult to achieve
a reasonable number of simulation steps. As a conseque
numerous modifications of conventional MC methods ha
been proposed to enhance exploration of the phase spac
system. Among these are annealing, parallel-tempering,
multicanonical algorithms~for an overview of these meth
ods, see@2#!.

Recently, Wang and Landau proposed an elegant me
for direct calculation of the density of states in compu
simulations@3,4#. The density of states, that is to say t
degeneracy of energy levels available to the system, is
rectly related to entropy and can be used to calculate
thermodynamic properties at any conditions of interest@17#.
In the Wang-Landau~WL! method, the probability of observ
ing a particular atomic configuration is inversely propo
tional to the density of states corresponding to the giv
energy. This sampling scheme ultimately results in a unifo
distribution of macroscopic observables. Though the den
of states is not knowna priori, it is successively approxi
mated by modification at each simulation step so as to en
the uniform distribution. The method is advantageous
two reasons. First, a single, long simulation can provide
formation to calculate properties over a range of state co
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tions. Second, the method appears to be affected less b
sampling problems of conventional MC simulations beca
energies are sampled with equal probability; this contra
with conventional MC simulations for which high-energ
barriers are infrequently crossed.

As noted in@5#, the Wang-Landau method is most simil
to the multicanonical techniques introduced by Berg a
Neuhaus@6,7#. ~For a more thorough review of multicanon
cal methods and their application to fluid phase transitio
see@8#.! Briefly, in a multicanonical simulation, one intro
duces an artificial sampling scheme that enhances the s
pling of important states which are otherwise infrequen
visited when the typical Boltzmann criterion is used. This
particularly useful, for example, during a subcritical gra
canonical simulation when traversing the liquid-gas tran
tion. The sampling rule is constructed so that all macrosco
states are equally probable, i.e., it samples according to
inverse density of states. Initially the density-of-states fu
tion is unknown. It is generated iteratively over the course
several runs by maintaining histograms of states visited
updating between runs; frequently visited states are gi
higher values of the density of states. At the end of the ite
tive procedure, a longer ‘‘production’’ simulation is pe
formed. True thermodynamic averages can then be gener
by first unweighting the production results using the calc
lated density of states and then reweighting them with
Boltzmann rule.

The Wang-Landau method also samples macrosco
states with equal probability. Its distinguishing feature is t
dynamic update of its acceptance rule; that is, the density
states estimate is modified at every simulation step ra
than between runs. This violates microscopic detailed b
ance; state probabilities fluctuate during the simulation. T
resolution of this violation is the following: over the cours
of the ~long! simulation, the magnitude of the density-o
states modification is decreased until changes are just w
the precision of the computer. At this point, the detailed b
ance isessentiallysatisfied. Contrary to the multicanonica
approach, the calculated density of states is not used tou
©2002 The American Physical Society03-1
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weigh simulation results. Rather, it is used directly via
statistical mechanical connection to entropy as given
Boltzmann’s equation,

S5k ln V~N,V,E!, ~1.1!

where k is Boltzmann’s constant andV is the density of
states.

In their original papers, Wang and Landau effectively a
plied their method to discrete systems. For such cases
complete set of energy levels can be enumerated and
density of states is stored, in exact form, as an array in
computer. The use of the WL method in off-lattice system
however, is emerging as an important simulation tool. It h
already been used successfully to describe properties o
Lennard-Jones fluid@5#. Continuum systems require sever
nontrivial extensions of the original method. For such s
tems, one must approximate the true density of states b
discretized version and choose, via trial-and-error or ca
lation, a finite range of energy over which to determine
density of states. Furthermore, kinetic degrees of freed
which are not explored during the simulation, must be tak
into account in the processing of results.

The rigorous connection between the WL approach in o
lattice systems and the actual density of states has no
been addressed. Specifically, the statistical-mechanical b
for developing acceptance criteria and for the treatmen
kinetic degrees of freedom has not been systematically
cussed in the literature to date. Here we clarify the theor
cal basis for the Wang-Landau method for continuum s
tems and discuss the logistics of its implementation.
show that kinetic and configurational contributions to t
density of states can be formally separated into the ideal
and ‘‘excess’’ density-of-states functions,V ig and Vex. By
casting the simulation in a ‘‘uniform’’ ensemble~i.e., one in
which all macroscopic observables are equally probable!, we
derive the appropriate acceptance criteria and data ana
methods for simulations that probeVex. Finally, we show
that either of two types of simulation moves, involving pa
ticle number or volume fluctuations, may be used to expl
the density dependence ofVex for single-component sys
tems. We believe the WL approach to be a powerful simu
tion algorithm, and so the aim of our derivation is to provi
a starting point for future applications and extensions of
off-lattice version of the method.

This paper is structured as follows. In Sec. II, we gen
alize the continuum WL method to the uniform ensemble a
present the appropriate acceptance criteria and avera
procedures for simulations. In Sec. III, we discuss seve
important numerical issues that arise in simulation of c
tinuum systems, and in Sec. IV we compare results for
Lennard-Jones fluid using two variants of the method.

II. DERIVATION OF THE METHOD

We begin with the classical microcanonical partition fun
tion for a single-component system of structureless partic
which may be written as
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V~N,V,E!5
e

h3NN!
E d„E2H~p3N,q3N!…dp3Ndq3N,

~2.1!

whereN is the number of particles,V is the volume,E is the
total energy,h is Planck’s constant,d is the Dirac delta func-
tion, p andq are congugate momenta and positions, andH is
the Hamiltonian of the system. The physical interpretation
the density of states is thatV gives the number of states wit
energyE accessible toN particles in volumeV. The factore
is a constant with units energy that characterizes the sm
energy interval into which the complete energy range is
vided; its precise value, however, does not affect the ca
lation of thermodynamic quantities. The factorial term a
Planck’s constant are quantum-mechanical in nature,
former accounting for the indistinguishibility of particles an
the latter for the limit imposed by the uncertainty principle
the definition of a volume element in phase space. It sho
be noted that in order to make Eq.~2.1! well-defined, we
may replaced with dD, which is a ‘‘delta’’ function of small
but finite widthD @9#.

BecauseV is known explicitly for an ideal-gas, it is de
sirable to factor out the ideal gas density of states. Since
Hamiltonian is a function of the kinetic and potential ene
gies, the total system can be envisioned as separate ki
and configurational subsystems that exchange energy.
cordingly, Eq.~2.1! becomes

V~N,V,E!5
e

h3NN!
E d„E2K~p3N!2U~q3N!…dp3Ndq3N

5
e

h3NN!
E H E d„E2t2K~p3N!…dp3NJ

3 H E d„t2U~q3N!…dq3NJ dt, ~2.2!

whereK is the kinetic energy,U is the potential energy,C is
a normalization constant, and the outer integral is betw
the minimum energy the system can adopt andE. In Eq.
~2.2!, V is obtained by integrating over all possible distrib
tions of energy between the kinetic and configurational s
systems. This equation is rearranged to obtain the des
separation of ideal gas and configurational components,

V~N,V,E!5e21E H eVN

h3NN!
E d„E2t2K~p3N!…dp3NJ

3H e

VNE d„t2U~q3N!…dq3NJ dt

5e21E V ig~N,V,E2t !Vex~N,V,t !dt, ~2.3!

whereV ig is the ideal-gas density of states andVex is the
excess contribution due to configurational degrees of fr
dom. Note thatVex is not the configurational density o
states, which is given instead by
3-2
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GENERALIZATION OF THE WANG-LANDAU METHOD . . . PHYSICAL REVIEW E66, 056703 ~2002!
Vconfig~N,V,E!5
e

q0
3NN!

E d„E2U~q3N!…dq3N, ~2.4!

whereq0 is a constant with units of length. The relationsh
betweenVconfig andVex is

Vex~N,V,E!;
N!

VN
Vconfig~N,V,E!, ~2.5!

where the trivial dependence onq0 has been omitted. In the
Landau-Wang simulation methodology, sampling is p
formed according to the inverse density of configuratio
states,Vconfig. However, one maycalculate either Vex or
Vconfig as long as the acceptance criteria and reweigh
scheme are appropriately constructed~see Sec. III!. In our
simulations, we choose to tabulateVex rather thanVconfig,
mainly because excess properties have an intuitive phys
basis.

Once one has calculated the excess contribution to
density of states, thermodynamic properties of interest
found by adding the ideal-gas contribution. The ideal-g
density of states is given by

V ig~N,V,E!5
eVN

h3NN!
E d„E2K~p3N!…dp3N

5F S 4pmE

3h2 D 3/2
Ve5/2

N5/2 GN

, ~2.6!

wherem is the mass of the particles ande is the base of the
natural logarithm@10#. ~Several approximations have bee
made here, including the use of3

2 N21' 3
2 N and the as-

sumption thate is of negligible order. For a detailed deriva
tion, the reader is referred to@11#.!

The WL method can be generalized to a uniform e
semble for configurational degrees of freedom. In this
semble, the probability of observing a specific configurat
is

P~N,V,q3N!5
1

C

dq3NdV

Vconfig„N,V,U~q3N!…
, ~2.7!

whereq3N represents the positions of the particles. The n
malization constantC is given by

C5 (
N5Nmin

Nmax E
Vmin

VmaxH E
Emin(N,V),U,Emax(N,V)

3
1

Vconfig„N,V,U~q3N!…
dq3NJ dV, ~2.8!

where the system potential energy, volume, and numbe
particles each varies between set bounds and the inner
multidimensional integral is over the system volume. T
existence of these limits implies that state probabilities
uniform within and zero outside of the specified range
N,V,U.
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In the uniform ensemble, configurations characterized
specific values ofN,V,U will number according toVconfig,
but will each have a probability inversely proportional
Vconfig, resulting in a uniform distribution of energies, vo
umes, and numbers of particles~within the confines of the
variable bounds!. This is an extremely important property;
provides a feedback mechanism for calculating the densit
states. Based on deviations from a uniform distribution,
can systematically adjust an initial estimate forVconfig ~or
Vex) until we have converged on the true function to with
the error of our adjustments. The task is to design a sim
tion sampling scheme according to Eq.~2.7!.

In conventional single-component Monte Carlo simu
tions performed on spherically symmetric particles, thr
types of moves are common: single-particle displaceme
volume scaling moves, and particle additions and deletio
The acceptance criteria for these moves are derived by
posing a microscopic detailed balance that ensures equ
of probability fluxes between pairs of states@2#. For two
statesA andB, the acceptance criterion is formulated to yie

Pacc~A→B!

Pacc~B→A!
5$P~B!a~B→A!%

3$P~A!a~A→B!%21, ~2.9!

wherePacc is the acceptance probability,P is the equilibrium
probability, anda is the Markov-chain transition probability

For single-particle moves, one selects a particle a
makes a random displacement by an amount2dmax to
1dmax in each component of its position. Using Eq.~2.9!,
the detailed balance for this type of move is

Pacc~A→B!

Pacc~B→A!
5H ~dq3NdV!B

Vconfig~N,V,UB!

1

N

~dq3!A

~2dmax!
3J

3H ~dq3NdV!A

Vconfig~N,V,UA!

1

N

~dq3!B

~2dmax!
3J 21

5
Vconfig~N,V,UA!

Vconfig~N,V,UB!
5

Vex~N,V,UA!

Vex~N,V,UB!
,

~2.10!

where the simplification in the second line arises from
fact that the differential elementsdV and the phase-spac
volume elementsdq3N are equivalent in statesA andB. The
third line results from the fact that the number of particl
and volume remains constant. In this move, the transit
probabilities are symmetric, and thus cancel each other
constantdmax. It is not uncommon, however, to encounter
varying dmax in conventional Monte Carlo simulations
wherebydmax is dynamically changed to achieve a specifi
acceptance rate. In this latter case, the detailed balance i
rigorously satisfied. However, the distribution of sampl
states in a conventional simulation is sharply peaked s
that fluctuations away from the mean are small. The resu
that fluctuations indmax are also small, anddmax is effectively
constant. In the uniform ensemble, however, all states h
3-3
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equal probability and fluctuations from average values
large. It is imperative, therefore, to explicitly maintain co
stantdmax after finding a good initial value.

For volume scaling moves, one increments the volume
an amount2Dmax to 1Dmax and scales the entire simulatio
box and particle positions accordingly. Contrary to the p
vious move, the phase-space volume elementsdq3N are not
equivalent in states of different volume. The correct a
proach uses reduced coordinatesds3N5V2Ndq3N which are
equivalent across volumes. The acceptance criterion is

Pacc~A→B!

Pacc~B→A!
5H ~VNds3NdV!B

Vconfig~N,VB ,UB!

~dV!A

2Dmax
J

3H ~VNds3NdV!A

Vconfig~N,VA ,UA!

~dV!B

2Dmax
J 21

5
Vconfig~N,VA ,UA!

Vconfig~N,VB ,UB!

VB
N

VA
N

5
Vex~N,VA ,UA!

Vex~N,VB ,UB!
,

~2.11!

where, in the second line, the differential elementsdV and
the reduced phase-space volume elementsds3N are equiva-
lent in both states and cancel. In this case, the transforma
from an acceptance criterion involvingVconfig to Vex offers
simplification. Often, one would like to calculate thermod
namic properties over several orders of magnitude in v
ume, e.g., when investigating liquid-gas phase transitio
Then, it becomes much more efficient to make volume s
ing moves in the logarithm of the volume. The acceptan
criterion for this type of move is

Pacc~A→B!

Pacc~B→A!
5H ~VN11ds3Nd ln V!B

Vconfig~N, ln VB ,UB!
•

~d ln V!A

2 lnDmax
J

3H ~VN11ds3Nd ln V!A

Vconfig~N, ln VA ,UA!

~d ln V!B

2 lnDmax
J 21

5
Vconfig~N, ln VA ,UA!

Vconfig~N, ln VB ,UB!

VB
N11

VA
N11

5
Vex~N, ln VA ,UA!

Vex~N, ln VB ,UB!

VB

VA
, ~2.12!

where we have switched to calculatingV as a function of the
logarithm of volume rather than the volume itself~this does
not affect the behavior ofV for a given volume!. It should be
noted that in both types of volume moves, the maxim
volume changeDmax should remain constant during the pr
duction phase of the simulation, for the same reason m
tioned fordmax.

In particle addition or deletion moves, one inserts a p
ticle at a random location or deletes a randomly chosen
ticle, respectively. For the particle addition case, the deta
balance yields
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Pacc~A→B!

Pacc~B→A!
5H ~dq3N13dV!B

Vconfig~N11,V,UB!

1

N11J
3H ~dq3NdV!A

Vconfig~N,V,UA!

~dq3!B

V J 21

5
Vconfig~N,V,UA!

Vconfig~N11,V,UB!

V

N11

5
Vex~N,V,UA!

Vex~N11,V,UB!
, ~2.13!

where stateB has one more particle than stateA. For a par-
ticle deletion,

Pacc~A→B!

Pacc~B→A!
5H ~dq3N23dV!B

Vconfig~N21,V,UB!

~dq3!A

V J
3H ~dq3NdV!A

Vconfig~N,V,UA!

1

NJ 21

5
Vconfig~N,V,UA!

Vconfig~N21,V,UB!

N

V
5

Vex~N,V,UA!

Vex~N21,V,UB!
,

~2.14!

where stateB has one less particle than stateA. For both
moves, the change fromVconfig to Vex results in criteria iden-
tical to those in Eqs.~2.10! and ~2.11!.

For the acceptance criteria just described, sampling ca
performed using the traditional Metropolis algorithm,

Pacc~A→B!5minS 1,
Vex~A!

Vex~B! D ~2.15!

with the exception of Eq.~2.12!, for which there appear extra
volume terms.~The labelsA andB have been used to abbre
viate the valuesN,V,U which characterize each configura
tion.! Moves for whichB is out of the range of the ensemb
are rejected. Initially, the density of states is given the va
1 everywhere; then, after each move during the simulat
its value at the current state is scaled. If stateC is the ending
configuration after a move, being eitherA or B, the modifi-
cation reads

@Vex~C!#new5 f •@Vex~C!#old , ~2.16!

wheref is a number greater than 1, termed the modificat
factor. The dynamic modification of the density of states
this way, coupled with the uniform ensemble, drivesVex to
its true value to within a multiplicative constant. It is impo
tant to recognize that the modification factor mediates
resolution of the calculated density of states. Iff is large, the
detailed balance is not satisfied andVex will have large error
fluctuations; whenf is very small, it will take an inordinate
amount of simulation time to calculateVex. The solution is
to devise a schedule for the modification factor. Initiallyf is
large, but in discrete steps at periods during the simulatio
3-4
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GENERALIZATION OF THE WANG-LANDAU METHOD . . . PHYSICAL REVIEW E66, 056703 ~2002!
is decreased until it approaches 1.~The details of this proce
dure are described in the following implementation sectio!

For simulation purposes, it is important to recognize s
eral properties of the density of states in the thermodyna
limit. First, one only needs the intensive entropy for calc
lating thermodynamic properties, that is, S/N
5 f (E/N,V/N). Therefore, a simulation should mak
changes in energy density and particle density, of which
latter can be accomplished either by volume scaling mo
or particle additions and deletions. Second, nearly all ca
lations of interest rely on derivatives of the entropy; the
fore, entropy can be calculated to within an additive co
stant, i.e.,Vex is known to a multiplicative constant.

OnceVex has been generated, any thermodynamic pr
erty of interest can be calculated. In principle, both Eq.~2.3!
and Boltzmann’s equation could be used to determine
total density of states and, subsequently, thermodyna
properties from its various derivatives. In practice, it is mo
convenient to average in an ensemble natural to the fluct
ing quantities in the simulation. This approach is especia
important for properties that are sensitive to system s
since it preserves the effects of the simulation fluctuations
volume scaling moves and particle displacements are use
the calculation ofVex, the isobaric-isothermal ensemble
natural for calculations. Given a pressure and temperat
the probability of a state in this ensemble is

P~V,K,U !5
1

D~N,P,T!
V ig~V,K !Vex~V,U !

3e2(K1U1PV)/kT, ~2.17!

whereD is the isothermal-isobaric partition function~which
effectively normalizes the probabilities!, k is Boltzmann’s
constant, and the dependence onN in V has been suppresse
~the number of particles is fixed in both our simulation a
the ensemble!. To determine the mean configurational ener
U and volumeV in this ensemble, one integrates Eq.~2.17!
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over volume, potential energy, and kinetic energy, the la
of which is analytic using Eq.~2.6! for the ideal-gas density
of states:

ā~P,T!5E E E a~V,U !P~V,K,U !dUdKdV

5E E a~V,U !@C~N,P,T!Vex~V,U !

3e2(U1PV)/kT1N ln(V/V0)#dUdV

5E E a~V,U !P~V,U !dUdV, ~2.18!

wherea is either volume or potential energy. In the seco
line, we have substituted the ideal-gas density of states
integrated over kinetic energy. The constantC(N,P,T) con-
tains the result of this integration as well as the inverse p
tition function. In practice,C is calculated as the constan
needed to normalize the probabilities given by the expon
tial. Note thatV0 is an arbitrary reference volume to preser
units. Its presence is aesthetic as its effects are eliminate
the normalization.

A similar construction is made if the original simulatio
entails fluctuations in particle number and energy. Here,
appropriate ensemble is the grand-canonical ensemble
probability of a state given a temperature and chemical
tential is

P~N,K,U !5
1

J~m,V,T!
V ig~N,K !Vex~N,U !

3e2(K1U2mN)/kT, ~2.19!

where J is the grand-canonical partition function and th
volume dependence ofV has been suppressed. The avera
potential energy and particle number are given by
ā~m,T!5(
N

E E a~N,U !P~N,K,U !dUdK

5(
N

E a~N,U !FJ21Vex~N,U !e2(U2mN)/kT2(5/2)N ln N1m0(V)N/kTS E K (3/2)Ne2K/kTdKD GdU

5(
N

E a~N,U !FJ21Vex~N,U !e2(U2m8N)/kT2(5/2)N ln NS kT

eS 3

2
N11D D (3/2)N11GdU

5(
N

E a~N,U !@J21Vex~N,U !e2(U2m8N)/kT2N ln N1(3/2)N ln(kT/E0)#dU

5(
N

E a~N,U !P~N,U !dU, ~2.20!
3-5
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SHELL, DEBENEDETTI, AND PANAGIOTOPOULOS PHYSICAL REVIEW E66, 056703 ~2002!
wherea is either the number of particles or potential ener
In the second line, we substitute the ideal-gas density
states and let the volume-dependent termm0 contain all
terms in the exponential which are linear inN. This simply
serves to shift the zero of the chemical potential, reflecte
subsequent lines with the notationm8. In the third and fourth
lines, we integrate over the kinetic energy, in which we u
Stirling’s formula and make the approximation32 N11
' 3

2 N. The constantE0 is again introduced to conserve unit
its effect is absorbed inm8. As in the previous case,J is
calculated in the process of normalizing the probabi
P(N,U).

Of particular interest in simulation work is the predictio
of phase transitions. Under state conditions favoring a tw
phase system, the joint probabilitiesP(V,U) and P(N,U)
will appear bimodal; phase equilibrium occurs when t
probability volume under the two peaks is equal. In practi
often one identifies some intermediateVmid or Nmid which
separates the two peaks, sets the field parameter con
~pressure or chemical potential!, and adjusts the temperatu
until the probability volumes are equal. This only works w
at subcritical conditions where the probability of observi
the intermediate density is extremely low. Near the criti
point, finite-size scaling methods are more useful~not dis-
cussed here; see@12# for example!. The condition of equality
of probability volumes in the isothermal-isobaric and gran
canonical cases becomes, respectively,

E
V,Vmid

E P~V,U !dUdV5E
V.Vmid

E P~V,U !dUdV,

~2.21!

(
N,Nmid

E P~N,U !dU5 (
N>Nmid

E P~N,U !dU,

~2.22!

where the dependence ofP on temperature and pressure
chemical potential is implicit. Once conditions for pha
equilibrium are determined, Eqs.~2.18! and ~2.20! can be
used to determine properties of a specific phase by restric
the integrals to the phase’s density range. For example, in
isothermal-isobaric case,

āI52E
V,Vmid

E a~V,U !P~V,U !dUdV,

āII 52E
V.Vmid

E a~V,U !P~V,U !dUdV, ~2.23!

where the superscript numerals indicate the phase.

III. IMPLEMENTATION OF THE METHOD

Attention must be paid to several issues when impleme
ing the WL method in a simulation. The most obvious pro
lem is the calculation ofVex, which can span many orders o
magnitude and quickly pose overflow and/or underflow p
cision problems for the computer. Following Wang and La
dau @3#, we tabulate lnVex rather thanVex itself and make
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modifications of the type lnVex5 ln Vex1 ln f, wheref is our
modification factor. Accordingly, the acceptance criterion
Eq. ~2.15! becomes

Pacc~A→B!5min~1,exp@ ln Vex~A!2 ln Vex~B!# !.
~3.1!

The WL method was originally implemented for discre
systems@3,4#. In this case, the density of states is a discr
function that can be tabulated as an array in the compu
For continuum systems, as noted in@5#, it is first necessary to
discretize the density-of-states function in energy and, if v
ume scaling moves are being performed, volume as w
The degree of discretization that is necessary to obtain a
rate results is not straightforward; if the grid is treated a
linear approximation, for example, enough bins must be u
to capture the curvature of the entropy surface being inv
tigated.

It is useful to perform energy and volume interpolation
the grid used for the density of states. Without interpolati
a system may be able to stay within a specific grid level
large numbers of simulation steps. With it, the level cor
sponding to such a ‘‘stagnant’’ series of configurations w
effectively develop a sharp peak at its center as a result of
modification factor; this motivates the system leaving th
level. We use bilinear interpolation for our simulations. W
should note that interpolation should be used only when
neighboring grid points are well-defined, that is, when all a
in an energy-accessible range.

In order to determine the accessible energy range at e
density, it is necessary to first carry out a small set of sim
lations. We perform a short Monte Carlo NVT simulation f
each discretized density at the lowest temperature we
interested in studying. In doing so, we make note of
lower-bound potential energy sampled during these sim
tions and form a border in density space of energies be
which we do not attempt to calculate the density of sta
~i.e., we reject moves outside of the border!. Without this
step, we find that the simulation can get trapped for la
numbers of simulation steps in states of very low degener

During the subsequent ‘‘production’’ phase of the simu
tion, the schedule of changes in the modification factor
fects the quality of the calculated density of states. In
original method, Wang and Landau use a histogram of st
as a signal for these changes. They startf at a large value
(ln f51), and run the simulation until a flat histogram
achieved, i.e., until they observe a uniform distribution
states. Then they decrease the modification factor accor
to the rule lnfnew5 1

2 ln fold and repeat the procedure untilf is
near 1 (lnf51028). As the authors discussed, this approa
is only mildly satisfactory since there is still arbitrariness
developing a criterion for the ‘‘flatness’’ of the histogram
We choose instead to require that each discrete state be
ited a minimum number of times before changing the mo
fication factor~e.g., 20 times!. Though this may also seem
arbitrary, it does guarantee that each value in the densit
states will have a chance to adjust to the resolution of
current modification factor.
3-6
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In the original Wang-Landau work, it was noted that o
needs to perform several independent simulations for reg
of large entropy gradients@3#. That is, the total energy rang
is divided and the density of states is calculated for e
section. Then, the density of states for the whole rang
obtained from those of the sections by matching values
overlapping energy regions~one adjusts the multiplicative
constants to which each density of states is known!. If such a
procedure is not implemented, the number of simulat
steps necessary for complete coverage of the total en
range can become extremely large. This is analogous to
‘‘ergodicity times’’ or ‘‘tunneling times’’ in multicanonical
methods@7,13#.

We use the same approach in our implementation by
ating subsections of the master energy and density ra
studied and running a separate simulation for each. Since
error in our calculated lnVex functions is essentially the
same at every point and proportional to the modification f
tors we used, we shift each lnVex to minimize the total vari-
ance in regions of overlap between the subsections. The
error is defined as

etot5(
i 51

N

(
j 5 i 11

N

(
k

@ ln V i~k!1Ci2 ln V j~k!2Cj #
2,

~3.2!

whereN is the number of subsections,k is an index for all
overlapping discretized points in lnV of the two subsections
i andj, and the constantsC are the values by which we shif
In this equation, we consider only overlap between pairs
subsections. In minimizingetot with respect to the constant
C, we obtainN equations. OneC value must be specified t
obtain a solution; we solve the remainingN21 equations
using a matrix inversion algorithm. Once we know the sh
ing values, the final density of states is then pieced toge
from each shifted subsection; values at areas of overlap
averaged.

There is one caveat associated with using energy and
sity subsections in the uniform ensemble: each subsec
must have a sufficient range of energy to allow room
sampling all relevant configurations. That is, there must
an adequate number of paths for the system to move betw
densities; otherwise, it is very difficult to obtain good co
vergence of the calculated density of states. This amoun
setting the maximum potential energy of each subsection
sufficiently large value. In the majority of our simulation
we find that creating subsections that differ only in dens
range~i.e., have the same range of potential energy! is the
most effective approach. Though the undivided energy ra
can contain significant entropy gradients, creating ene
subsections can actually result in longer runs because
system’s ergodicity is restricted.

IV. CASE STUDY: THE LENNARD-JONES FLUID

It was shown in @5# that the phase behavior of th
Lennard-Jones fluid is well reproduced by the WL algorith
with particle displacement and addition and deletion mov
Here we generalize those results to show that the forma
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we have outlined is extensible to all types of simulati
moves. We conduct simulations of particles interacti
through the cut and long-range corrected Lennard-Jones
tential with a cutoff radius of 2.5s. Particle displacemen
moves are used with two cases of density changes: vol
scaling moves in the logarithm of the volume and parti
addition and deletion moves. For the volume scaling ca
we use a system of 128 particles and allow the box width
vary between 5.04s and 21.6s, corresponding to reduce
densities between 1.0 and 0.013. The density-of-states f
tion is discretized into 500 energy and 200 volume bins, w
an energy range of2806e to 64e. For the particle addition
and deletion case, we use a box of width 5s and allow the
number of particles to fluctuate between 2 and 111, co
sponding to densities between 0.016 and 0.89. The en
range of the density of states is divided into 1000 bins a
spans2700e to 20e.

In both cases, we start our simulations with lnf51 and
require that each discretized point in the density of states
visited 20 times before the modification factor is update
The update is performed according to lnfnew5 1

2 ln fold . We
stop the simulation when lnf,1025. Approximately 120
hours on an AMD Athlon 1.4 GHz workstation are require
for the complete simulation; however, nearly 100 of tho
hours correspond to lnf,1023, for which the density of
states is already reasonably converged. For comparison
same potential code was used to generate two-dimensi
histograms of energy and particle number in grand-canon
MC simulations. Data from seven state points near coex
ence were obtained by long production runs totaling 25 ho
of computer time. The resulting histograms are of hi
enough quality to determine the entropy in the region
phase coexistence using histogram reweighting techniq
~see@12# for details of such a procedure!.

FIG. 1. Gibbs surface for Lennard-Jones excess entropy as
culated from particle displacement and addition and delet
moves. Variables for the Lennard-Jones system are expresse
units of k for entropy,e for energy,s3 for volume, ande/k for
temperature.
3-7
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The Gibbs surfaces for the excess entropy calculate
the two cases are shown in Figs. 1 and 2. It is apparent f
Fig. 1 that the accessible range of energy in the part
addition and deletion case is extremely sensitive to the n
ber of particles. At very low particle numbers, the number
discretized points in the density of states which have an
cessible energy is small. Furthermore, at these small par
numbers there is a sharp peak in the excess entropy a
intermediate energy, requiring a greater number of interp
tion bins to be reproduced accurately~an explanation of this
peak is below!. This necessitates a high degree of discreti
tion in the particle addition and deletion case, which c
unfavorably increase the duration of the simulation. In co
trast, the accessible range of energy does not vary drasti
with density in the volume scaling moves case. The ability
particles in a larger volume to condense into a droplet res
in a low-energy ‘‘tail’’ which extends the energy range
low-density configurations. Thus, we find the volume scal
approach to be advantageous in the calculation of ex
entropy.

FIG. 2. Gibbs surface for Lennard-Jones excess entropy as
culated from particle displacement and volume scaling moves.
irregular low-energy boundary is the result of variations in cal
lating the border for the lowest accessible energies at each de
r a
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The vapor-liquid equilibrium data as calculated from t
two simulation variants are shown in Fig. 3 and compared
literature values. Both results are truncated just below
critical point, where finite-size effects become significa
Additionally, results from the particle addition and deletio
case must be truncated aroundT51.0 reduced temperature
Below this temperature, the calculations are strongly infl
enced by the fact that we have limited the minimum num
of particles to two. For the reported data in each case,
obtain good agreement with literature values.

As a further verification of the method, we also compa
calculated and analytical values for the excess entropy of
two-particle Lennard-Jones system in a box of width 5s.
The analytical values are found by placing one of the p
ticles at the center of the simulation box, and findingV8(E),
the total volume in which the second particle can be pla
such that the energy is less thanE. The result is

al-
e

-
ity.

FIG. 3. Vapor-liquid equilibria for the Lennard-Jones flui
Squares and triangles correspond to results from the volume sc
and particle addition/deletion variants of the off-lattice Wan
Landau method, respectively. Crosses are from a histogram
weighting study using grand-canonical MC data at seven s
points. The solid line is from Lotfi,et al. @14#.
V8~E!5H 4p

3 H F1

2
2

1

2
~11E!1/2G21/2

2F1

2
1

1

2
~11E!1/2G21/2J , E<E*

8H32
4p

3 F1

2
1

1

2
~11E!1/2G21/2

, E.0,

~4.1!
n

g-
e-
whereH is half of the box width andE* is the interaction
energy when the particles are separated byH. ~For legibility,
we have omitted in this presentation the regionE* ,E,0
which entails the calculation of the intersection volume fo
sphere and cube.! The excess entropy, given to within a
additive constant, is the logarithm of the derivative ofV8(E)
with respect to E. In Fig. 4, we show this calculation alon
side the results of the WL simulation algorithm. The agre
3-8
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ment is quite good. We should note that the odd shape of
curve is the result of the small system size. The peak aro
E50 corresponds to the large amount of possible locati
for the second particle, which are relatively far from the fi
~i.e., which result in near-zero interaction energy!. As one
increases in energy forE.0, the excess entropy decrease
here the second particle must be placed in a volume tha
essentially a shrinking shell around the first. It is interest
to note that this region corresponds to a state of nega
configurational temperature in the two-particle system.

V. CONCLUSION

We have shown that the Wang-Landau algorithm for c
culating the density of states can be generalized to c
tinuum systems using the so-called ‘‘uniform’’ ensemb

FIG. 4. Calculated and analytical excess entropy for t
Lennard-Jones particles in a box of side length 5s. Points are simu-
lation results and the line is from the analytical calculation.
:
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This ensemble permits calculation of the excess density
states, a function that measures the degeneracy of en
levels due to configurational degrees of freedom. Thermo
namic properties are found from the connection between
density of states and entropy; in practice, they are de
mined by averaging in an ensemble appropriate to the typ
Monte Carlo moves used in a particular application. F
simulation purposes, we have derived acceptance criteria
particle displacement, volume scaling, and particle addit
and deletion moves, though the uniform ensemble can
applied to any Monte Carlo simulation move. For sing
component systems, either volume scaling or particle ad
tion and deletion moves can be used to explore the den
dependence of the excess density of states. In the case o
Lennard-Jones fluid, we find the former has advantage
low density.

Though the Wang-Landau algorithm is conceptually
egant, it does not offer a significant time-saving advanta
over comparable methods for the calculation of liquid-g
equilibria ~e.g., multicanonical or histogram reweightin
techniques!. Its primary benefit is that it makes no referen
to temperature; its sampling scheme has the unphysical
vantage that high energy barriers are sampled with the s
probability as low-energy configurations. This makes the W
method particularly attractive for low-temperature studi
and has the potential to provide new and reliable data ab
the equilibrium behavior of supercooled liquids, glasses,
polymers for which simulation time scales have previou
been prohibitive. Studies have begun to demonstrate its
tential usefulness in such applications, including prot
folding @15# and polymer films@16#.
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